Surface Pretreatments of AA5083 Aluminum Alloy with Enhanced Corrosion Protection for Cerium-Based Conversion Coatings Application: Combined Experimental and Computational Analysis

. 2021 Dec 07 ; 26 (24) : . [epub] 20211207

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34946498

The effects of surface pretreatments on the cerium-based conversion coating applied on an AA5083 aluminum alloy were investigated using a combination of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), polarization testing, and electrochemical impedance spectroscopy. Two steps of pretreatments containing acidic or alkaline solutions were applied to the surface to study the effects of surface pretreatments. Among the pretreated samples, the sample prepared by the pretreatment of the alkaline solution then acid washing presented higher corrosion protection (~3 orders of magnitude higher than the sample without pretreatment). This pretreatment provided a more active surface for the deposition of the cerium layer and provided a more suitable substrate for film formation, and made a more uniform film. The surface morphology of samples confirmed that the best surface coverage was presented by alkaline solution then acid washing pretreatment. The presence of cerium in the (EDS) analysis demonstrated that pretreatment with the alkaline solution then acid washing resulted in a higher deposition of the cerium layer on the aluminum surface. After selecting the best surface pretreatment, various deposition times of cerium baths were investigated. The best deposition time was achieved at 10 min, and after this critical time, a cracked film formed on the surface that could not be protective. The corrosion resistance of cerium-based conversion coatings obtained by electrochemical tests were used for training three computational techniques (artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and support vector machine regression (SVMR)) based on Pretreatment-1 (acidic or alkaline cleaning: pH (1)), Pretreatment-2 (acidic or alkaline cleaning: pH (2)), and deposition time in the cerium bath as an input. Various statistical criteria showed that the ANFIS model (R2 = 0.99, MSE = 48.83, and MAE = 3.49) could forecast the corrosion behavior of a cerium-based conversion coating more accurately than other models. Finally, due to the robust performance of ANFIS in modeling, the effect of each parameter was studied.

Zobrazit více v PubMed

Mehdizade M., Eivani A.R., Soltanieh M. Effects of reduced surface grain structure and improved particle distribution on pitting corrosion of AA6063 aluminum alloy. J. Alloys Compd. 2020;838:155464. doi: 10.1016/j.jallcom.2020.155464. DOI

Wall F., Martinez M. A statistics-based approach to studying aluminum pit initiation: Intrinsic and defect-driven pit initiation phenomena. J. Electrochem. Soc. 2003;150:B146. doi: 10.1149/1.1560638. DOI

Cerezo J., Vandendael I., Posner R., Lill K., De Wit J., Mol J., Terryn H. Initiation and growth of modified Zr-based conversion coatings on multi-metal surfaces. Surf. Coat. Technol. 2013;236:284–289. doi: 10.1016/j.surfcoat.2013.09.059. DOI

Nordlien J., Walmsley J., Østerberg H., Nisancioglu K. Formation of a zirconium-titanium based conversion layer on AA 6060 aluminium. Surf. Coat. Technol. 2002;153:72–78. doi: 10.1016/S0257-8972(01)01663-2. DOI

Chong K.Z., Shih T.S. Conversion-coating treatment for magnesium alloys by a permanganate–phosphate solution. Mater. Chem. Phys. 2003;80:191–200. doi: 10.1016/S0254-0584(02)00481-9. DOI

Silva J., Codaro E., Nakazato R., Hein L. Influence of chromate, molybdate and tungstate on pit formation in chloride medium. Appl. Surf. Sci. 2005;252:1117–1122. doi: 10.1016/j.apsusc.2005.02.030. DOI

Yu S.-X., Zhang R.-J., Tang Y.-F., Ma Y.-L., Du W.-C. Composition and performance of nanostructured zirconium titanium conversion coating on aluminum-magnesium alloys. J. Nanomater. 2013;2013:594273. doi: 10.1155/2013/594273. DOI

Yoon H.-I., Yeo I.-S., Han J.-S. Effect of various surface treatments on the interfacial adhesion between zirconia cores and porcelain veneers. Int. J. Adhes. Adhes. 2016;69:79–85. doi: 10.1016/j.ijadhadh.2016.03.019. DOI

Dan Z., Jie S., ZHANG L., Yong T., Ji L. Corrosion behavior of rare earth cerium based conversion coating on aluminum alloy. J. Rare Earths. 2010;28:371–374.

