Can species-specific prey responses to chemical cues explain prey susceptibility to predation?

. 2018 May ; 8 (9) : 4544-4551. [epub] 20180410

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29760895

The perception of danger represents an essential ability of prey for gaining an informational advantage over their natural enemies. Especially in complex environments or at night, animals strongly rely on chemoreception to avoid predators. The ability to recognize danger by chemical cues and subsequent adaptive responses to predation threats should generally increase prey survival. Recent findings suggest that European catfish (Silurus glanis) introduction induce changes in fish community and we tested whether the direction of change can be attributed to differences in chemical cue perception. We tested behavioral response to chemical cues using three species of freshwater fish common in European water: rudd (Scardinius erythrophthalmus), roach (Rutilus rutilus), and perch (Perca fluviatilis). Further, we conducted a prey selectivity experiment to evaluate the prey preferences of the European catfish. Roach exhibited the strongest reaction to chemical cues, rudd decreased use of refuge and perch did not alter any behavior in the experiment. These findings suggest that chemical cue perception might be behind community data change and we encourage collecting more community data of tested prey species before and after European catfish introduction to test the hypothesis. We conclude that used prey species can be used as a model species to verify whether chemical cue perception enhances prey survival.

Zobrazit více v PubMed

Abrahams, M. V. (1995). The interaction between antipredator behaviour and antipredator morphology: Experiments with fathead minnows and brook sticklebacks. Canadian Journal of Zoology, 73, 2209–2215. https://doi.org/10.1139/z95-261 DOI

Andraso, G. M. , & Barron, J. N. (1995). Evidence for a trade‐off between defensive morphology and startle‐response performance in the brook stickleback ( DOI

Apfelbach, R. , Blanchard, C. D. , Blanchard, R. J. , Hayes, R. A. , & McGregor, I. S. (2005). The effects of predator odors in mammalian prey species: A review of field and laboratory studies. Neuroscience and Biobehavioral Reviews, 29, 1123–1144. https://doi.org/10.1016/j.neubiorev.2005.05.005 PubMed DOI

Barry, T. P. , Dehnert, G. K. , Hoppe, P. D. , & Sorensen, P. W. (2017). Chemicals released by predation increase the growth rate of yellow perch, PubMed DOI

Benejam, L. , Carol, J. , Benito, J. , & García‐Berthou, E. (2007). On the spread of the European catfish (

Boujard, T. (1995). Diel rhythms of feeding activity in the European catfish, PubMed DOI

Brönmark, C. , & Miner, J. G. (1992). Predator‐induced phenotypical change in body morphology in crucian carp. Science, 258, 1348–1350. https://doi.org/10.1126/science.258.5086.1348 PubMed DOI

Brönmark, C. , & Pettersson, L. B. (1994). Chemical cues from piscivores induce a change in morphology in crucian carp. Oikos, 70, 396–402. https://doi.org/10.2307/3545777 DOI

Brown, G. E. , Chivers, D. P. , & Smith, R. J. F. (1996). Effects of diet on localized defecation by Northern pike, PubMed DOI

Brown, G. E. , Poirier, J. F. , & Adrian, J. C. (2004). Assessment of local predation risk: The role of subthreshold concentrations of chemical alarm cues. Behavioral Ecology, 15, 810–815. https://doi.org/10.1093/beheco/arh084 DOI

Brown, G. E. , & Smith, R. J. F. (1998). Acquired predator recognition in juvenili rainbow trot ( DOI

Brown, J. S. , & Vincent, T. L. (1992). Organization of predator‐prey communities as an evolutionary game. Evolution, 46, 1269–1283. https://doi.org/10.1111/j.1558-5646.1992.tb01123.x PubMed DOI

Carol, J. , Zamora, L. , & García‐Berthou, E. (2007). Preliminary telemetry data on the movement patterns and habitat use of European catfish ( DOI

Chapman, B. B. , Hulthén, K. , Brodersen, J. , Nilsson, P. A. , Skov, C. , Hansson, L. A. , & Brönmark, C. (2012). Partial migration in fishes: Causes and consequences. Journal of Fish Biology, 81, 456–478. https://doi.org/10.1111/j.1095-8649.2012.03342.x PubMed DOI

Chesson, J. (1978). Measuring preference in selective predation. Ecology, 59, 211–215. https://doi.org/10.2307/1936364 DOI

Chivers, D. P. , & Smith, R. J. F. (1994). Fathead minnows, DOI

Copp, G. H. , Robert Britton, J. , Cucherousset, J. , García‐Berthou, E. , Kirk, R. , Peeler, E. , & Stakėnas, S. (2009). Voracious invader or benign feline? A review of the environmental biology of European catfish DOI

Crooks, K. , & Soulé, M. (1999). Mesopredator release and avifaunal extinctions in a fragmented system. Nature, 400, 563–566. https://doi.org/10.1038/23028 DOI

