Can species-specific prey responses to chemical cues explain prey susceptibility to predation?
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29760895
PubMed Central
PMC5938473
DOI
10.1002/ece3.4000
PII: ECE34000
Knihovny.cz E-zdroje
- Klíčová slova
- chemical communication, predator‐prey interaction, schreckstoff, wels,
- Publikační typ
- časopisecké články MeSH
The perception of danger represents an essential ability of prey for gaining an informational advantage over their natural enemies. Especially in complex environments or at night, animals strongly rely on chemoreception to avoid predators. The ability to recognize danger by chemical cues and subsequent adaptive responses to predation threats should generally increase prey survival. Recent findings suggest that European catfish (Silurus glanis) introduction induce changes in fish community and we tested whether the direction of change can be attributed to differences in chemical cue perception. We tested behavioral response to chemical cues using three species of freshwater fish common in European water: rudd (Scardinius erythrophthalmus), roach (Rutilus rutilus), and perch (Perca fluviatilis). Further, we conducted a prey selectivity experiment to evaluate the prey preferences of the European catfish. Roach exhibited the strongest reaction to chemical cues, rudd decreased use of refuge and perch did not alter any behavior in the experiment. These findings suggest that chemical cue perception might be behind community data change and we encourage collecting more community data of tested prey species before and after European catfish introduction to test the hypothesis. We conclude that used prey species can be used as a model species to verify whether chemical cue perception enhances prey survival.
Department of Aquatic Ecology Lund University Lund Sweden
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Fisheries and Oceans Canada Gulf Fisheries Centre Moncton Canada
Zobrazit více v PubMed
Abrahams, M. V. (1995). The interaction between antipredator behaviour and antipredator morphology: Experiments with fathead minnows and brook sticklebacks. Canadian Journal of Zoology, 73, 2209–2215. https://doi.org/10.1139/z95-261 DOI
Andraso, G. M. , & Barron, J. N. (1995). Evidence for a trade‐off between defensive morphology and startle‐response performance in the brook stickleback ( DOI
Apfelbach, R. , Blanchard, C. D. , Blanchard, R. J. , Hayes, R. A. , & McGregor, I. S. (2005). The effects of predator odors in mammalian prey species: A review of field and laboratory studies. Neuroscience and Biobehavioral Reviews, 29, 1123–1144. https://doi.org/10.1016/j.neubiorev.2005.05.005 PubMed DOI
Barry, T. P. , Dehnert, G. K. , Hoppe, P. D. , & Sorensen, P. W. (2017). Chemicals released by predation increase the growth rate of yellow perch, PubMed DOI
Benejam, L. , Carol, J. , Benito, J. , & García‐Berthou, E. (2007). On the spread of the European catfish (
Boujard, T. (1995). Diel rhythms of feeding activity in the European catfish, PubMed DOI
Brönmark, C. , & Miner, J. G. (1992). Predator‐induced phenotypical change in body morphology in crucian carp. Science, 258, 1348–1350. https://doi.org/10.1126/science.258.5086.1348 PubMed DOI
Brönmark, C. , & Pettersson, L. B. (1994). Chemical cues from piscivores induce a change in morphology in crucian carp. Oikos, 70, 396–402. https://doi.org/10.2307/3545777 DOI
Brown, G. E. , Chivers, D. P. , & Smith, R. J. F. (1996). Effects of diet on localized defecation by Northern pike, PubMed DOI
Brown, G. E. , Poirier, J. F. , & Adrian, J. C. (2004). Assessment of local predation risk: The role of subthreshold concentrations of chemical alarm cues. Behavioral Ecology, 15, 810–815. https://doi.org/10.1093/beheco/arh084 DOI
Brown, G. E. , & Smith, R. J. F. (1998). Acquired predator recognition in juvenili rainbow trot ( DOI
Brown, J. S. , & Vincent, T. L. (1992). Organization of predator‐prey communities as an evolutionary game. Evolution, 46, 1269–1283. https://doi.org/10.1111/j.1558-5646.1992.tb01123.x PubMed DOI
Carol, J. , Zamora, L. , & García‐Berthou, E. (2007). Preliminary telemetry data on the movement patterns and habitat use of European catfish ( DOI
Chapman, B. B. , Hulthén, K. , Brodersen, J. , Nilsson, P. A. , Skov, C. , Hansson, L. A. , & Brönmark, C. (2012). Partial migration in fishes: Causes and consequences. Journal of Fish Biology, 81, 456–478. https://doi.org/10.1111/j.1095-8649.2012.03342.x PubMed DOI