Brunelli K., Dabala M., Calliari I., Magrini M. Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys. Corros. Sci. 2005;47:989–1000. doi: 10.1016/j.corsci.2004.06.016. DOI

Shi H., Han E.-H., Liu F. Corrosion protection of aluminium alloy 2024-T3 in 0.05 M NaCl by cerium cinnamate. Corros. Sci. 2011;53:2374–2384. doi: 10.1016/j.corsci.2011.03.012. DOI

Iqbal M.A., Asghar H., Fedel M. Double doped cerium-based superhydrophobic layered double hydroxide protective films grown on anodic aluminium surface. J. Alloys Compd. 2020;844:156112. doi: 10.1016/j.jallcom.2020.156112. DOI

Hassannejad H., Moghaddasi M., Saebnoori E., Baboukani A.R. Microstructure, deposition mechanism and corrosion behavior of nanostructured cerium oxide conversion coating modified with chitosan on AA2024 aluminum alloy. J. Alloys Compd. 2017;725:968–975. doi: 10.1016/j.jallcom.2017.07.253. DOI

Xu S.-A., Wang S.-N., Gu Y.-Y. Microstructure and adhesion properties of cerium conversion coating modified with silane coupling agent on the aluminum foil for lithium ion battery. Results Phys. 2019;13:102262. doi: 10.1016/j.rinp.2019.102262. DOI

Guixiang W., Gang G., Xinchen H., Lixia Y., Fuqiu M. Effect of Benzotriazole on Corrosion Resistance of Al2O3/Cerium Oxide Composite Films on the Al Surface. Rare Met. Mater. Eng. 2018;47:3597–3603. doi: 10.1016/S1875-5372(19)30004-9. DOI

Johnson B.Y., Edington J., O’Keefe M.J. Effect of coating parameters on the microstructure of cerium oxide conversion coatings. Mater. Sci. Eng. A. 2003;361:225–231. doi: 10.1016/S0921-5093(03)00516-1. DOI

Johnson B.Y., Edington J., Williams A., O’Keefe M. Microstructural characteristics of cerium oxide conversion coatings obtained by various aqueous deposition methods. Mater. Charact. 2005;54:41–48. doi: 10.1016/j.matchar.2004.10.006. DOI

Campestrini P., Terryn H., Hovestad A., De Wit J. Formation of a cerium-based conversion coating on AA2024: Relationship with the microstructure. Surf. Coat. Technol. 2004;176:365–381. doi: 10.1016/S0257-8972(03)00743-6. DOI

Jones P.S., Padwal A., Yu P., O’Keefe M., O’Keefe T.J., Fahrenholtz W. Characterization of alkaline cleaned and cerium oxide coated Al 2024-T3; Proceedings of the Materials Science & Technology Conference; Salt Lake City, UT, USA. 23–27 October 2006.

Geng S., Pinc W., Yu P., Jones P., O’Keefe M., Fahrenholtz W., O’Keefe T. Influence of cleaning on the deposition rate of cerium based conversion coatings on Al alloy 2024-T3. J. Appl. Surf. Finish. 2007;2:276–282.

Valdez B., Kiyota S., Stoytcheva M., Zlatev R., Bastidas J. Cerium-based conversion coatings to improve the corrosion resistance of aluminium alloy 6061-T6. Corros. Sci. 2014;87:141–149. doi: 10.1016/j.corsci.2014.06.023. DOI

Maddela S., O’Keefe M., Wang Y.-M., Kuo H.-H. Influence of surface pretreatment on coating morphology and corrosion performance of cerium-based conversion coatings on AZ91D alloy. Corrosion. 2010;66:115006–115008. doi: 10.5006/1.3516220. DOI

De Frutos A., Arenas M., Liu Y., Skeldon P., Thompson G., De Damborenea J., Conde A. Influence of pre-treatments in cerium conversion treatment of AA2024-T3 and 7075-T6 alloys. Surf. Coat. Technol. 2008;202:3797–3807. doi: 10.1016/j.surfcoat.2008.01.027. DOI

Esteves L., Witharamage C., Christudasjustus J., Walunj G., O’Brien S., Ryu S., Borkar T., Akans R., Gupta R. Corrosion behavior of AA5083 produced by high-energy ball milling. J. Alloy Compd. 2021;857:158268. doi: 10.1016/j.jallcom.2020.158268. DOI

Baldwin K., Bates R., Arnell R., Smith C. Aluminium-magnesium alloys as corrosion resistant coatings for steel. Corros. Sci. 1996;38:155–170. doi: 10.1016/0010-938X(96)00123-0. DOI

Yasakau K.A., Zheludkevich M.L., Lamaka S.V., Ferreira M.G. Role of intermetallic phases in localized corrosion of AA5083. Electrochim. Acta. 2007;52:7651–7659. doi: 10.1016/j.electacta.2006.12.072. DOI