Domenici, P. , Turesson, H. , Brodersen, J. , Brönmark, C. , & Bronmark, C. (2008). Predator‐induced morphology enhances escape locomotion in crucian carp. Proceedings of the Royal Society of London B: Biological Sciences, 275, 195–201. https://doi.org/10.1098/rspb.2007.1088 PubMed DOI PMC

Eklöv, P. , & Hamrin, S. F. (1989). Predatory efficiency and prey selection: Interactions between pike DOI

Eklöv, P. , & Persson, L. (1995). Species‐specific antipredator capacities and prey refuges: Interactions between piscivorous perch ( DOI

Ferrari, M. C. O. , Messier, F. , & Chivers, D. P. (2006). The nose knows: Minnows determine predator proximity and density through detection of predator odours. Animal Behaviour, 72, 927–932. https://doi.org/10.1016/j.anbehav.2006.03.001 DOI

Ferrari, M. C. O. , Messier, F. , & Chivers, D. P. (2008). Can prey exhibit threat‐sensitive generalization of predator recognition? Extending the predator recognition continuum hypothesis. Proceedings of the Royal Society of London B: Biological Sciences, 275, 1811–1816. https://doi.org/10.1098/rspb.2008.0305 PubMed DOI PMC

Ferrari, M. C. O. , Wisenden, B. D. , & Chivers, D. P. (2010). Chemical ecology of predator–prey interactions in aquatic ecosystems: A review and prospectus. Canadian Journal of Zoology, 88, 698–724. https://doi.org/10.1139/Z10-029 DOI

Gjelland, K. Ø. , Říha, M. , Rosten, C. , Baktoft, H. , Sandlund, O. T. , Vejřík, L. , … Peterka, J. (2017) Flexible behaviour in sympatric pike (Esox lucius) and wels (Siluris glanis) in lakes suggest various mechanisms for niche partitioning. 4th International Conference on Fish Telemetry, Cairns, p. 62.

Harvey, M. C. , & Brown, G. E. (2004). Dine or dash? Ontogenetic shift in the response of yellow perch to conspecific alarm cues. Environmental Biology of Fishes, 70, 345–352. https://doi.org/10.1023/B:EBFI.0000035432.12313.87 DOI

Hölker, F. , Dörner, H. , Schulze, T. , Haertel‐Borer, S. S. , Peacor, S. D. , & Mehner, T. (2007). Species‐specific responses of planktivorous fish to the introduction of a new piscivore: Implications for prey fitness. Freshwater Biology, 52, 1793–1806. https://doi.org/10.1111/j.1365-2427.2007.01810.x DOI

Horppila, J. , & Nurminen, L. (2009). Food niche segregation between two herbivorous cyprinid species in a turbid lake. Journal of Fish Biology, 75, 1230–1243. https://doi.org/10.1111/j.1095-8649.2009.02359.x PubMed DOI

Hulthén, K. , Chapman, B. B. , Nilsson, P. A. , Hollander, J. , & Brönmark, C. (2014). Express yourself: Bold individuals induce enhanced morphological defences. Proceedings of the Royal Society B: Biological Sciences, 281, 20132703. PubMed PMC

Johansson, J. , Turesson, H. , & Persson, A. (2004). Active selection for large guppies, DOI

Krause, J. , & Godin, J. G. J. (1992). Influence of prey foraging posture on flight behavior and predation risk: predators take advantage of unwary prey. Behavioral Ecology, 7, 264–271.

Lima, S. L. (1992). Strong preferences for apparently dangerous habitats? A consequence of differential escape from predators. Oikos, 64, 597–600. https://doi.org/10.2307/3545181 DOI

Lima, S. L. (1998). Nonlethal effects in the ecology of predator‐prey interactions. BioScience, 48, 25 https://doi.org/10.2307/1313225 DOI

Lima, S. , & Bednekoff, P. (1999). Back to the basics of antipredatory vigilance: Can nonvigilant animals detect attack? Animal behaviour, 58, 537–543. https://doi.org/10.1006/anbe.1999.1182 PubMed DOI

Mathis, A. , & Smith, R. J. F. (1993a). Chemical alarm signals increase the survival time of fathead minnows ( DOI

Mathis, A. , & Smith, R. J. F. (1993b). Fathead minnow, DOI

Matsumoto, T. , & Kawamura, G. (2005). The eyes of the common carp and Nile tilapia are sensitive to near‐infrared. Fisheries Science, 71, 350–355. https://doi.org/10.1111/j.1444-2906.2005.00971.x DOI

Mehner, T. , Diekmann, M. , Bramick, U. , & Lemcke, R. (2005). Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human‐use intensity. Freshwater Biology, 50, 70–85. https://doi.org/10.1111/j.1365-2427.2004.01294.x DOI

Meuthen, D. , Rick, I. P. , Thünken, T. , & Baldauf, S. A. (2012). Visual prey detection by near‐infrared cues in a fish. Naturwissenschaften, 99, 1063–1066. https://doi.org/10.1007/s00114-012-0980-7 PubMed DOI

Mikheev, V. N. , Wanzenbock, J. , & Pasternak, A. F. (2006). Effects of predator‐induced visual and olfactory cues on 0+ perch ( DOI

