The Irradiation Effects in Ferritic, Ferritic-Martensitic and Austenitic Oxide Dispersion Strengthened Alloys: A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Project 21-02203X
Jiří Svoboda
PubMed
39063702
PubMed Central
PMC11277775
DOI
10.3390/ma17143409
PII: ma17143409
Knihovny.cz E-zdroje
- Klíčová slova
- austenitic oxide-dispersion strengthened steel, ferritic oxide-dispersion strengthened steel, ferritic–martensitic oxide dispersion strengthened steel, nuclear materials,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
High-performance structural materials (HPSMs) are needed for the successful and safe design of fission and fusion reactors. Their operation is associated with unprecedented fluxes of high-energy neutrons and thermomechanical loadings. In fission reactors, HPSMs are used, e.g., for fuel claddings, core internal structural components and reactor pressure vessels. Even stronger requirements are expected for fourth-generation supercritical water fission reactors, with a particular focus on the HPSM's corrosion resistance. The first wall and blanket structural materials in fusion reactors are subjected not only to high energy neutron irradiation, but also to strong mechanical, heat and electromagnetic loadings. This paper presents a historical and state-of-the-art summary focused on the properties and application potential of irradiation-resistant alloys predominantly strengthened by an oxide dispersion. These alloys are categorized according to their matrix as ferritic, ferritic-martensitic and austenitic. Low void swelling, high-temperature He embrittlement, thermal and irradiation hardening and creep are typical phenomena most usually studied in ferritic and ferritic martensitic oxide dispersion strengthened (ODS) alloys. In contrast, austenitic ODS alloys exhibit an increased corrosion and oxidation resistance and a higher creep resistance at elevated temperatures. This is why the advantages and drawbacks of each matrix-type ODS are discussed in this paper.
Zobrazit více v PubMed
Hosemann P., Frazer D., Fratoni M., Bolind A., Ashby M.F. Materials Selection for Nuclear Applications: Challenges and Opportunities. Scr. Mater. 2018;143:181–187. doi: 10.1016/j.scriptamat.2017.04.027. DOI
Suri A.K., Krishnamurthy N., Batra I.S. Materials Issues in Fusion Reactors. J. Phys. Conf. Ser. 2010;208:012001. doi: 10.1088/1742-6596/208/1/012001. DOI
Odette R., Zinkle S., editors. Structural Alloys for Nuclear Energy Applications. Elsevier; Amsterdam, The Netherlands: 2019.
Oka H., Watanabe M., Kinoshita H., Shibayama T., Hashimoto N., Ohnuki S., Yamashita S., Ohtsuka S. In Situ Observation of Damage Structure in ODS Austenitic Steel during Electron Irradiation. J. Nucl. Mater. 2011;417:279–282. doi: 10.1016/j.jnucmat.2010.12.156. DOI
Phaniraj M.P., Kim D.I., Shim J.H., Cho Y.W. Microstructure Development in Mechanically Alloyed Yttria Dispersed Austenitic Steels. Acta Mater. 2009;57:1856–1864. doi: 10.1016/j.actamat.2008.12.026. DOI
Seils S., Kauffmann A., Hinrichs F., Schliephake D., Boll T., Heilmaier M. Temperature Dependent Strengthening Contributions in Austenitic and Ferritic ODS Steels. Mater. Sci. Eng. A. 2020;786:139452. doi: 10.1016/j.msea.2020.139452. DOI
Zinkle S.J., Busby J.T. Structural Materials for Fission & Fusion Energy. Mater. Today. 2009;12:12–19. doi: 10.1016/S1369-7021(09)70294-9. DOI
Fave L., Pouchon M.A., Döbeli M., Schulte-Borchers M., Kimura A. Helium Ion Irradiation Induced Swelling and Hardening in Commercial and Experimental ODS Steels. J. Nucl. Mater. 2014;445:235–240. doi: 10.1016/j.jnucmat.2013.11.004. DOI
Garner F.A., Toloczko M.B., Sencer B.H. Comparison of Swelling and Irradiation Creep Behavior of Fcc-Austenitic and Bcc-Ferritic/Martensitic Alloys at High Neutron Exposure. J. Nucl. Mater. 2000;276:123–142. doi: 10.1016/S0022-3115(99)00225-1. DOI
Toloczko M.B., Garner F.A., Voyevodin V.N., Bryk V.V., Borodin O.V., Mel’nychenko V.V., Kalchenko A.S. Ion-Induced Swelling of ODS Ferritic Alloy MA957 Tubing to 500 Dpa. J. Nucl. Mater. 2014;453:323–333. doi: 10.1016/j.jnucmat.2014.06.011. DOI
Kimura A., Kasada R., Sugano R., Hasegawa A., Matsui H. Annealing Behavior of Irradiation Hardening and Microstructure in Helium-Implanted Reduced Activation Martensitic Steel. J. Nucl. Mater. 2000;283–287:827–831. doi: 10.1016/S0022-3115(00)00090-8. DOI
Song P., Morrall D., Zhang Z., Yabuuchi K., Kimura A. Radiation Response of ODS Ferritic Steels with Different Oxide Particles under Ion-Irradiation at 550 °C. J. Nucl. Mater. 2018;502:76–85. doi: 10.1016/j.jnucmat.2018.02.007. DOI
Davis J.W., Michel D.J. Ferritic Alloys for Use in Nuclear Energy Technologies. Volume 27. The Metallurgical Society, Inc.; Warrendale, PA, USA: 1984.
Klueh R.L., Gelles D.S., Jitsukawa S., Kimura A., Odette G.R., Van der Schaaf B., Victoria M. Ferritic/Martensitic Steels—Overview of Recent Results. J. Nucl. Mater. 2002;307–311:455–465. doi: 10.1016/S0022-3115(02)01082-6. DOI
Mann F.M. Reduced Activation Calculations for the STARFIRE First Wall. J. Nucl. Mater. 1984;123:1053–1057. doi: 10.1016/0022-3115(84)90218-6. DOI
Ehrlich K., Cierjacks S.W., Kelzenberg S., Möslang A. The Development of Structural Materials for Reduced Long-Term Activation. ASTM Spec. Tech. Publ. 1996;1270:1109–1122. doi: 10.1520/STP16529S. DOI
Kohyama A., Kohno Y., Asakura K., Kayano H. R&L D of Low Activation Ferritic Steels for Fusion in Japanese Universities. J. Nucl. Mater. 1994;212:684–689.
Noda T., Abe F., Araki H., Okada M. Development of Low Activation Ferritic Steels. J. Nucl. Mater. 1986;141–143:1102–1106. doi: 10.1016/0022-3115(86)90149-2. DOI
Tupholme K.W., Dulieu D., Butterworth G.J. The Development of Low-Activation Martensitic 9 and 11%Cr, W, V Stainless Steels for Fusion Reactor Applications. J. Nucl. Mater. 1988;155–157:650–655. doi: 10.1016/0022-3115(88)90389-3. DOI
Ehrlich K., Kelzenberg S., Röhrig H.D., Schäfer L., Schirra M. The Development of Ferritic-Martensitic Steels with Reduced Long-Term Activation. J. Nucl. Mater. 1994;212–215:678–683. doi: 10.1016/0022-3115(94)90144-9. DOI
Cabet C., Dalle F., Gaganidze E., Henry J., Tanigawa H. Ferritic-Martensitic Steels for Fission and Fusion Applications. J. Nucl. Mater. 2019;523:510–537. doi: 10.1016/j.jnucmat.2019.05.058. DOI
Zinkle S.J., Boutard J.L., Hoelzer D.T., Kimura A., Lindau R., Odette G.R., Rieth M., Tan L., Tanigawa H. Development of next Generation Tempered and ODS Reduced Activation Ferritic/Martensitic Steels for Fusion Energy Applications. Nucl. Fusion. 2017;57:092005. doi: 10.1088/1741-4326/57/9/092005. DOI
Mazzone G., Aktaa J., Bachmann C., De Meis D., Frosi P., Gaganidze E., Gironimo G.D., Mariano G., Marzullo D., Porfiri M.T., et al. Choice of a Low Operating Temperature for the DEMO EUROFER97 Divertor Cassette. Fusion Eng. Des. 2017;124:655–658. doi: 10.1016/j.fusengdes.2017.02.013. DOI
Furuya K., Wakai E., Ando M., Sawai T., Iwabuchi A., Nakamura K., Takeuchi H. Tensile and Impact Properties of F82H Steel Applied to HIP-Bond Fusion Blanket Structures. Fusion Eng. Des. 2003;69:385–389. doi: 10.1016/S0920-3796(03)00079-6. DOI
Kim S.W., Kohyama A., Yoon H.K. Fatigue Crack Growth Behavior and Microstructure of Reduced Activation Ferritic/Martensitic Steel (JLF-1) Fusion Eng. Des. 2006;81:1105–1110. doi: 10.1016/j.fusengdes.2005.08.079. DOI
Klueh R.L., Alexander D.J., Sokolov M.A. Effect of Rhenium and Osmium on Mechanical Properties of a 9Cr±2W±0.25V±0.07Ta±0.1C Steel. J. Nucl. Mater. 2000;279:91–99. doi: 10.1016/S0022-3115(99)00269-X. DOI
Chun Y.B., Kang S.H., Lee D.W., Cho S., Jeong Y.H., Żywczak A., Rhee C.K. Development of Zr-Containing Advanced Reduced-Activation Alloy (ARAA) as Structural Material for Fusion Reactors. Fusion Eng. Des. 2016;109–111:629–633. doi: 10.1016/j.fusengdes.2016.02.032. DOI
Huang Q. Development Status of CLAM Steel for Fusion Application. J. Nucl. Mater. 2014;455:649–654. doi: 10.1016/j.jnucmat.2014.08.055. DOI
Filacchioni G., Casagrande E., De Angelis U., De Santis G., Ferrara D., Pilloni L. Tensile and Impact Behaviour of BATMAN II Steels, Ti-Bearing Reduced Activation Martensitic Alloys. J. Nucl. Mater. 1999;271:445–449. doi: 10.1016/S0022-3115(98)00755-7. DOI
Qiu G.-X., Dong-Ping Z., Cao L., Zhou-Hua J. Review on Development of Reduced Activated Ferritic/Martensitic Steel for Fusion Reactor. J. Iron Steel Res. Int. 2022;29:1343–1356. doi: 10.1007/s42243-022-00796-2. DOI
Jitsukawa S., Kimura A., Kohyama A., Klueh R.L., Tavassoli A.A., Van Der Schaaf B., Odette G.R., Rensman J.W., Victoria M., Petersen C. Recent Results of the Reduced Activation Ferritic/Martensitic Steel Development. J. Nucl. Mater. 2004;329–333:39–46. doi: 10.1016/j.jnucmat.2004.04.319. DOI
Sniegowski J.J., Wolfer W.G. On the Physical Basis for the Swelling Resistance of Ferritic Steels. Metallurgical Society of AIME; Warrendale, PA, USA: 1984.