Memarbashi S., Saebnoori E., Shahrabi T. A Study on the Passivation Behavior and Semiconducting Properties of Gamma Titanium Aluminide in 0.1 NH2 SO4, HNO3, and HClO4 Acidic Solutions. J. Mater. Eng. Perform. 2014;23:912–917. doi: 10.1007/s11665-013-0840-4. DOI

Saebnoori E., Shahrabi T., Jafarian H., Ghaffari M. Changes in the resistance to corrosion of thermally passivated titanium aluminide during exposure to sodium chloride solution. Res. Chem. Intermed. 2015;41:1079–1095. doi: 10.1007/s11164-013-1255-4. DOI

Arenas M., Bethencourt M., Botana F., De Damborenea J., Marcos M. Inhibition of 5083 aluminium alloy and galvanised steel by lanthanide salts. Corros. Sci. 2001;43:157–170. doi: 10.1016/S0010-938X(00)00051-2. DOI

Yasakau K., Zheludkevich M., Ferreira M. Lanthanide salts as corrosion inhibitors for AA5083. Mechanism and efficiency of corrosion inhibition. J. Electrochem. Soc. 2008;155:C169. doi: 10.1149/1.2844341. DOI

Aballe A., Bethencourt M., Botana F., Cano M., Marcos M. Influence of the cathodic intermetallics distribution on the reproducibility of the electrochemical measurements on AA5083 alloy in NaCl solutions. Corros. Sci. 2003;45:161–180. doi: 10.1016/S0010-938X(02)00067-7. DOI

Aballe A., Bethencourt M., Botana F., Marcos M., Sánchez-Amaya J. Influence of the degree of polishing of alloy AA 5083 on its behaviour against localised alkaline corrosion. Corros. Sci. 2004;46:1909–1920. doi: 10.1016/j.corsci.2003.10.028. DOI

Salimi S., Nasr-Esfahani M., Umoren S.A., Saebnoori E. Complexes of imidazole with Poly (ethylene glycol) as a corrosion inhibitor for carbon steel in sulphuric acid. J. Mater. Eng. Perform. 2015;24:4696–4709. doi: 10.1007/s11665-015-1788-3. DOI

Hasannejad H., Aliofkhazraei M., Shanaghi A., Shahrabi T., Sabour A. Nanostructural and electrochemical characteristics of cerium oxide thin films deposited on AA5083-H321 aluminum alloy substrates by dip immersion and sol–gel methods. Thin Solid Film. 2009;517:4792–4799. doi: 10.1016/j.tsf.2009.03.046. DOI

Dabalà M., Ramous E., Magrini M. Corrosion resistance of cerium-based chemical conversion coatings on AA5083 aluminium alloy. Mater. Corros. 2004;55:381–386. doi: 10.1002/maco.200303744. DOI

Golafshani E.M., Behnood A., Arashpour M. Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer. Constr. Build. Mater. 2020;232:117266. doi: 10.1016/j.conbuildmat.2019.117266. DOI

Vakili M., Yahyaei M., Ramsay J., Aghajannezhad P., Paknezhad B. Adaptive neuro-fuzzy inference system modeling to predict the performance of graphene nanoplatelets nanofluid-based direct absorption solar collector based on experimental study. Renew. Energy. 2021;163:807–824. doi: 10.1016/j.renene.2020.08.134. DOI

Sampath K., Perera M., Ranjith P., Matthai S., Tao X., Wu B. Application of neural networks and fuzzy systems for the intelligent prediction of CO2-induced strength alteration of coal. Measurement. 2019;135:47–60. doi: 10.1016/j.measurement.2018.11.031. DOI

Khalaj O., Ghobadi M., Zarezadeh A., Saebnoori E., Jirková H., Chocholaty O., Svoboda J. Potential role of machine learning techniques for modeling the hardness of OPH steels. Mater. Today Commun. 2021;26:101806. doi: 10.1016/j.mtcomm.2020.101806. DOI

Nesfchi M.M., Pirbazari A.E., Saraei F.E.K., Rojaee F., Mahdavi F., Fa’al Rastegar S.A. Fabrication of plasmonic nanoparticles/cobalt doped TiO2 nanosheets for degradation of tetracycline and modeling the process by artificial intelligence techniques. Mater. Sci. Semicond. Process. 2021;122:105465. doi: 10.1016/j.mssp.2020.105465. DOI

