Development of Machine Learning Models to Evaluate the Toughness of OPH Alloys
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
21-02203X
Czech Science Foundation
PubMed
34772239
PubMed Central
PMC8588127
DOI
10.3390/ma14216713
PII: ma14216713
Knihovny.cz E-resources
- Keywords
- ANFIS, Fe-Al-O, Oxide Precipitation-Hardened (OPH) alloys, artificial neural network (ANN), particle swarm optimization, tensile test, toughness,
- Publication type
- Journal Article MeSH
Oxide Precipitation-Hardened (OPH) alloys are a new generation of Oxide Dispersion-Strengthened (ODS) alloys recently developed by the authors. The mechanical properties of this group of alloys are significantly influenced by the chemical composition and appropriate heat treatment (HT). The main steps in producing OPH alloys consist of mechanical alloying (MA) and consolidation, followed by hot rolling. Toughness was obtained from standard tensile test results for different variants of OPH alloy to understand their mechanical properties. Three machine learning techniques were developed using experimental data to simulate different outcomes. The effectivity of the impact of each parameter on the toughness of OPH alloys is discussed. By using the experimental results performed by the authors, the composition of OPH alloys (Al, Mo, Fe, Cr, Ta, Y, and O), HT conditions, and mechanical alloying (MA) were used to train the models as inputs and toughness was set as the output. The results demonstrated that all three models are suitable for predicting the toughness of OPH alloys, and the models fulfilled all the desired requirements. However, several criteria validated the fact that the adaptive neuro-fuzzy inference systems (ANFIS) model results in better conditions and has a better ability to simulate. The mean square error (MSE) for artificial neural networks (ANN), ANFIS, and support vector regression (SVR) models was 459.22, 0.0418, and 651.68 respectively. After performing the sensitivity analysis (SA) an optimized ANFIS model was achieved with a MSE value of 0.003 and demonstrated that HT temperature is the most significant of these parameters, and this acts as a critical rule in training the data sets.
See more in PubMed
Oñoro M., Macías-Delgado J., Auger M., de Castro V., Leguey T. Mechanical properties and stability of precipitates of an ODS steel after thermal cycling and aging. Nucl. Mater. Energy. 2020;24:100758. doi: 10.1016/j.nme.2020.100758. DOI
Zhao H., Liu T., Bai Z., Wang L., Gao W., Zhang L. Corrosion behaviour of 14Cr ODS steel in supercritical water: The influence of substituting Y2O3 with Y2Ti2O7 nanoparticles. Corros. Sci. 2020;163:108272. doi: 10.1016/j.corsci.2019.108272. DOI
Kang Z., Shen H., Bai Z., Zhao H., Liu T. Influences of different hydride nanoparticles on microstructure and mechanical properties of 14Cr3Al ferritic ODS steels. Powder Technol. 2019;343:137–144. doi: 10.1016/j.powtec.2018.11.029. DOI
Wang L., Bai Z., Shen H., Wang C., Liu T. Creation of Y2Ti2O7 nanoprecipitates to strengthen the Fe-14Cr-3Al-2W steels by adding Ti hydride and Y2O3 nanoparticles. J. Nucl. Mater. 2017;488:319–327. doi: 10.1016/j.jnucmat.2017.03.015. DOI
Khalaj O., Saebnoori E., Jirková H., Chocholatý O., Svoboda J. High Temperature and Corrosion Properties of A Newly Developed Fe-Al-O Based OPH Alloy. Metals. 2020;10:167. doi: 10.3390/met10020167. PubMed DOI PMC