Little E.A., Stow D.A. Void-Swelling in Irons and Ferritic Steels: II. An Experimental Survey of Materials Irradiated in a Fast Reactor. J. Nucl. Mater. 1979;87:25–39. doi: 10.1016/0022-3115(79)90123-5. DOI
Yan W., Wang W., Shan Y.-Y., Yang K. Microstructural Stability of 9–12%Cr Ferrite/Martensite Heat-Resistant Steels. Front. Mater. Sci. 2013;7:1–27. doi: 10.1007/s11706-013-0189-5. DOI
Zilnyk K.D., Oliveira V.B., Sandim H.R.Z., Möslang A., Raabe D. Martensitic Transformation in Eurofer-97 and ODS-Eurofer Steels: A Comparative Study. J. Nucl. Mater. 2015;462:360–367. doi: 10.1016/j.jnucmat.2014.12.112. DOI
Chun Y.B., Rhee C.K., Lee D.W., Park Y.H. Enhanced High-Temperature Mechanical Properties of ARAA by Thermo-Mechanical Processing. Fusion Eng. Des. 2018;136:883–890. doi: 10.1016/j.fusengdes.2018.04.029. DOI
Tan L., Byun T.S., Katoh Y., Snead L.L. Stability of MX-Type Strengthening Nanoprecipitates in Ferritic Steels under Thermal Aging, Stress and Ion Irradiation. Acta Mater. 2014;71:11–19. doi: 10.1016/j.actamat.2014.03.015. DOI
Gustafson S. Coarsening of Precipitates in an Advanced Creep Resistant 9% Chromium Steel-Quantitative Microscopy and Simulations. Mater. Sci. Eng. 2002;333:279–286. doi: 10.1016/S0921-5093(01)01874-3. DOI
Du J., Jiang S., Cao P., Xu C., Wu Y., Chen H., Fu E., Lu Z. Superior Radiation Tolerance via Reversible Disordering–Ordering Transition of Coherent Superlattices. Nat. Mater. 2023;22:442–449. doi: 10.1038/s41563-022-01260-y. PubMed DOI
Hishinuma A., Kohyama A., Klueh R.L., Gelles D.S., Dietz W., Ehrlich K. Current Status and Future R&D for Reduced-Activation Ferritic/Martensitic Steels. J. Nucl. Mater. 1998;258–263:193–204. doi: 10.1016/S0022-3115(98)00395-X. DOI
Klueh R.L., Harries D.R. High Chromium Ferritic and Martensitic Steels for Nuclear Applications. ASTM; West Conhohocken, PA, USA: 2001.
Harries D.R., Dupouy J.M., Wu C.H. Materials Research and Development for NET. J. Nucl. Mater. 1985;133–134:25–31. doi: 10.1016/0022-3115(85)90107-2. DOI
Anderko K., Schäfer L., Materna-Morris E. Effect of the δ-Ferrite Phase on the Impact Properties of Martensitic Chromium Steels. J. Nucl. Mater. 1991;179–181:492–495. doi: 10.1016/0022-3115(91)90132-Q. DOI
Dubuisson P., Gilbon D., Séran J.L. Microstructural Evolution of Ferritic-Martensitic Steels Irradiated in the Fast Breeder Reactor Phénix. J. Nucl. Mater. 1993;205:178–189. doi: 10.1016/0022-3115(93)90080-I. DOI
Shen T.L., Wang Z.G., Yao C.F., Sun J.R., Li Y.F., Wei K.F., Zhu Y.B., Pang L.L., Cui M.H., Wang J., et al. The Sink Effect of the Second-Phase Particle on the Cavity Swelling in RAFM Steel under Ar-Ion Irradiation at 773 K. Nucl. Instrum. Methods Phys. Res. Sect. B. 2013;307:512–515. doi: 10.1016/j.nimb.2012.12.104. DOI
Tan L., Snead L.L., Katoh Y. Development of New Generation Reduced Activation Ferritic-Martensitic Steels for Advanced Fusion Reactors. J. Nucl. Mater. 2016;478:42–49. doi: 10.1016/j.jnucmat.2016.05.037. DOI
Tan L., Katoh Y., Snead L.L. Stability of the Strengthening Nanoprecipitates in Reduced Activation Ferritic Steels under Fe2+ Ion Irradiation. J. Nucl. Mater. 2014;445:104–110. doi: 10.1016/j.jnucmat.2013.11.003. DOI
Terentyev D., Puype A., Kachko O., Van Renterghem W., Henry J. Development of RAFM Steel for Nuclear Applications with Reduced Manganese, Silicon and Carbon Content. Nucl. Mater. Energy. 2021;29:101070. doi: 10.1016/j.nme.2021.101070. DOI
Spätig P., Chen J.-C., Odette G.R. Structural Alloys for Nuclear Energy Applications. Elsevier; Amsterdam, The Netherlands: 2019. Ferritic and Tempered Martensitic Steels; pp. 485–527.
Xie Z., Guo L., Chen Y., Long Y., Lv P., Li F., Luo H., Lin W., Yin Z., Cao J., et al. Deterioration of Irradiation Resistance of ODS-F/M Steel under High Concentration of Helium. J. Nucl. Mater. 2023;577:154293. doi: 10.1016/j.jnucmat.2023.154293. DOI
Bhattacharya A., Zinkle S.J., Henry J., Levine S.M., Edmondson P.D., Gilbert M.R., Tanigawa H., Kessel C.E. Irradiation Damage Concurrent Challenges with RAFM and ODS Steels for Fusion Reactor First-Wall/Blanket: A Review. J. Phys. Energy. 2022;4:034003. doi: 10.1088/2515-7655/ac6f7f. DOI
Jordan M.S.L., Ramsay P., Verrall K.E., van Staveren T.O., Brown M., Davies B., Tzelepi A., Metcalfe M.P. Determining the Electrical and Thermal Resistivities of Radiolytically-Oxidised Nuclear Graphite by Small Sample Characterisation. J. Nucl. Mater. 2018;507:68–77. doi: 10.1016/j.jnucmat.2018.04.022. DOI
Beck P.W. Nuclear Energy in the Twenty-First Century: Examination of a Contentious Subject. Annu. Rev. Energy Environ. 1999;24:113–137. doi: 10.1146/annurev.energy.24.1.113. DOI
Brook B.W., Bradshaw C.J.A. Key Role for Nuclear Energy in Global Biodiversity Conservation. Conserv. Biol. 2015;29:702–712. doi: 10.1111/cobi.12433. PubMed DOI
Murty K.L., Charit I. Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities. J. Nucl. Mater. 2008;383:189–195. doi: 10.1016/j.jnucmat.2008.08.044. DOI
Cawthorne C., Fulton E.J. Voids in Irradiated Stainless Steel. Nature. 1967;216:575–576. doi: 10.1038/216575a0. DOI
De Bremaecker A. Past Research and Fabrication Conducted at SCK•CEN on Ferritic ODS Alloys Used as Cladding for FBR’s Fuel Pins. J. Nucl. Mater. 2012;428:13–30. doi: 10.1016/j.jnucmat.2011.11.060. DOI
Huet J.J., Massaux H., De Wilde L., Noels J. Fabrication et Propriétés d’aciers Ferritiques Renforcés Par Dispersion. Rev. Métallurgie. 1968;65:863–869. doi: 10.1051/metal/196865120863. DOI
Huet J.J., Leroy V. Dispersion Strengthened Ferritic Steels as Fast Reactor Structural Materials. Nucl. Technol. 1974;24:216–224. doi: 10.13182/NT74-A31476. DOI
Sands R.L., Phelps L.A., Morgan W.R. Dispersion-Strengthened Stainless Steel. Powder Metall. 1962;5:158–170. doi: 10.1179/POM.1962.5.10.011. DOI
Ukai S., Harada M., Okada H., Inoue M., Nomura S., Shikakura S., Asabe K., Nishida T., Fujiwara M. Alloying Design of Oxide Dispersion Strengthened Ferritic Steel for Long Life FBRs Core Materials. J. Nucl. Mater. 1993;204:65–73. doi: 10.1016/0022-3115(93)90200-I. DOI
Ukai S., Nishida T., Okada H., Okuda T., Fujiwara M., Asabe K. Development of Oxide Dispersion Strengthened Ferritic Steels for Fbr Core Application. J. Nucl. Sci. Technol. 1997;34:256–263. doi: 10.1080/18811248.1997.9733658. DOI
Ukai S., Nishida T., Okuda T., Yoshitake T. Development of Oxide Dispersion Strengthened Steels for FBR Core Application, (II): Morphology Improvement by Martensite Transformation. J. Nucl. Sci. Technol. 1998;35:294–300. doi: 10.1080/18811248.1998.9733859. DOI
Okuda T., Fujiwara M. Dispersion Behaviour of Oxide Particles in Mechanically Alloyed ODS Steel. J. Mater. Sci. Lett. 1995;14:1600–1603. doi: 10.1007/BF00455428. DOI
Hoelzer D.T. History and Outlook of ODS/NFA Ferritic Alloys for Nuclear Applications; Proceedings of the Transactions of the American Nuclear Society; Philadelphia, PA, USA. 17–21 June 2018; p. 1587.