Hosseinzadeh A., Zhou J.L., Altaee A., Baziar M., Li X. Modeling water flux in osmotic membrane bioreactor by adaptive network-based fuzzy inference system and artificial neural network. Bioresour. Technol. 2020;310:123391. doi: 10.1016/j.biortech.2020.123391. PubMed DOI

Jang J.-S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993;23:665–685. doi: 10.1109/21.256541. DOI

Hernández-Julio Y.F., Prieto-Guevara M.J., Nieto-Bernal W. Fuzzy clustering and dynamic tables for knowledge discovery and decision-making: Analysis of the reproductive performance of the marine copepod Cyclopina sp. Aquaculture. 2020;523:735183. doi: 10.1016/j.aquaculture.2020.735183. DOI

Ghobadi M., Zaarei D., Naderi R., Asadi N., Seyedi S.R., Avard M.R. Improvement the protection performance of lanolin based temporary coating using benzotriazole and cerium (III) nitrate: Combined experimental and computational analysis. Prog. Org. Coat. 2021;151:106085. doi: 10.1016/j.porgcoat.2020.106085. DOI

Bucolo M., Fortuna L., Nelke M., Rizzo A., Sciacca T. Prediction models for the corrosion phenomena in Pulp & Paper plant. Control Eng. Pract. 2002;10:227–237.

Mousavifard S., Attar M., Ghanbari A., Dadgar M. Application of artificial neural network and adaptive neuro-fuzzy inference system to investigate corrosion rate of zirconium-based nano-ceramic layer on galvanized steel in 3.5% NaCl solution. J. Alloys Compd. 2015;639:315–324. doi: 10.1016/j.jallcom.2015.03.052. DOI

Balabin R.M., Lomakina E.I. Support vector machine regression (SVR/LS-SVM)—An alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst. 2011;136:1703–1712. doi: 10.1039/c0an00387e. PubMed DOI

Jajarmi E., Sajjadi S.A., Mohebbi J. Predicting the relative density and hardness of 3YPSZ/316L composites using adaptive neuro-fuzzy inference system and support vector regression models. Measurement. 2019;145:472–479. doi: 10.1016/j.measurement.2019.05.108. DOI

Sánchez-Amaya J., Blanco G., Garcia-Garcia F., Bethencourt M., Botana F. XPS and AES analyses of cerium conversion coatings generated on AA5083 by thermal activation. Surf. Coat. Technol. 2012;213:105–116. doi: 10.1016/j.surfcoat.2012.10.027. DOI

Asadi N., Naderi R., Saremi M., Arman S., Fedel M., Deflorian F. Study of corrosion protection of mild steel by eco-friendly silane sol–gel coating. J. Sol-Gel Sci. Technol. 2014;70:329–338. doi: 10.1007/s10971-014-3286-8. DOI

Franco D.S., Duarte F.A., Salau N.P.G., Dotto G.L. Analysis of indium (III) adsorption from leachates of LCD screens using artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANIFS) J. Hazard. Mater. 2020;384:121137. doi: 10.1016/j.jhazmat.2019.121137. PubMed DOI

Zhou Q., Wang F., Zhu F. Estimation of compressive strength of hollow concrete masonry prisms using artificial neural networks and adaptive neuro-fuzzy inference systems. Constr. Build. Mater. 2016;125:417–426. doi: 10.1016/j.conbuildmat.2016.08.064. DOI

Xu J., Zhao X., Yu Y., Xie T., Yang G., Xue J. Parametric sensitivity analysis and modelling of mechanical properties of normal-and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks. Constr. Build. Mater. 2019;211:479–491. doi: 10.1016/j.conbuildmat.2019.03.234. DOI

Reddy N., Krishnaiah J., Hong S.-G., Lee J.S. Modeling medium carbon steels by using artificial neural networks. Mater. Sci. Eng. A. 2009;508:93–105. doi: 10.1016/j.msea.2008.12.022. DOI

Gupta T., Patel K., Siddique S., Sharma R.K., Chaudhary S. Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN. Measurement. 2019;147:106870. doi: 10.1016/j.measurement.2019.106870. DOI

Sugeno M., Kang G. Structure identification of fuzzy model. Fuzzy Sets Syst. 1988;28:15–33. doi: 10.1016/0165-0114(88)90113-3. DOI

Gerek I.H. House selling price assessment using two different adaptive neuro-fuzzy techniques. Autom. Constr. 2014;41:33–39. doi: 10.1016/j.autcon.2014.02.002. DOI

Abadi S.N.R., Mehrabi M., Meyer J.P. Prediction and optimization of condensation heat transfer coefficients and pressure drops of R134a inside an inclined smooth tube. Int. J. Heat Mass Transf. 2018;124:953–966. doi: 10.1016/j.ijheatmasstransfer.2018.04.027. DOI