Zhao Q., Yu L., Liu Y., Li H. Morphology and structure evolution of Y2O3 nanoparticles in ODS steel powders during mechanical alloying and annealing. Adv. Powder Technol. 2015;26:1578–1582. doi: 10.1016/j.apt.2015.08.017. DOI
Xu H., Lu Z., Wang D., Liu C. Effect of zirconium addition on the microstructure and mechanical properties of 15Cr-ODS ferritic Steels consolidated by hot isostatic pressing. Fusion Eng. Des. 2017;114:33–39. doi: 10.1016/j.fusengdes.2016.11.011. DOI
Zhang L., Yu L., Liu Y., Liu C., Li H., Wu J. Influence of Zr addition on the microstructures and mechanical properties of 14Cr ODS steels. Mater. Sci. Eng. A. 2017;695:66–73. doi: 10.1016/j.msea.2017.04.020. DOI
Parida P.K., Dasgupta A., Jayasankar K., Kamruddin M., Saroja S. Structural studies of Y2O3 dispersoids during mechanical milling and annealing in a Fe-15 Y2O3 model ODS alloy. J. Nucl. Mater. 2013;441:331–336. doi: 10.1016/j.jnucmat.2013.06.016. DOI
Brocq M., Radiguet B., Le Breton J.-M., Cuvilly F., Pareige P., Legendre F. Nanoscale characterisation and clustering mechanism in an Fe-Y2O3 model ODS alloy processed by reactive ball milling and annealing. Acta Mater. 2010;58:1806–1814. doi: 10.1016/j.actamat.2009.11.022. DOI
Khalaj O., Jirková H., Janda T., Kučerová L., Studený T., Svoboda J. Improving the high-temperature properties of a new generation of Fe-Al-O oxide-precipitation-hardened steels. Mater. Technol. 2019;53:495–504. doi: 10.17222/mit.2018.227. DOI
Parida P.K., Dasgupta A., Raghavendra K., Jayasankar K., Saroja S. Structural Studies of Dispersoids in Fe–15 wt% Y2O3–5 wt% Ti Model ODS Alloys During Milling and Subsequent Annealing. Trans. Indian Inst. Met. 2017;70:1409–1415. doi: 10.1007/s12666-016-0911-y. DOI
Khalaj O., Jirková H., Masek B., Hassasroudsari P., Studecký T., Svoboda J. Using thermomechanical treatments to improve the grain growth of new-generation ODS alloys. Mater. Technol. 2018;52:475–482. doi: 10.17222/mit.2017.148. DOI
Khalaj O., Jirková H., Burdová K., Stehlík A., Kučerová L., Vrtáček J., Svoboda J. Hot Rolling vs. Forging: Newly Developed Fe-Al-O Based OPH Alloy. Metals. 2021;11:228. doi: 10.3390/met11020228. DOI
Khalaj O., Saebnoori E., Jirková H., Chocholatý O., Kučerová L., Hajšman J., Svoboda J. The Effect of Heat Treatment on the Tribological Properties and Room Temperature Corrosion Behaviour of Fe–Cr–Al-Based OPH Alloy. Materials. 2020;13:5465. doi: 10.3390/ma13235465. PubMed DOI PMC
Khalaj O., Masek B., Jirková H., Bublíková D., Svoboda J. Influence of thermomechanical treatment on the grain-growth behaviour of new Fe-Al based alloys with fine Al2O3 precipitates. Materiali in tehnologije. 2017;51:759–768. doi: 10.17222/mit.2016.232. DOI
Masek B., Khalaj O., Novy Z., Kubina T., Jirkova H., Svoboda J., Stadler C. Behaviour of new ODS alloys under single and multiple deformation. Mater. Technol. 2016;50:891–898. doi: 10.17222/mit.2015.156. DOI
Golafshani E.M., Behnood A., Arashpour M. Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer. Constr. Build. Mater. 2020;232:117266. doi: 10.1016/j.conbuildmat.2019.117266. DOI
Akhtari-Goshayeshi A., Ghobadi M., Saebnoori E., Zarezadeh A., Rostami M., Nematollahi M. Prediction of Corrosion Rate for Carbon Steel in Soil Environment by Artificial Neural Network and Genetic Algorithm. J. Adv. Mater. Process. 2019;7:29–38.