Larson D.J., Maziasz P.J., Kim I.S., Miyahara K. Three-Dimensional Atom Probe Observation of Nanoscale Titanium-Oxygen Clustering in an Oxide-Dispersion-Strengthened Fe-12Cr-3W-0.4Ti + Y2O3 Ferritic Alloy. Scr. Mater. 2001;44:359–364. doi: 10.1016/S1359-6462(00)00593-5. DOI
Miller M.K., Hoelzer D.T., Kenik E.A., Russell K.F. Nanometer Scale Precipitation in Ferritic MA/ODS Alloy MA957. J. Nucl. Mater. 2004;329–333:338–341. doi: 10.1016/j.jnucmat.2004.04.085. DOI
Hoelzer D.T., Unocic K.A., Sokolov M.A., Byun T.S. Influence of Processing on the Microstructure and Mechanical Properties of 14YWT. J. Nucl. Mater. 2016;471:251–265. doi: 10.1016/j.jnucmat.2015.12.011. DOI
Byun T.S., Hoelzer D.T., Kim J.H., Maloy S.A. A Comparative Assessment of the Fracture Toughness Behavior of Ferritic-Martensitic Steels and Nanostructured Ferritic Alloys. J. Nucl. Mater. 2017;484:157–167. doi: 10.1016/j.jnucmat.2016.12.004. DOI
Alinger M.J., Odette G.R., Hoelzer D.T. On the Role of Alloy Composition and Processing Parameters in Nanocluster Formation and Dispersion Strengthening in Nanostuctured Ferritic Alloys. Acta Mater. 2009;57:392–406. doi: 10.1016/j.actamat.2008.09.025. DOI
Hoelzer D.T., Bentley J., Sokolov M.A., Miller M.K., Odette G.R., Alinger M.J. Influence of Particle Dispersions on the High-Temperature Strength of Ferritic Alloys. J. Nucl. Mater. 2007;367–370:166–172. doi: 10.1016/j.jnucmat.2007.03.151. DOI
Odette G.R., Alinger M.J., Wirth B.D. Recent Developments in Irradiation-Resistant Steels. Annu. Rev. Mater. Res. 2008;38:471–503. doi: 10.1146/annurev.matsci.38.060407.130315. DOI
Odette G.R. Recent Progress in Developing and Qualifying Nanostructured Ferritic Alloys for Advanced Fission and Fusion Applications. JOM. 2014;66:2427–2441. doi: 10.1007/s11837-014-1207-5. DOI
Klueh R.L., Maziasz P.J., Kim I.S., Heatherly L., Hoelzer D.T., Hashimoto N., Kenik E.A., Miyahara K. Tensile and Creep Properties of an Oxide Dispersion-Strengthened Ferritic Steel. J. Nucl. Mater. 2002;307–311:773–777. doi: 10.1016/S0022-3115(02)01046-2. DOI
Tuček K., Tsige-Tamirat H., Ammirabile L., Lázaro A., Grah A., Carlsson J., Döderlein C., Oettingen M., Fütterer M.A., D’Agata E., et al. Generation IV Reactor Safety and Materials Research by the Institute for Energy and Transport at the European Commission’s Joint Research Centre. Nucl. Eng. Des. 2013;265:1181–1193. doi: 10.1016/j.nucengdes.2013.06.018. DOI
Bates J.F., Powell R.W. Irradiation-Induced Swelling in Commercial Alloys. J. Nucl. Mater. 1981;102:200–213. doi: 10.1016/0022-3115(81)90560-2. DOI
Pint B.A., Dryepondt S., Unocic K.A., Hoelzer D.T. Development of ODS FeCrAl for Compatibility in Fusion and Fission Energy Applications. JOM. 2014;66:2458–2466. doi: 10.1007/s11837-014-1200-z. DOI
Terrani K.A., Zinkle S.J., Snead L.L. Advanced Oxidation-Resistant Iron-Based Alloys for LWR Fuel Cladding. J. Nucl. Mater. 2014;448:420–435. doi: 10.1016/j.jnucmat.2013.06.041. DOI
Pint B.A., Terrani K.A., Brady M.P., Cheng T., Keiser J.R. High Temperature Oxidation of Fuel Cladding Candidate Materials in Steam–Hydrogen Environments. J. Nucl. Mater. 2013;440:420–427. doi: 10.1016/j.jnucmat.2013.05.047. DOI
Allen T.R., Gan J., Cole J.I., Miller M.K., Busby J.T., Shutthanandan S., Thevuthasan S. Radiation Response of a 9 Chromium Oxide Dispersion Strengthened Steel to Heavy Ion Irradiation. J. Nucl. Mater. 2008;375:26–37. doi: 10.1016/j.jnucmat.2007.11.001. DOI
Certain A.G., Field K.G., Allen T.R., Miller M.K., Bentley J., Busby J.T. Response of Nanoclusters in a 9Cr ODS Steel to 1 Dpa, 525 °C Proton Irradiation. J. Nucl. Mater. 2010;407:2–9. doi: 10.1016/j.jnucmat.2010.07.002. DOI
Schäublin R., Ramar A., Baluc N., de Castro V., Monge M.A., Leguey T., Schmid N., Bonjour C. Microstructural Development under Irradiation in European ODS Ferritic/Martensitic Steels. J. Nucl. Mater. 2006;351:247–260. doi: 10.1016/j.jnucmat.2006.02.005. DOI
Klimiankou M., Lindau R., Möslang A. HRTEM Study of Yttrium Oxide Particles in ODS Steels for Fusion Reactor Application. J. Cryst. Growth. 2003;249:381–387. doi: 10.1016/S0022-0248(02)02134-6. DOI
London A.J., Lozano-Perez S., Moody M.P., Amirthapandian S., Panigrahi B.K., Sundar C.S., Grovenor C.R.M. Quantification of Oxide Particle Composition in Model Oxide Dispersion Strengthened Steel Alloys. Ultramicroscopy. 2015;159:360–367. doi: 10.1016/j.ultramic.2015.02.013. PubMed DOI
Ribis J., Lozano-Perez S. Nano-Cluster Stability Following Neutron Irradiation in MA957 Oxide Dispersion Strengthened Material. J. Nucl. Mater. 2014;444:314–322. doi: 10.1016/j.jnucmat.2013.10.010. DOI
Hsiung S., Ritz J., Jones R., Eiland J. Design and Evaluation of a Microcontroller Training System for Hands-on Distance and Campus-Based Classes. J. Ind. Technol. 2010;26:1–10.