Miller, L. A. , & Surlykke, A. (2001). How some insects detect and avoid being eaten by bats: Tactics and countertactics of prey and predator. BioScience, 51, 570 https://doi.org/10.1641/0006-3568(2001)051[0570:HSIDAA]2.0.CO;2 DOI

Mills, L. S. , Soulé, M. E. , & Doak, D. F. (1993). The keystone‐species concept in ecology and conservation. BioScience, 43, 219–224. https://doi.org/10.2307/1312122 DOI

Mirza, R. S. , & Chivers, D. P. (2000). Predator‐recognition training enhances survival of brook trout: Evidence from laboratory and field‐enclosure studies. Canadian Journal of Zoology, 78, 2198–2208. https://doi.org/10.1139/z00-164 DOI

Mirza, R. , & Chivers, D. (2001). Do juvenile yellow perch use diet cues to assess the level of threat posed by intraspecific predators? Behaviour, 138, 1249–1258. https://doi.org/10.1163/15685390152822201 DOI

Persson, L. , Roos, A. M. De. , Claessen, D. , Byström, P. , Lövgren, J. , Sjogrën, S. , … Westman, E. (2003). Gigantic cannibals driving a whole‐lake trophic cascade. Proceedings of the National Academy of Sciences of the United States of America, 100, 4035–4039. https://doi.org/10.1073/pnas.0636404100 PubMed DOI PMC

Pettersson, L. B. , Andersson, K. , & Nilsson, K. (2001). The diel activity of crucian carp, DOI

Pettersson, L. B. , Nilsson, P. A. , Bronmark, C. , & Brönmark, C. (2000). Predator recognition and defence strategies in crucian carp, DOI

Pohlmann, K. , Atema, J. , & Breithaupt, T. (2004). The importance of the lateral line in nocturnal predation of piscivorous catfish. The Journal of Experimental Biology, 207, 2971–2978. https://doi.org/10.1242/jeb.01129 PubMed DOI

Pohlmann, K. , Grasso, F. W. , & Breithaupt, T. (2001). Tracking wakes: The nocturnal predatory strategy of piscivorous catfish. Proceedings of the National Academy of Sciences of the United States of America, 98, 7371–7374. https://doi.org/10.1073/pnas.121026298 PubMed DOI PMC

Pollock, M. S. , Chivers, D. P. , Mirza, R. S. , & Wisenden, B. D. (2003). Fathead minnows, DOI

Prchalová, M. , Kubečka, J. , Vašek, M. , Peterka, J. , Sed'a, J. , Jůza, T. , … Hohausová, E. (2008). Distribution patterns of fishes in a canyon‐shaped reservoir. Journal of Fish Biology, 73, 54–78. https://doi.org/10.1111/j.1095-8649.2008.01906.x DOI

R Core Team (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Savino, J. F. , & Stein, R. A. (1989). Behavior of fish predators and their prey: Habitat choice between open water and dense vegetation. Environmental Biology of Fishes, 24, 287–293. https://doi.org/10.1007/BF00001402 DOI

Short, J. , Kinnear, J. E. , & Robley, A. (2002). Surplus killing by introduced predators in Australia ‐ Evidence for ineffective anti‐predator adaptations in native prey species? Biological Conservation, 103, 283–301. https://doi.org/10.1016/S0006-3207(01)00139-2 DOI

Sinclair, A. R. E. , Mduma, S. , & Brashares, J. S. (2003). Patterns of predation in a diverse predator‐prey system. Nature, 425, 288–290. https://doi.org/10.1038/nature01934 PubMed DOI

Turesson, H. , & Persson, A. (2002). Prey size selection in piscivorous pikeperch ( DOI

Vejřík, L. , Vejříková, I. , Blabolil, P. , Eloranta, A. P. , Kočvara, L. , Peterka, J. , … Čech, M. (2017). European catfish ( PubMed PMC

Westin, L. , & Aneer, G. (1987). Locomotor activity patterns of nineteen fish and five crustacean species from the Baltic Sea. Environmental Biology of Fishes, 20, 49–65. https://doi.org/10.1007/BF00002025 DOI

Whittaker, R. H. , Levin, S. A. , & Root, R. B. (1973). Niche, habitat, and ecotope. The American Naturalist, 107, 321–338. https://doi.org/10.1086/282837 DOI

Wirsing, A. J. , Cameron, K. E. , & Heithaus, M. R. (2010). Spatial responses to predators vary with prey escape mode. Animal Behaviour, 79, 531–537. https://doi.org/10.1016/j.anbehav.2009.12.014 DOI

Wisenden, B. (2008). Active space of chemical alarm cue in natural fish populations. Behaviour, 145, 391–407. https://doi.org/10.1163/156853908783402920 DOI

Wysujack, K. , & Mehner, T. (2005). Can feeding of European catfish prevent cyprinids from reaching a size refuge? Ecology of Freshwater Fish, 14, 87–95. https://doi.org/10.1111/j.1600-0633.2004.00081.x DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...