Gupta T., Patel K., Siddique S., Sharma R.K., Chaudhary S. Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN. Measurement. 2019;147:106870. doi: 10.1016/j.measurement.2019.106870. DOI
Hernández-Julio Y.F., Prieto-Guevara M.J., Nieto-Bernal W. Fuzzy clustering and dynamic tables for knowledge discovery and decision-making: Analysis of the reproductive performance of the marine copepod Cyclopina sp. Aquaculture. 2020;523:735183. doi: 10.1016/j.aquaculture.2020.735183. DOI
Hosseinzadeh A., Zhou J.L., Altaee A., Baziar M., Li X. Modelling water flux in osmotic membrane bioreactor by adaptive network-based fuzzy inference system and artificial neural network. Bioresour. Technol. 2020;310:123391. doi: 10.1016/j.biortech.2020.123391. PubMed DOI
Ghobadi M., Zaarei D., Naderi R., Asadi N., Seyedi S.R., Avard M.R. Improvement the protection performance of lanolin based temporary coating using benzotriazole and cerium (III) nitrate: Combined experimental and computational analysis. Prog. Org. Coat. 2021;151:106085. doi: 10.1016/j.porgcoat.2020.106085. DOI
Jajarmi E., Sajjadi S.A., Mohebbi J. Predicting the relative density and hardness of 3YPSZ/316L composites using adaptive neuro-fuzzy inference system and support vector regression models. Measurement. 2019;145:472–479. doi: 10.1016/j.measurement.2019.05.108. DOI
Xiong J., Shi S.-Q., Zhang T.-Y. Machine learning of phases and mechanical properties in complex concentrated alloys. J. Mater. Sci. Technol. 2021;87:133–142. doi: 10.1016/j.jmst.2021.01.054. DOI
Liu G., Jia L., Kong B., Feng S., Zhang H., Zhang H. Artificial neural network application to microstructure design of Nb-Si alloy to improve ultimate tensile strength. Mater. Sci. Eng. A. 2017;707:452–458. doi: 10.1016/j.msea.2017.09.039. DOI
Wu J., Huang Z., Qiao H., Zhao Y., Li J., Zhao J. Artificial neural network approach for mechanical properties prediction of TC4 titanium alloy treated by laser shock processing. Opt. Laser Technol. 2021;143:107385. doi: 10.1016/j.optlastec.2021.107385. DOI
Zhang L., Qian K., Huang J., Liu M., Shibuta Y. Molecular dynamics simulation and machine learning of mechanical response in non-equiatomic FeCrNiCoMn high entropy alloy. J. Mater. Res. Technol. 2021;232:117266.
Durodola J. Machine learning for design, phase transformation and mechanical properties of alloys. Prog. Mater. Sci. 2021;123:100797. doi: 10.1016/j.pmatsci.2021.100797. DOI
Krishna Y.V., Jaiswal U.K., Rahul M. Machine learning approach to predict new multiphase high entropy alloys. Scr. Mater. 2021;197:113804. doi: 10.1016/j.scriptamat.2021.113804. DOI
Li M., Mesbah M., Fallahpour A., Nasiri-Tabrizi B., Liu B. Mechanical strength estimation of ultrafine-grained magnesium implant by neural-based predictive machine learning. Mater. Lett. 2021;305:130627. doi: 10.1016/j.matlet.2021.130627. DOI
Badmos A., Bhadeshia H., MacKay D. Tensile properties of mechanically alloyed oxide dispersion strengthened iron alloys Part 1-Neural networkmodels. Mater. Sci. Technol. 1998;14:793–809. doi: 10.1179/mst.1998.14.8.793. DOI
Khalaj O., Ghobadi M., Zarezadeh A., Saebnoori E., Jirková H., Chocholaty O., Svoboda J. Potential role of machine learning techniques for modelling the hardness of OPH steels. Mater. Today Commun. 2021;26:101806. doi: 10.1016/j.mtcomm.2020.101806. DOI
Kumar D., Prakash U., Dabhade V.V., Laha K., Sakthivel T. High yttria ferritic ODS steels through powder forging. J. Nucl. Mater. 2017;488:75–82. doi: 10.1016/j.jnucmat.2016.12.043. DOI