Okita T., Wolfer W.G., Garner F.A., Sekimura N. Effects of Titanium Additions to Austenitic Ternary Alloys on Microstructural Evolution and Void Swelling. Philos. Mag. 2005;85:2033–2048. doi: 10.1080/14786430412331331871. DOI
Ukai S., Ohtsuka S., Kaito T., de Carlan Y., Ribis J., Malaplate J. Structural Materials for Generation IV Nuclear Reactors. Woodhead Publishing; Sawston, UK: 2017. Oxide Dispersion-Strengthened/Ferrite-Martensite Steels as Core Materials for Generation IV Nuclear Reactors; pp. 357–414. DOI
McKimpson M.G., O’Donnell D. Joining ODS Materials for High-Temperature Applications. JOM. 1994;46:49–51. doi: 10.1007/BF03220748. DOI
Gessinger G.H. Powder Metallurgy of Superalloys. Butterworth-Heinemann; Oxford, UK: 1984. Joining Techniques for P/M Superalloys; pp. 295–327. DOI
Doyen O., Gloannec B.L., Deschamps A., De Geuser F., Pouvreau C., Poulon-Quintin A. Ferritic and Martensitic ODS Steel Resistance Upset Welding of Fuel Claddings: Weldability Assessment and Metallurgical Effects. J. Nucl. Mater. 2019;518:326–333. doi: 10.1016/j.jnucmat.2019.03.013. DOI
Dubuisson P., Carlan Y.D., Garat V., Blat M. ODS Ferritic/Martensitic Alloys for Sodium Fast Reactor Fuel Pin Cladding. J. Nucl. Mater. 2012;428:6–12. doi: 10.1016/j.jnucmat.2011.10.037. DOI
Monnet I. Doctoral Dissertation. Ecole Centrale de Paris; Châtenay-Malabry, France: 1999. Stabilité Sous Irradiation de Particules d’oxydes Finement Dispersées Dans Des Alliages Ferritiques.
Barnes R.S. Embrittlement of Stainless Steels and Nickel-Based Alloys at High Temperature Induced by Neutron Radiation. Nature. 1965;206:1307–1310. doi: 10.1038/2061307a0. DOI
Ullmaier H. Introductory Remarks—Helium in Metals. Radiat. Eff. 1983;78:1–10. doi: 10.1080/00337578308207355. DOI
Ongena J., Ogawa Y. Nuclear Fusion: Status Report and Future Prospects. Energy Policy. 2016;96:770–778. doi: 10.1016/j.enpol.2016.05.037. DOI
Ukai S., Kaito T., Ohtsuka S., Narita T., Fujiwara M., Kobayashi T. Production and Properties of Nano-Scale Oxide Dispersion Strengthened (ODS) 9Cr Martensitic Steel Claddings. ISIJ Int. 2003;43:2038–2045. doi: 10.2355/isijinternational.43.2038. DOI
Ohtsuka S., Kaito T., Tanno T., Yano Y., Koyama S., Tanaka K. Microstructure and High-Temperature Strength of High Cr ODS Tempered Martensitic Steels. J. Nucl. Mater. 2013;442:S89–S94. doi: 10.1016/j.jnucmat.2013.06.010. DOI
Henry J., Averty X., Alamo A. Tensile and Impact Properties of 9Cr Tempered Martensitic Steels and ODS-FeCr Alloys Irradiated in a Fast Reactor at 325 °C up to 78 Dpa. J. Nucl. Mater. 2011;417:99–103. doi: 10.1016/j.jnucmat.2010.12.203. DOI
Zhang C.H., Kimura A., Kasada R., Jang J., Kishimoto H., Yang Y.T. Characterization of the Oxide Particles in Al-Added High-Cr ODS Ferritic Steels. J. Nucl. Mater. 2011;417:221–224. doi: 10.1016/j.jnucmat.2010.12.063. DOI
Kimura A., Kasada R., Iwata N., Kishimoto H., Zhang C.H., Isselin J., Dou P., Lee J.H., Muthukumar N., Okuda T., et al. Development of Al Added High-Cr ODS Steels for Fuel Cladding of next Generation Nuclear Systems. J. Nucl. Mater. 2011;417:176–179. doi: 10.1016/j.jnucmat.2010.12.300. DOI
Stratil L., Horník V., Dymáček P., Roupcová P., Svoboda J. The Influence of Aluminum Content on Oxidation Resistance of New-Generation ODS Alloy at 1200 °C. Metals. 2020;10:1478. doi: 10.3390/met10111478. DOI
Liu T., Wang L., Wang C., Shen H. Effect of Al Content on the Oxidation Behavior of Y2Ti2O7-Dispersed Fe-14Cr Ferritic Alloys. Corros. Sci. 2016;104:17–25. doi: 10.1016/j.corsci.2015.11.025. DOI
Dryepondt S., Unocic K.A., Hoelzer D.T., Massey C.P., Pint B.A. Development of Low-Cr ODS FeCrAl Alloys for Accident-Tolerant Fuel Cladding. J. Nucl. Mater. 2018;501:59–71. doi: 10.1016/j.jnucmat.2017.12.035. DOI
Lee J.H. Development of Oxide Dispersion Strengthened Ferritic Steels with and without Aluminum. Front. Energy. 2012;6:29–34. doi: 10.1007/s11708-012-0178-x. DOI
Zhang G., Zhou Z., Mo K., Miao Y., Li S., Liu X., Wang M., Park J.S., Almer J., Stubbins J.F. The Comparison of Microstructures and Mechanical Properties between 14Cr-Al and 14Cr-Ti Ferritic ODS Alloys. Mater. Des. 2016;98:61–67. doi: 10.1016/j.matdes.2016.02.117. DOI
Kim I.S., Hunn J.D., Hashimoto N., Larson D.L., Maziasz P.J., Miyahara K., Lee E.H. Defect and Void Evolution in Oxide Dispersion Strengthened Ferritic Steels under 3.2 MeV Fe+ Ion Irradiation with Simultaneous Helium Injection. J. Nucl. Mater. 2000;280:264–274. doi: 10.1016/S0022-3115(00)00066-0. DOI
de Carlan Y., Bechade J.-L., Dubuisson P., Seran J.-L., Billot P., Bougault A., Cozzika T., Doriot S., Hamon D., Henry J., et al. CEA Developments of New Ferritic ODS Alloys for Nuclear Applications. J. Nucl. Mater. 2009;386–388:430–432. doi: 10.1016/j.jnucmat.2008.12.156. DOI
Wasilkowska A., Bartsch M., Messerschmidt U., Herzog R., Czyrska-Filemonowicz A. Creep Mechanisms of Ferritic Oxide Dispersion Strengthened Alloys. J. Mater. Process Technol. 2003;133:218–224. doi: 10.1016/S0924-0136(02)00237-6. DOI
Lim J., Nam H.O., Hwang I.S., Kim J.H. A Study of Early Corrosion Behaviors of FeCrAl Alloys in Liquid Lead–Bismuth Eutectic Environments. J. Nucl. Mater. 2010;407:205–210. doi: 10.1016/j.jnucmat.2010.10.018. DOI
Lee S.K., Garrison B.E., Capps N.A., Pastore G., Massey C.P., Linton K.D., Brown N.R. BISON Validation of FeCrAl Cladding Mechanical Failure during Simulated Reactivity-Initiated Accident Conditions. J. Nucl. Mater. 2022;564:153676. doi: 10.1016/j.jnucmat.2022.153676. DOI
Aghamiri S.M.S., Sugawara T., Ukai S., Oono N., Sakamoto K., Yamashita S. Orientation Dependence of Yield Strength in a New Single Crystal-like FeCrAl Oxide Dispersion Strengthened Alloy. Mater. Charact. 2021;176:111043. doi: 10.1016/j.matchar.2021.111043. DOI
Jia H., Zhang R., Long D., Sun Y., Zhou Z. Effect of Zirconium Content on Mechanical Properties of ODS FeCrAl Alloy. Mater. Sci. Eng. A. 2022;839:142824. doi: 10.1016/j.msea.2022.142824. DOI
Ukai S., Fujiwara M. Perspective of ODS Alloys Application in Nuclear Environments. J. Nucl. Mater. 2002;307–311:749–757. doi: 10.1016/S0022-3115(02)01043-7. DOI
Pereira V.S.M., Wang S., Morgan T., Schut H., Sietsma J. Microstructural Evolution and Behavior of Deuterium in a Ferritic ODS 12 Cr Steel Annealed at Different Temperatures. Metall. Mater. Trans. A. 2022;53:874–892. doi: 10.1007/s11661-021-06559-0. DOI
Meza A., Macía E., García-Junceda A., Díaz L.A., Chekhonin P., Altstadt E., Serrano M., Rabanal M.E., Campos M. Development of New 14 Cr ODS Steels by Using New Oxides Formers and B as an Inhibitor of the Grain Growth. Metals. 2020;10:1344. doi: 10.3390/met10101344. DOI
Dash M.K., Mythili R., Dasgupta A., Saroja S. Optimization of Consolidation Parameters of 18Cr-ODS Ferritic Steel through Microstructural and Microtexture Characterization. AIP Conf. Proc. 2018;1942:140063. doi: 10.1063/1.5029194. DOI
Paúl A., Alves E., Alves L.C., Marques C., Lindau R., Odriozola J.A. Microstructural Characterization of Eurofer-ODS RAFM Steel in the Normalized and Tempered Condition and after Thermal Aging in Simulated Fusion Conditions. Fusion Eng. Des. 2005;75–79:1061–1065. doi: 10.1016/j.fusengdes.2005.06.334. DOI
Sittiho A., Tungala V., Charit I., Mishra R.S. Microstructure, Mechanical Properties and Strengthening Mechanisms of Friction Stir Welded Kanthal APMT Steel. J. Nucl. Mater. 2018;509:435–444. doi: 10.1016/j.jnucmat.2018.07.001. DOI
Yamamoto Y., Kane K., Pint B., Trofimov A., Wang H. Report on Exploration of New FeCrAl Heat Variants with Improved Properties. Oak Ridge National Laboratory (ORNL); Oak Ridge, TN, USA: 2019.