Chesson, J. (1978). Measuring preference in selective predation. Ecology, 59, 211–215. https://doi.org/10.2307/1936364 DOI
Chivers, D. P. , & Smith, R. J. F. (1994). Fathead minnows, DOI
Copp, G. H. , Robert Britton, J. , Cucherousset, J. , García‐Berthou, E. , Kirk, R. , Peeler, E. , & Stakėnas, S. (2009). Voracious invader or benign feline? A review of the environmental biology of European catfish DOI
Crooks, K. , & Soulé, M. (1999). Mesopredator release and avifaunal extinctions in a fragmented system. Nature, 400, 563–566. https://doi.org/10.1038/23028 DOI
Domenici, P. , Turesson, H. , Brodersen, J. , Brönmark, C. , & Bronmark, C. (2008). Predator‐induced morphology enhances escape locomotion in crucian carp. Proceedings of the Royal Society of London B: Biological Sciences, 275, 195–201. https://doi.org/10.1098/rspb.2007.1088 PubMed DOI PMC
Eklöv, P. , & Hamrin, S. F. (1989). Predatory efficiency and prey selection: Interactions between pike DOI
Eklöv, P. , & Persson, L. (1995). Species‐specific antipredator capacities and prey refuges: Interactions between piscivorous perch ( DOI
Ferrari, M. C. O. , Messier, F. , & Chivers, D. P. (2006). The nose knows: Minnows determine predator proximity and density through detection of predator odours. Animal Behaviour, 72, 927–932. https://doi.org/10.1016/j.anbehav.2006.03.001 DOI
Ferrari, M. C. O. , Messier, F. , & Chivers, D. P. (2008). Can prey exhibit threat‐sensitive generalization of predator recognition? Extending the predator recognition continuum hypothesis. Proceedings of the Royal Society of London B: Biological Sciences, 275, 1811–1816. https://doi.org/10.1098/rspb.2008.0305 PubMed DOI PMC
Ferrari, M. C. O. , Wisenden, B. D. , & Chivers, D. P. (2010). Chemical ecology of predator–prey interactions in aquatic ecosystems: A review and prospectus. Canadian Journal of Zoology, 88, 698–724. https://doi.org/10.1139/Z10-029 DOI
Gjelland, K. Ø. , Říha, M. , Rosten, C. , Baktoft, H. , Sandlund, O. T. , Vejřík, L. , … Peterka, J. (2017) Flexible behaviour in sympatric pike (Esox lucius) and wels (Siluris glanis) in lakes suggest various mechanisms for niche partitioning. 4th International Conference on Fish Telemetry, Cairns, p. 62.
Harvey, M. C. , & Brown, G. E. (2004). Dine or dash? Ontogenetic shift in the response of yellow perch to conspecific alarm cues. Environmental Biology of Fishes, 70, 345–352. https://doi.org/10.1023/B:EBFI.0000035432.12313.87 DOI
Hölker, F. , Dörner, H. , Schulze, T. , Haertel‐Borer, S. S. , Peacor, S. D. , & Mehner, T. (2007). Species‐specific responses of planktivorous fish to the introduction of a new piscivore: Implications for prey fitness. Freshwater Biology, 52, 1793–1806. https://doi.org/10.1111/j.1365-2427.2007.01810.x DOI
Horppila, J. , & Nurminen, L. (2009). Food niche segregation between two herbivorous cyprinid species in a turbid lake. Journal of Fish Biology, 75, 1230–1243. https://doi.org/10.1111/j.1095-8649.2009.02359.x PubMed DOI
Hulthén, K. , Chapman, B. B. , Nilsson, P. A. , Hollander, J. , & Brönmark, C. (2014). Express yourself: Bold individuals induce enhanced morphological defences. Proceedings of the Royal Society B: Biological Sciences, 281, 20132703. PubMed PMC
Johansson, J. , Turesson, H. , & Persson, A. (2004). Active selection for large guppies, DOI
Krause, J. , & Godin, J. G. J. (1992). Influence of prey foraging posture on flight behavior and predation risk: predators take advantage of unwary prey. Behavioral Ecology, 7, 264–271.
Lima, S. L. (1992). Strong preferences for apparently dangerous habitats? A consequence of differential escape from predators. Oikos, 64, 597–600. https://doi.org/10.2307/3545181 DOI
Lima, S. L. (1998). Nonlethal effects in the ecology of predator‐prey interactions. BioScience, 48, 25 https://doi.org/10.2307/1313225 DOI
Lima, S. , & Bednekoff, P. (1999). Back to the basics of antipredatory vigilance: Can nonvigilant animals detect attack? Animal behaviour, 58, 537–543. https://doi.org/10.1006/anbe.1999.1182 PubMed DOI
Mathis, A. , & Smith, R. J. F. (1993a). Chemical alarm signals increase the survival time of fathead minnows ( DOI
Mathis, A. , & Smith, R. J. F. (1993b). Fathead minnow, DOI
Matsumoto, T. , & Kawamura, G. (2005). The eyes of the common carp and Nile tilapia are sensitive to near‐infrared. Fisheries Science, 71, 350–355. https://doi.org/10.1111/j.1444-2906.2005.00971.x DOI
Mehner, T. , Diekmann, M. , Bramick, U. , & Lemcke, R. (2005). Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human‐use intensity. Freshwater Biology, 50, 70–85. https://doi.org/10.1111/j.1365-2427.2004.01294.x DOI