Franco D.S., Duarte F.A., Salau N.P.G., Dotto G.L. Analysis of indium (III) adsorption from leachates of LCD screens using artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANIFS) J. Hazard. Mater. 2020;384:121137. doi: 10.1016/j.jhazmat.2019.121137. PubMed DOI
Zhou Q., Wang F., Zhu F. Estimation of compressive strength of hollow concrete masonry prisms using artificial neural networks and adaptive neuro-fuzzy inference systems. Constr. Build. Mater. 2016;125:417–426. doi: 10.1016/j.conbuildmat.2016.08.064. DOI
Xu J., Zhao X., Yu Y., Xie T., Yang G., Xue J. Parametric sensitivity analysis and modelling of mechanical properties of normal-and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks. Constr. Build. Mater. 2019;211:479–491. doi: 10.1016/j.conbuildmat.2019.03.234. DOI
Sugeno M., Kang G. Structure identification of fuzzy model. Fuzzy Sets and Systems. 1988;28:15–33. doi: 10.1016/0165-0114(88)90113-3. DOI
Akkaya E. ANFIS based prediction model for biomass heating value using proximate analysis components. Fuel. 2016;180:687–693. doi: 10.1016/j.fuel.2016.04.112. DOI
Cakmakci M. Adaptive neuro-fuzzy modelling of anaerobic digestion of primary sedimentation sludge. Bioprocess Biosystems Eng. 2007;30:349–357. doi: 10.1007/s00449-007-0131-2. PubMed DOI
Alrashed A.A., Gharibdousti M.S., Goodarzi M., de Oliveira L.R., Safaei M.R., Bandarra Filho E.P. Effects on thermophysical properties of carbon based nanofluids: Experimental data, modelling using regression, ANFIS and ANN. Int. J. Heat Mass Transf. 2018;125:920–932. doi: 10.1016/j.ijheatmasstransfer.2018.04.142. DOI
Thissen U., Pepers M., Üstün B., Melssen W., Buydens L. Comparing support vector machines to PLS for spectral regression applications. Chemom. Intell. Lab. Syst. 2004;73:169–179. doi: 10.1016/j.chemolab.2004.01.002. DOI
Smith G.N. Probability and Statistics in Civil Engineering. Nichols Publishing Company; New York, NY, USA: 1986.
Gandomi A.H., Mohammadzadeh D., Pérez-Ordóñez J.L., Alavi A.H. Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups. Appl. Soft Comput. 2014;19:112–120. doi: 10.1016/j.asoc.2014.02.007. DOI
Roy P.P., Roy K. On some aspects of variable selection for partial least squares regression models. QSA Comb. Sci. 2008;27:302–313. doi: 10.1002/qsar.200710043. DOI
Tavana M., Fallahpour A., Di Caprio D., Santos-Arteaga F.J. A hybrid intelligent fuzzy predictive model with simulation for supplier evaluation and selection. Expert Syst. Appl. 2016;61:129–144. doi: 10.1016/j.eswa.2016.05.027. DOI
Tenza-Abril A.J., Villacampa Y., Solak A.M., Baeza-Brotons F. Prediction and sensitivity analysis of compressive strength in segregated lightweight concrete based on artificial neural network using ultrasonic pulse velocity. Constr. Build. Mater. 2018;189:1173–1183. doi: 10.1016/j.conbuildmat.2018.09.096. DOI
Ibrahim S., Choong C.E., El-Shafie A. Sensitivity analysis of artificial neural networks for just-suspension speed prediction in solid-liquid mixing systems: Performance comparison of MLPNN and RBFNN. Adv. Eng. Inform. 2019;39:278–291. doi: 10.1016/j.aei.2019.02.004. DOI
Yaïci W., Longo M., Entchev E., Foiadelli F. Simulation study on the effect of reduced inputs of artificial neural networks on the predictive performance of the solar energy system. Sustainability. 2017;9:1382. doi: 10.3390/su9081382. DOI
Pasini A. Artificial neural networks for small dataset analysis. J. Thorac. Dis. 2015;7:953. PubMed PMC