Stan T., Wu Y., Ciston J., Yamamoto T., Odette G.R. Characterization of Polyhedral Nano-Oxides and Helium Bubbles in an Annealed Nanostructured Ferritic Alloy. Acta Mater. 2020;183:484–492. doi: 10.1016/j.actamat.2019.10.045. DOI
Zinkle S.J., Snead L.L. Designing Radiation Resistance in Materials for Fusion Energy. Annu. Rev. Mater. Res. 2014;44:241–267. doi: 10.1146/annurev-matsci-070813-113627. DOI
Dou P., Kimura A., Okuda T., Inoue M., Ukai S., Ohnuki S., Fujisawa T., Abe F. Polymorphic and Coherency Transition of Y–Al Complex Oxide Particles with Extrusion Temperature in an Al-Alloyed High-Cr Oxide Dispersion Strengthened Ferritic Steel. Acta Mater. 2011;59:992–1002. doi: 10.1016/j.actamat.2010.10.026. DOI
Zhang Z.W., Yao L., Wang X.L., Miller M.K. Vacancy-Controlled Ultrastable Nanoclusters in Nanostructured Ferritic Alloys. Sci. Rep. 2015;5:10600. doi: 10.1038/srep10600. PubMed DOI PMC
Oono N., Ukai S. Precipitation of Oxide Particles in Oxide Dispersion Strengthened (ODS) Ferritic Steels. Mater. Trans. 2018;59:1651–1658. doi: 10.2320/matertrans.M2018110. DOI
Ardell A.J. Precipitation Hardening. Metall. Trans. A. 1985;16:2131–2165. doi: 10.1007/BF02670416. DOI
Gladman T. Precipitation Hardening in Metals. Mater. Sci. Technol. 1999;15:30–36. doi: 10.1179/026708399773002782. DOI
Bhadeshia H.K.D.H., Honeycombe R.W.K. Steels. Elsevier; Amsterdam, The Netherlands: 1995.
Svoboda J., Kocich R., Gamanov Š., Kunčická L., Luptáková N., Dymáček P. Processing Window for Hot Consolidation by Rolling and Rotary Swaging of Fe-10Al-4Cr-4Y2O3 ODS Nanocomposite. Mater. Today Commun. 2023;34:105393. doi: 10.1016/j.mtcomm.2023.105393. DOI
Williams C.A., Unifantowicz P., Baluc N., Smith G.D.W., Marquis E.A. The Formation and Evolution of Oxide Particles in Oxide-Dispersion-Strengthened Ferritic Steels during Processing. Acta Mater. 2013;61:2219–2235. doi: 10.1016/j.actamat.2012.12.042. DOI
Svoboda J., Ecker W., Razumovskiy V.I., Zickler G.A., Fischer F.D. Kinetics of Interaction of Impurity Interstitials with Dislocations Revisited. Prog. Mater. Sci. 2019;101:172–206. doi: 10.1016/j.pmatsci.2018.10.001. DOI
Mayer M., Ressel G., Svoboda J. The Effect of Cryogenic Mechanical Alloying and Milling Duration on Powder Particles’ Microstructure of an Oxide Dispersion Strengthened FeCrMnNiCo High-Entropy Alloy. Metall. Mater. Trans. A. 2022;53:573–584. doi: 10.1007/s11661-021-06532-x. DOI
Franke P., Heintze C., Bergner F., Weißgärber T. Mechanical Properties of Spark Plasma Sintered Fe-Cr Compacts Strengthened by Nanodispersed Yttria Particles. Mater. Mater. Test. 2010;52:133–138. doi: 10.3139/120.110115. DOI
Heintze C., Hernández-Mayoral M., Ulbricht A., Bergner F., Shariq A., Weissgärber T., Frielinghaus H. Nanoscale Characterization of ODS Fe–9%Cr Model Alloys Compacted by Spark Plasma Sintering. J. Nucl. Mater. 2011;428:139–146. doi: 10.1016/j.jnucmat.2011.08.053. DOI
Fu J., Brouwer J.C., Richardson I.M., Hermans M.J.M. Effect of Mechanical Alloying and Spark Plasma Sintering on the Microstructure and Mechanical Properties of ODS Eurofer. Mater. Des. 2019;177:107849. doi: 10.1016/j.matdes.2019.107849. DOI
Suárez M., Fernández A., Menéndez J.L., Torrecillas R., Kessel H.U., Hennicke J., Kirchner R., Kessel T., Suárez M., Fernández A., et al. Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials. Sinter. Appl. 2013;13:319–342. doi: 10.5772/53706. DOI
Unifantowicz P., Oksiuta Z., Olier P., De Carlan Y., Baluc N. Microstructure and Mechanical Properties of an ODS RAF Steel Fabricated by Hot Extrusion or Hot Isostatic Pressing. Fusion Eng. Des. 2011;86:2413–2416. doi: 10.1016/j.fusengdes.2011.01.022. DOI
Oksiuta Z., Boehm-Courjault E., Baluc N. Relation between Microstructure and Charpy Impact Properties of an Elemental and Pre-Alloyed 14Cr ODS Ferritic Steel Powder after Hot Isostatic Pressing. J. Mater. Sci. 2010;45:3921–3930. doi: 10.1007/s10853-010-4457-9. DOI
Khalaj O., Mašek B., Jirková H., Svoboda J. Experimental Study on Thermomechanical Properties of New-Generation ODS Alloys. Int. J. Miner. Metall. Mater. 2017;11:497–500. doi: 10.17222/mit.2017.148. DOI
Grundy E., Patton W.H. High Temperature Alloys. Springer; Dordrecht, The Netherlands: 1987. Properties and Applications of Hot Formed O.D.S. Alloys; pp. 327–335. DOI
Khalaj O., Jirková H., Burdová K., Stehlík A., Kučerová L., Vrtáček J., Svoboda J. Hot Rolling vs. Forging: Newly Developed Fe-Al-O Based OPH Alloy. Metals. 2021;11:228. doi: 10.3390/met11020228. DOI
Zhao Q., Yu L., Liu Y., Huang Y., Guo Q., Li H., Wu J. Evolution of Al-Containing Phases in ODS Steel by Hot Pressing and Annealing. Powder Technol. 2017;311:449–455. doi: 10.1016/j.powtec.2017.02.016. DOI
Zhao Q., Yu L., Liu Y., Huang Y., Ma Z., Li H. Effects of Aluminum and Titanium on the Microstructure of ODS Steels Fabricated by Hot Pressing. Int. J. Miner. Metall. Mater. 2018;25:1156. doi: 10.1007/s12613-018-1667-7. DOI
Massey C.P., Dryepondt S.N., Edmondson P.D., Terrani K.A., Zinkle S.J. Influence of Mechanical Alloying and Extrusion Conditions on the Microstructure and Tensile Properties of Low-Cr ODS FeCrAl Alloys. J. Nucl. Mater. 2018;512:227–238. doi: 10.1016/j.jnucmat.2018.10.017. DOI
Chlupová A., Šulák I., Kunčická L., Kocich R., Svoboda J. Microstructural Aspects of New Grade ODS Alloy Consolidated by Rotary Swaging. Mater. Charact. 2021;181:111477. doi: 10.1016/j.matchar.2021.111477. DOI
Svoboda J., Kunčická L., Luptáková N., Weiser A., Dymáček P. Fundamental Improvement of Creep Resistance of New-Generation Nano-Oxide Strengthened Alloys via Hot Rotary Swaging Consolidation. Materials. 2020;13:5217. doi: 10.3390/ma13225217. PubMed DOI PMC
Kumar D., Prakash U., Dabhade V., Laha K., Sakthivel T. Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging. J. Mater. Eng. Perform. 2017;26:1817–1824. doi: 10.1007/s11665-017-2573-2. DOI
Eiselt C.C., Schendzielorz H., Seubert A., Hary B., de Carlan Y., Diano P., Perrin B., Cedat D. ODS-Materials for High Temperature Applications in Advanced Nuclear Systems. Nucl. Mater. Energy. 2016;9:22–28. doi: 10.1016/j.nme.2016.08.017. DOI
Deng L., Wang C., Luo J., Tu J., Guo N., Xu H., He P., Xia S., Yao Z. Preparation and Property Optimization of FeCrAl-Based ODS Alloy by Machine Learning Combined with Wedge-Shaped Hot-Rolling. Mater. Charact. 2022;188:111894. doi: 10.1016/j.matchar.2022.111894. DOI
Hadraba H., Kazimierzak B., Stratil L., Dlouhy I. Microstructure and Impact Properties of Ferritic ODS ODM401 (14%Cr-ODS of MA957 Type) J. Nucl. Mater. 2011;417:241–244. doi: 10.1016/j.jnucmat.2011.01.066. DOI
Svoboda J., Horník V., Riedel H. Modelling of Processing Steps of New Generation ODS Alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2020;51:5296–5305. doi: 10.1007/s11661-020-05949-0. DOI