Meuthen, D. , Rick, I. P. , Thünken, T. , & Baldauf, S. A. (2012). Visual prey detection by near‐infrared cues in a fish. Naturwissenschaften, 99, 1063–1066. https://doi.org/10.1007/s00114-012-0980-7 PubMed DOI
Mikheev, V. N. , Wanzenbock, J. , & Pasternak, A. F. (2006). Effects of predator‐induced visual and olfactory cues on 0+ perch ( DOI
Miller, L. A. , & Surlykke, A. (2001). How some insects detect and avoid being eaten by bats: Tactics and countertactics of prey and predator. BioScience, 51, 570 https://doi.org/10.1641/0006-3568(2001)051[0570:HSIDAA]2.0.CO;2 DOI
Mills, L. S. , Soulé, M. E. , & Doak, D. F. (1993). The keystone‐species concept in ecology and conservation. BioScience, 43, 219–224. https://doi.org/10.2307/1312122 DOI
Mirza, R. S. , & Chivers, D. P. (2000). Predator‐recognition training enhances survival of brook trout: Evidence from laboratory and field‐enclosure studies. Canadian Journal of Zoology, 78, 2198–2208. https://doi.org/10.1139/z00-164 DOI
Mirza, R. , & Chivers, D. (2001). Do juvenile yellow perch use diet cues to assess the level of threat posed by intraspecific predators? Behaviour, 138, 1249–1258. https://doi.org/10.1163/15685390152822201 DOI
Persson, L. , Roos, A. M. De. , Claessen, D. , Byström, P. , Lövgren, J. , Sjogrën, S. , … Westman, E. (2003). Gigantic cannibals driving a whole‐lake trophic cascade. Proceedings of the National Academy of Sciences of the United States of America, 100, 4035–4039. https://doi.org/10.1073/pnas.0636404100 PubMed DOI PMC
Pettersson, L. B. , Andersson, K. , & Nilsson, K. (2001). The diel activity of crucian carp, DOI
Pettersson, L. B. , Nilsson, P. A. , Bronmark, C. , & Brönmark, C. (2000). Predator recognition and defence strategies in crucian carp, DOI
Pohlmann, K. , Atema, J. , & Breithaupt, T. (2004). The importance of the lateral line in nocturnal predation of piscivorous catfish. The Journal of Experimental Biology, 207, 2971–2978. https://doi.org/10.1242/jeb.01129 PubMed DOI
Pohlmann, K. , Grasso, F. W. , & Breithaupt, T. (2001). Tracking wakes: The nocturnal predatory strategy of piscivorous catfish. Proceedings of the National Academy of Sciences of the United States of America, 98, 7371–7374. https://doi.org/10.1073/pnas.121026298 PubMed DOI PMC
Pollock, M. S. , Chivers, D. P. , Mirza, R. S. , & Wisenden, B. D. (2003). Fathead minnows, DOI
Prchalová, M. , Kubečka, J. , Vašek, M. , Peterka, J. , Sed'a, J. , Jůza, T. , … Hohausová, E. (2008). Distribution patterns of fishes in a canyon‐shaped reservoir. Journal of Fish Biology, 73, 54–78. https://doi.org/10.1111/j.1095-8649.2008.01906.x DOI
R Core Team (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Savino, J. F. , & Stein, R. A. (1989). Behavior of fish predators and their prey: Habitat choice between open water and dense vegetation. Environmental Biology of Fishes, 24, 287–293. https://doi.org/10.1007/BF00001402 DOI
Short, J. , Kinnear, J. E. , & Robley, A. (2002). Surplus killing by introduced predators in Australia ‐ Evidence for ineffective anti‐predator adaptations in native prey species? Biological Conservation, 103, 283–301. https://doi.org/10.1016/S0006-3207(01)00139-2 DOI
Sinclair, A. R. E. , Mduma, S. , & Brashares, J. S. (2003). Patterns of predation in a diverse predator‐prey system. Nature, 425, 288–290. https://doi.org/10.1038/nature01934 PubMed DOI
Turesson, H. , & Persson, A. (2002). Prey size selection in piscivorous pikeperch ( DOI
Vejřík, L. , Vejříková, I. , Blabolil, P. , Eloranta, A. P. , Kočvara, L. , Peterka, J. , … Čech, M. (2017). European catfish ( PubMed PMC
Westin, L. , & Aneer, G. (1987). Locomotor activity patterns of nineteen fish and five crustacean species from the Baltic Sea. Environmental Biology of Fishes, 20, 49–65. https://doi.org/10.1007/BF00002025 DOI
Whittaker, R. H. , Levin, S. A. , & Root, R. B. (1973). Niche, habitat, and ecotope. The American Naturalist, 107, 321–338. https://doi.org/10.1086/282837 DOI
Wirsing, A. J. , Cameron, K. E. , & Heithaus, M. R. (2010). Spatial responses to predators vary with prey escape mode. Animal Behaviour, 79, 531–537. https://doi.org/10.1016/j.anbehav.2009.12.014 DOI
Wisenden, B. (2008). Active space of chemical alarm cue in natural fish populations. Behaviour, 145, 391–407. https://doi.org/10.1163/156853908783402920 DOI
Wysujack, K. , & Mehner, T. (2005). Can feeding of European catfish prevent cyprinids from reaching a size refuge? Ecology of Freshwater Fish, 14, 87–95. https://doi.org/10.1111/j.1600-0633.2004.00081.x DOI