Alrashed A.A., Gharibdousti M.S., Goodarzi M., de Oliveira L.R., Safaei M.R., Bandarra Filho E.P. Effects on thermophysical properties of carbon based nanofluids: Experimental data, modelling using regression, ANFIS and ANN. Int. J. Heat Mass Transf. 2018;125:920–932. doi: 10.1016/j.ijheatmasstransfer.2018.04.142. DOI

Thissen U., Pepers M., Üstün B., Melssen W., Buydens L. Comparing support vector machines to PLS for spectral regression applications. Chemom. Intell. Lab. Syst. 2004;73:169–179. doi: 10.1016/j.chemolab.2004.01.002. DOI

Chauchard F., Cogdill R., Roussel S., Roger J., Bellon-Maurel V. Application of LS-SVM to non-linear phenomena in NIR spectroscopy: Development of a robust and portable sensor for acidity prediction in grapes. Chemom. Intell. Lab. Syst. 2004;71:141–150. doi: 10.1016/j.chemolab.2004.01.003. DOI

Aballe A., Bethencourt M., Botana F., Cano M., Marcos M. On the mixed nature of cerium conversion coatings. Mater. Corros. 2002;53:176–184. doi: 10.1002/1521-4176(200203)53:3<176::AID-MACO176>3.0.CO;2-K. DOI

Palomino L.E., Aoki I.V., de Melo H.G. Microstructural and electrochemical characterization of Ce conversion layers formed on Al alloy 2024-T3 covered with Cu-rich smut. Electrochim. Acta. 2006;51:5943–5953. doi: 10.1016/j.electacta.2006.03.036. DOI

Conde A., Arenas M., De Frutos A., De Damborenea J. Effective corrosion protection of 8090 alloy by cerium conversion coatings. Electrochim. Acta. 2008;53:7760–7768. doi: 10.1016/j.electacta.2008.05.039. DOI

Deflorian F., Rossi S., Fedel M., Motte C. Electrochemical investigation of high-performance silane sol–gel films containing clay nanoparticles. Prog. Org. Coat. 2010;69:158–166. doi: 10.1016/j.porgcoat.2010.04.007. DOI

Aballe A., Bethencourt M., Botana F., Marcos M. CeCl3 and LaCl3 binary solutions as environment-friendly corrosion inhibitors of AA5083 Al–Mg alloy in NaCl solutions. J. Alloys Compd. 2001;323:855–858. doi: 10.1016/S0925-8388(01)01160-4. DOI

Danaee I., Zamanizadeh H., Fallahi M., Lotfi B. The effect of surface pre-treatments on corrosion behavior of cerium-based conversion coatings on Al 7075-T6. Mater. Corros. 2014;65:815–819. doi: 10.1002/maco.201307147. DOI

Fahrenholtz W.G., O’Keefe M.J., Zhou H., Grant J. Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys. Surf. Coat. Technol. 2002;155:208–213. doi: 10.1016/S0257-8972(02)00062-2. DOI

Pinc W., Geng S., O’keefe M., Fahrenholtz W., O’keefe T. Effects of acid and alkaline based surface preparations on spray deposited cerium based conversion coatings on Al 2024-T3. Appl. Surf. Sci. 2009;255:4061–4065. doi: 10.1016/j.apsusc.2008.10.110. DOI

Smith G.N. Probability and Statistics in Civil Engineering. Nichols Publishing Company; New York, NY, USA: 1986. 244p Collins Professional and Technical Books.

Gandomi A.H., Mohammadzadeh D., Pérez-Ordóñez J.L., Alavi A.H. Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups. Appl. Soft Comput. 2014;19:112–120. doi: 10.1016/j.asoc.2014.02.007. DOI

Roy P.P., Roy K. On some aspects of variable selection for partial least squares regression models. QSAR Comb. Sci. 2008;27:302–313. doi: 10.1002/qsar.200710043. DOI

Tavana M., Fallahpour A., Di Caprio D., Santos-Arteaga F.J. A hybrid intelligent fuzzy predictive model with simulation for supplier evaluation and selection. Expert Syst. Appl. 2016;61:129–144. doi: 10.1016/j.eswa.2016.05.027. DOI

Khalaj O., Ghobadi M., Saebnoori E., Zarezadeh A., Shishesaz M., Mašek B., Štadler C., Svoboda J. Development of Machine Learning Models to Evaluate the Toughness of OPH Alloys. Materials. 2021;14:6713. doi: 10.3390/ma14216713. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...