Toualbi L., Cayron C., Olier P., Malaplate J., Praud M., Mathon M.-H., Bossu D., Rouesne E., Montani A., Logé R., et al. Assessment of a New Fabrication Route for Fe-9Cr-1W ODS Cladding Tubes. J. Nucl. Mater. 2011;428:47–53. doi: 10.1016/j.jnucmat.2011.12.013. DOI
Dai C., Kurmanaeva L., Schade C., Lavernia E., Apelian D. Microstructure and Mechanical Behavior of ODS Stainless Steel Fabricated Using Cryomilling. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2019;50:5767–5781. doi: 10.1007/s11661-019-05479-4. DOI
Kimura Y., Takaki S., Suejima S., Uemori R., Tamehiro H. Ultra Grain Refining and Decomposition of Oxide during Super-Heavy Deformation in Oxide Dispersion Ferritic Stainless Steel Powder. ISIJ Int. 1999;39:176–182. doi: 10.2355/isijinternational.39.176. DOI
Chen C.-L., Richter A., Kögler R., Talut G. Dual Beam Irradiation of Nanostructured FeCrAl Oxide Dispersion Strengthened Steel. J. Nucl. Mater. 2011;412:350–358. doi: 10.1016/j.jnucmat.2011.03.041. DOI
He P., Liu T., Möslang A., Lindau R., Ziegler R., Hoffmann J., Kurinskiy P., Commin L., Vladimirov P., Nikitenko S., et al. XAFS and TEM Studies of the Structural Evolution of Yttrium-Enriched Oxides in Nanostructured Ferritic Alloys Fabricated by a Powder Metallurgy Process. Mater. Chem. Phys. 2012;136:990–998. doi: 10.1016/j.matchemphys.2012.08.038. DOI
Brocq M., Radiguet B., Le Breton J.-M., Cuvilly F., Pareige P., Legendre F. Nanoscale Characterisation and Clustering Mechanism in an Fe-Y2O3 Model ODS Alloy Processed by Reactive Ball Milling and Annealing. Acta Mater. 2010;58:1806–1814. doi: 10.1016/j.actamat.2009.11.022. DOI
Dou P., Kimura A., Kasada R., Okuda T., Inoue M., Ukai S., Ohnuki S., Fujisawa T., Abe F. TEM and HRTEM Study of Oxide Particles in an Al-Alloyed High-Cr Oxide Dispersion Strengthened Steel with Zr Addition. J. Nucl. Mater. 2014;444:441–453. doi: 10.1016/j.jnucmat.2013.10.028. DOI
Chauhan A., Bergner F., Etienne A., Aktaa J., de Carlan Y., Heintze C., Litvinov D., Hernandez-Mayoral M., Oñorbe E., Radiguet B., et al. Microstructure Characterization and Strengthening Mechanisms of Oxide Dispersion Strengthened (ODS) Fe–9%Cr and Fe–14%Cr Extruded Bars. J. Nucl. Mater. 2017;495:6–19. doi: 10.1016/j.jnucmat.2017.07.060. DOI
Oh S., Lee J.S., Jang C., Kimura A. Irradiation Hardening and Embrittlement in High-Cr Oxide Dispersion Strengthened Steels. J. Nucl. Mater. 2009;386–388:503–506. doi: 10.1016/j.jnucmat.2008.12.144. DOI
Šćepanović M., de Castro V., Leguey T., Auger M.A., Lozano-Perez S., Pareja R. Microstructural Stability of ODS Fe–14Cr (–2W–0.3Ti) Steels after Simultaneous Triple Irradiation. Nucl. Mater. Energy. 2016;9:490–495. doi: 10.1016/j.nme.2016.08.001. DOI
Sandim M.J.R., Souza Filho I.R., Bredda E.H., Kostka A., Raabe D., Sandim H.R.Z. Short Communication on “Coarsening of Y-Rich Oxide Particles in 9%Cr-ODS Eurofer Steel Annealed at 1350 °C. ” J. Nucl. Mater. 2017;484:283–287. doi: 10.1016/j.jnucmat.2016.12.025. DOI
Oliveira V.B., Sandim M.J.R., Stamopoulos D., Renzetti R.A., Santos A.D., Sandim H.R.Z. Annealing Effects on the Microstructure and Coercive Field of Two Ferritic–Martensitic Eurofer Steels: A Comparative Study. J. Nucl. Mater. 2013;435:189–195. doi: 10.1016/j.jnucmat.2012.12.017. DOI
Renzetti R.A., Sandim H.R.Z., Sandim M.J.R., Santos A.D., Möslang A., Raabe D. Annealing Effects on Microstructure and Coercive Field of Ferritic-Martensitic ODS Eurofer Steel. Mater. Sci. Eng. A. 2011;528:1442–1447. doi: 10.1016/j.msea.2010.10.051. DOI
Cayron C., Rath E., Chu I., Launois S. Microstructural Evolution of Y2O3 and MgAl2O4 ODS EUROFER Steels during Their Elaboration by Mechanical Milling and Hot Isostatic Pressing. J. Nucl. Mater. 2004;335:83–102. doi: 10.1016/j.jnucmat.2004.06.010. DOI
García-Junceda A., Campos M., García-Rodríguez N., Torralba J.M. On the Role of Alloy Composition and Sintering Parameters in the Bimodal Grain Size Distribution and Mechanical Properties of ODS Ferritic Steels. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2016;47:5325–5333. doi: 10.1007/s11661-016-3538-z. DOI
Macía E., García-Junceda A., Serrano M., Hong S.J., Campos M. Effect of Mechanical Alloying on the Microstructural Evolution of a Ferritic ODS Steel with (Y–Ti–Al–Zr) Addition Processed by Spark Plasma Sintering (SPS) Nucl. Eng. Technol. 2021;53:2582–2590. doi: 10.1016/j.net.2021.02.002. DOI
Suryanarayana C. Mechanical Alloying and Milling. Prog. Mater. Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9. DOI
Sallez N., Boulnat X., Borbély A., Béchade J.L., Fabrègue D., Perez M., de Carlan Y., Hennet L., Mocuta C., Thiaudière D., et al. In Situ Characterization of Microstructural Instabilities: Recovery, Recrystallization and Abnormal Growth in Nanoreinforced Steel Powder. Acta Mater. 2015;87:377–389. doi: 10.1016/j.actamat.2014.11.051. DOI
Klimenkov M., Jäntsch U., Rieth M., Dürrschnabel M., Möslang A., Schneider H.C. Post-Irradiation Microstructural Examination of EUROFER-ODS Steel Irradiated at 300 °C and 400 °C. J. Nucl. Mater. 2021;557:153259. doi: 10.1016/j.jnucmat.2021.153259. DOI
Materna-Morris E., Lindau R., Schneider H.C., Möslang A. Tensile Behavior of EUROFER ODS Steel after Neutron Irradiation up to 16.3 Dpa between 250 and 450 °C. Fusion Eng. Des. 2015;98–99:2038–2041. doi: 10.1016/j.fusengdes.2015.07.015. DOI
Kolluri M., Edmondson P.D., Luzginova N.V., Berg F.A.V.D. A Structure-Property Correlation Study of Neutron Irradiation Induced Damage in EU Batch of ODS Eurofer97 Steel. Mater. Sci. Eng. A. 2013;597:111–116. doi: 10.1016/j.msea.2013.12.074. DOI
Kolluri M., Edmondson P.D., Luzginova N.V., Berg F.A.V.D. Influence of Irradiation Temperature on Microstructure of EU Batch of ODS Eurofer97 Steel Irradiated with Neutrons. Mater. Sci. Technol. 2014;9:1697–1702. doi: 10.1179/1743284714Y.0000000563. DOI
Klimenkov M. Effect of Irradiation Temperature on Microstructure of Ferritic-Martensitic ODS Steel. J. Nucl. Mater. 2017;493:426–435. doi: 10.1016/j.jnucmat.2017.06.024. DOI
Capdevila C., Bhadeshia H.K.D.H. Manufacturing and Microstructural Evolution of Mechanuically Alloyed Oxide Dispersion Strengthened Superalloys. Adv. Eng. Mater. 2001;3:647. doi: 10.1002/1527-2648(200109)3:9<647::AID-ADEM647>3.0.CO;2-4. DOI
Hosemann P., Thau H.T., Johnson A.L., Maloy S.A., Li N. Corrosion of ODS Steels in Lead-Bismuth Eutectic. J. Nucl. Mater. 2008;373:246–253. doi: 10.1016/j.jnucmat.2007.05.049. DOI
Takaya S., Furukawa T., Aoto K., Müller G., Weisenburger A., Heinzel A., Inoue M., Okuda T., Abe F., Ohnuki S., et al. Corrosion Behavior of Al-Alloying High Cr-ODS Steels in Lead-Bismuth Eutectic. J. Nucl. Mater. 2009;386–388:507–510. doi: 10.1016/j.jnucmat.2008.12.155. DOI
Jung H.J., Edwards D.J., Kurtz R.J., Yamamoto T., Wu Y., Odette G.R. Structural and Chemical Evolution in Neutron Irradiated and Helium-Injected Ferritic ODS PM2000 Alloy. J. Nucl. Mater. 2017;484:68–80. doi: 10.1016/j.jnucmat.2016.11.022. DOI
Chen C.-L., Richter A., Kögler R. The Effect of Dual Fe+/He+ Ion Beam Irradiation on Microstructural Changes in FeCrAl ODS Alloys. J. Alloys Compd. 2014;586:S173–S179. doi: 10.1016/j.jallcom.2012.11.113. DOI
Hsiung L.L., Fluss M.J., Tumey S.J., Choi B.W., Serruys Y., Willaime F., Kimura A. Formation Mechanism and the Role of Nanoparticles in Fe-Cr ODS Steels Developed for Radiation Tolerance. Phys. Rev. B. 2010;82:184103. doi: 10.1103/PhysRevB.82.184103. DOI
de Castro V., Briceno M., Jenkins M.L., Kirk M., Lozano-Perez S., Roberts S.G. In-Situ Fe+ Ion Irradiation of an Oxide Dispersion Strengthened Steel. J. Phys. Conf. Ser. 2014;522:012032. doi: 10.1088/1742-6596/522/1/012032. DOI
Chen J., Jung P., Hoffelner W., Ullmaier H. Dislocation Loops and Bubbles in Oxide Dispersion Strengthened Ferritic Steel after Helium Implantation under Stress. Acta Mater. 2008;56:250–258. doi: 10.1016/j.actamat.2007.09.016. DOI
Miller M.K., Hoelzer D.T., Kenik E.A., Russell K.F. Stability of Ferritic MA/ODS Alloys at High Temperatures. Intermetallics. 2005;13:387–392. doi: 10.1016/j.intermet.2004.07.036. DOI
Fischer J.J. Dispersion Strengthened Ferritic Alloy for Use in Liquid-Metal Fast Breeder Reactors (LMFBRS) 4,075,010. U.S. Patent. 1978 February 21;
Bailey G., Price R., Voelkl E., Musselman I., Kenik E., Hoelzer D., Maziasz P., Miller M. Characterization of Nanoscale Clusters in Ods Iron-Based Alloys. Microsc. Microanal. 2001;7:550–551. doi: 10.1017/S1431927600028828. DOI
Miller M.K., Kenik E.A., Russell K.F., Heatherly L., Hoelzer D.T., Maziasz P.J. Atom Probe Tomography of Nanoscale Particles in ODS Ferritic Alloys. Mater. Sci. Eng. A. 2003;353:140–145. doi: 10.1016/S0921-5093(02)00680-9. DOI
Miller M.K., Russell K.F., Hoelzer D.T. Characterization of Precipitates in MA/ODS Ferritic Alloys. J. Nucl. Mater. 2006;351:261–268. doi: 10.1016/j.jnucmat.2006.02.004. DOI
Sakasegawa H., Chaffron L., Legendre F., Boulanger L., Cozzika T., Brocq M., De Carlan Y. Correlation between Chemical Composition and Size of Very Small Oxide Particles in the MA957 ODS Ferritic Alloy. J. Nucl. Mater. 2009;384:115–118. doi: 10.1016/j.jnucmat.2008.11.001. DOI
Miller M.K., Parish C.M., Li Q. Materials Science and Technology Advanced Oxide Dispersion Strengthened and Nanostructured Ferritic Alloys Advanced Oxide Dispersion Strengthened and Nanostructured Ferritic Alloys. Mater. Sci. Technol. 2013;29:1174–1178. doi: 10.1179/1743284713Y.0000000207. DOI
Wu Y., Ciston J., Kräemer S., Bailey N., Odette G.R., Hosemann P. The Crystal Structure, Orientation Relationships and Interfaces of the Nanoscale Oxides in Nanostructured Ferritic Alloys. Acta Mater. 2016;111:108–115. doi: 10.1016/j.actamat.2016.03.031. DOI
London A.J., Lozano-Perez S., Santra S., Amirthapandian S., Panigrahi B.K., Sundar C.S., Grovenor C.R.M. Comparison of Atom Probe Tomography and Transmission Electron Microscopy Analysis of Oxide Dispersion Strengthened Steels. J. Phys. Conf. Ser. 2014;522:012028. doi: 10.1088/1742-6596/522/1/012028. DOI
Spartacus G., Malaplate J., De Geuser F., Mouton I., Sornin D., Perez M., Guillou R., Arnal B., Rouesne E., Deschamps A. Chemical and Structural Evolution of Nano-Oxides from Mechanical Alloying to Consolidated Ferritic Oxide Dispersion Strengthened Steel. Acta Mater. 2022;233:117992. doi: 10.1016/j.actamat.2022.117992. DOI
Edmondson P.D., Parish C.M., Zhang Y., Hallén A., Miller M.K. Helium Bubble Distributions in a Nanostructured Ferritic Alloy. J. Nucl. Mater. 2013;434:210–216. doi: 10.1016/j.jnucmat.2012.11.049. DOI
Auger M.A., Hoelzer D.T., Field K.G., Moody M.P. Nanoscale Analysis of Ion Irradiated ODS 14YWT Ferritic Alloy. J. Nucl. Mater. 2020;528:151852. doi: 10.1016/j.jnucmat.2019.151852. DOI
Zhang G., Zhou Z., Mo K., Miao Y., Xu S., Jia H., Liu X., Stubbins J.F. The Effect of Thermal-Aging on the Microstructure and Mechanical Properties of 9Cr Ferritic/Martensitic ODS Alloy. J. Nucl. Mater. 2019;522:212–219. doi: 10.1016/j.jnucmat.2019.05.023. DOI
Zhou Z., Sun S., Zou L., Schneider Y., Schmauder S., Wang M. Enhanced Strength and High Temperature Resistance of 25Cr20Ni ODS Austenitic Alloy through Thermo-Mechanical Treatment and Addition of Mo. Fusion Eng. Des. 2019;138:175–182. doi: 10.1016/j.fusengdes.2018.11.020. DOI
Pal S., Alam M.E., Maloy S.A., Hoelzer D.T., Odette G.R. Texture Evolution and Microcracking Mechanisms in As-Extruded and Cross-Rolled Conditions of a 14YWT Nanostructured Ferritic Alloy. Acta Mater. 2018;152:338–357. doi: 10.1016/j.actamat.2018.03.045. DOI
Moghadasi M.A., Nili-Ahmadabadi M., Forghani F., Kim H.S. Development of an Oxide-Dispersion-Strengthened Steel by Introducing Oxygen Carrier Compound into the Melt Aided by a General Thermodynamic Model. Sci. Rep. 2016;6:38621. doi: 10.1038/srep38621. PubMed DOI PMC
Gradl P., Mireles O.R., Katsarelis C., Smith T.M., Sowards J., Park A., Chen P., Tinker D.C., Protz C., Teasley T., et al. Advancement of Extreme Environment Additively Manufactured Alloys for next Generation Space Propulsion Applications. Acta Astronaut. 2023;211:483–497. doi: 10.1016/j.actaastro.2023.06.035. DOI
Svoboda J., Horník V., Stratil L., Hadraba H., Mašek B., Khalaj O., Jirková H. Microstructure Evolution in ODS Alloys with a High-Volume Fraction of Nano Oxides. Metals. 2018;8:1079. doi: 10.3390/met8121079. DOI
Benjamin J.S. Dispersion Strengthened Superalloys by Mechanical Alloying. Metall. Trans. 1970;1:2943–2951. doi: 10.1007/BF03037835. DOI
Dymácek P., Kocich R., Kuncická L., Jarý M., Luptáková N., Holzer J., Mašek B., Svoboda J. Processing of Top Creep and Oxidation Resistant Fe-Al Based ODS Alloys. Procedia Struct. Integr. 2022;42:1576–1583. doi: 10.1016/j.prostr.2022.12.199. DOI
Wang M., Zhou Z., Sun H., Hu H., Li S. Effects of Plastic Deformations on Microstructure and Mechanical Properties of ODS-310 Austenitic Steel. J. Nucl. Mater. 2012;430:259–263. doi: 10.1016/j.jnucmat.2012.07.014. DOI
Zhou Z., Yang S., Chen W., Liao L., Xu Y. Processing and Characterization of a Hipped Oxide Dispersion Strengthened Austenitic Steel. J. Nucl. Mater. 2012;428:31–34. doi: 10.1016/j.jnucmat.2011.08.027. DOI
Svoboda J., Bořil P., Holzer J., Luptáková N., Jarý M., Mašek B., Dymáček P. Substantial Improvement of High Temperature Strength of New-Generation Nano-Oxide-Strengthened Alloys by Addition of Metallic Yttrium. Materials. 2022;15:504. doi: 10.3390/ma15020504. PubMed DOI PMC
Reed R.C. The Superalloys. Cambridge University Press; Cambridge, UK: 2006.
Malaplate J., Mompiou F., Béchade J.L., Van Den Berghe T., Ratti M. Creep Behavior of ODS Materials: A Study of Dislocations/Precipitates Interactions. J. Nucl. Mater. 2011;417:205–208. doi: 10.1016/j.jnucmat.2010.12.059. DOI
Rösler J., Arzt E. A New Model-Based Creep Equation for Dispersion Strengthened Materials. Acta Metall. Mater. 1990;38:671–683. doi: 10.1016/0956-7151(90)90223-4. DOI
Gamanov Š., Holzer J., Roupcová P., Svoboda J. High Temperature Oxidation Kinetics of Fe-10Al-4Cr-4Y2O3 ODS Alloy at 1200–1400 °C. Corros. Sci. 2022;206:110498. doi: 10.1016/j.corsci.2022.110498. DOI
Gamanov Š., Luptáková N., Bořil P., Jarý M., Mašek B., Dymáček P., Svoboda J. Mechanisms of Plastic Deformation and Fracture in Coarse Grained Fe–10Al–4Cr–4Y2O3 ODS Nanocomposite at 20–1300 °C. J. Mater. Res. Technol. 2023;24:4863–4874. doi: 10.1016/j.jmrt.2023.04.131. DOI
Oka K., Ohnuki S., Yamashita S., Akasaka N., Ohtsuka S., Tanigawa H. Structure of Nano-Size Oxides in ODS Steels and Its Stability under Electron Irradiation. Mater. Trans. 2007;48:2563–2566. doi: 10.2320/matertrans.MD200715. DOI
Bowen A.W., Leak G.M. Solute Diffusion in Alpha- and Gamma-Iron. Metall. Trans. 1970;1:1695–1700. doi: 10.1007/BF02642019. DOI
Peng Y., Yu L., Liu Y., Ma Z., Li H., Liu C., Wu J. Microstructures and Tensile Properties of an Austenitic ODS Heat Resistance Steel. Mater. Sci. Eng. A. 2019;767:138419. doi: 10.1016/j.msea.2019.138419. DOI
Wang M., Zhou Z., Sun H., Hu H., Li S. Microstructural Observation and Tensile Properties of ODS-304 Austenitic Steel. Mater. Sci. Eng. A. 2013;559:287–292. doi: 10.1016/j.msea.2012.08.099. DOI
Miao Y., Mo K., Zhou Z., Liu X., Lan K.C., Zhang G., Miller M.K., Powers K.A., Almer J., Stubbins J.F. In Situ Synchrotron Tensile Investigations on the Phase Responses within an Oxide Dispersion-Strengthened (ODS) 304 Steel. Mater. Sci. Eng. A. 2015;625:146–152. doi: 10.1016/j.msea.2014.12.017. DOI
Xu Y., Zhou Z., Li M., He P. Fabrication and Characterization of ODS Austenitic Steels. J. Nucl. Mater. 2011;417:283–285. doi: 10.1016/j.jnucmat.2010.12.155. DOI
Miao Y., Mo K., Zhou Z., Liu X., Lan K.C., Zhang G., Park J.S., Almer J., Stubbins J.F. Load-Partitioning in an Oxide Dispersion-Strengthened 310 Steel at Elevated Temperatures. Mater. Des. 2016;111:622–630. doi: 10.1016/j.matdes.2016.09.015. DOI
Leo J.R.O., Pirfo Barroso S., Fitzpatrick M.E., Wang M., Zhou Z. Microstructure, Tensile and Creep Properties of an Austenitic ODS 316L Steel. Mater. Sci. Eng. A. 2019;749:158–165. doi: 10.1016/j.msea.2019.02.014. DOI
Gräning T., Klimenkov M., Rieth M., Heintze C., Möslang A. Long-Term Stability of the Microstructure of Austenitic ODS Steel Rods Produced with a Carbon-Containing Process Control Agent. J. Nucl. Mater. 2019;523:111–120. doi: 10.1016/j.jnucmat.2019.05.060. DOI
Zhang H.K., Yao Z., Zhou Z., Wang M., Kaitasov O., Daymond M.R. Radiation Induced Microstructures in ODS 316 Austenitic Steel under Dual-Beam Ions. J. Nucl. Mater. 2014;455:242–247. doi: 10.1016/j.jnucmat.2014.06.024. DOI
Shen Z., Chen K., Guo X., Zhang L. A Study on the Corrosion and Stress Corrosion Cracking Susceptibility of 310-ODS Steel in Supercritical Water. J. Nucl. Mater. 2019;514:56–65. doi: 10.1016/j.jnucmat.2018.11.016. DOI
Baker I., Iliescu B., Li J., Frost H.J. Experiments and Simulations of Directionally Annealed ODS MA 754. Mater. Sci. Eng. A. 2008;492:353–363. doi: 10.1016/j.msea.2008.03.032. DOI
Cong S., Liu Z., Dang Y., Zhang L., Guo X. Effects of Cold Work on the Corrosion Behavior of Alloy 800H Exposed to Aerated Supercritical Water. J. Nucl. Mater. 2022;559:153408. doi: 10.1016/j.jnucmat.2021.153408. DOI
Kim T.-K., Bae C.-S., Kim D.-H., Jang J.-S., Kim S.-H., Lee C.-B., Hahn D.-H. Microstructural Observation and Tensile Isotropy of an Austenitic ODS Steel. Nucl. Eng. Technol. 2008;40:305–310. doi: 10.5516/NET.2008.40.4.305. DOI
Sandim H.R.Z., Renzetti R.A., De Oliveira Zimmermann A.J., Padilha A.F., Möslang A. Annealing Behavior of Ferritic-Martensitic ODS-Eurofer Steel: Effect of Y2O3 Particles on Recrystallization. Mater. Sci. Forum. 2012;715–716:629–634. doi: 10.4028/www.scientific.net/MSF.715-716.629. DOI
Rollett A., Humphreys F., Rohrer G.S., Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2004. pp. 1–628. DOI
Auger M.A., Leguey T., Muñoz A., Monge M.A., De Castro V., Fernández P., Garcés G., Pareja R. Microstructure and Mechanical Properties of Ultrafine-Grained Fe–14Cr and ODS Fe–14Cr Model Alloys. J. Nucl. Mater. 2011;417:213–216. doi: 10.1016/j.jnucmat.2010.12.060. DOI
Gräning T., Rieth M., Hoffmann J., Seils S., Edmondson P.D., Möslang A. Microstructural Investigation of an Extruded Austenitic Oxide Dispersion Strengthened Steel Containing a Carbon-Containing Process Control Agent. J. Nucl. Mater. 2019;516:335–346. doi: 10.1016/j.jnucmat.2019.01.048. DOI
Balázsi C., Gillemot F., Horváth M., Wéber F., Balázsi K., Sahin F.C., Onüralp Y., Horváth Á. Preparation and Structural Investigation of Nanostructured Oxide Dispersed Strengthened Steels. J. Mater. Sci. 2011;46:4598–4605. doi: 10.1007/s10853-011-5359-1. DOI
Gräning T., Rieth M., Hoffmann J., Möslang A. Production, Microstructure and Mechanical Properties of Two Different Austenitic ODS Steels. J. Nucl. Mater. 2017;487:348–361. doi: 10.1016/j.jnucmat.2017.02.034. DOI
Ressel G., Parz P., Primig S., Leitner H., Clemens H., Puff W. New Findings on the Atomistic Mechanisms Active during Mechanical Milling of a Fe-Y2O3 Model Alloy. J. Appl. Phys. 2014;115:124313. doi: 10.1063/1.4869787. DOI
Alinger M.J., Glade S.C., Wirth B.D., Odette G.R., Toyama T., Nagai Y., Hasegawa M. Positron Annihilation Characterization of Nanostructured Ferritic Alloys. Mater. Sci. Eng. A. 2009;518:150–157. doi: 10.1016/j.msea.2009.04.040. DOI
Suresh K., Nagini M., Vijay R., Ramakrishna M., Gundakaram R.C., Reddy A.V., Sundararajan G. Microstructural Studies of Oxide Dispersion Strengthened Austenitic Steels. Mater. Des. 2016;110:519–525. doi: 10.1016/j.matdes.2016.08.020. DOI
Suryanarayana C. Synthesis of Nanocomposites by Mechanical Alloying. J. Alloys Compd. 2011;509:S229–S234. doi: 10.1016/j.jallcom.2010.09.063. DOI
Oka H., Watanabe M., Hashimoto N., Ohnuki S., Yamashita S., Ohtsuka S. Morphology of Oxide Particles in ODS Austenitic Stainless Steel. J. Nucl. Mater. 2013;442:S164–S168. doi: 10.1016/j.jnucmat.2013.04.073. DOI
Oka H., Watanabe M., Ohnuki S., Hashimoto N., Yamashita S., Ohtsuka S. Effects of Milling Process and Alloying Additions on Oxide Particle Dispersion in Austenitic Stainless Steel. J. Nucl. Mater. 2014;447:248–253. doi: 10.1016/j.jnucmat.2014.01.025. DOI
Maziasz P.J. Developing an Austenitic Stainless Steel for Improved Performance in Advanced Fossil Power Facilities. JOM. 1989;41:14–20. doi: 10.1007/BF03220265. DOI
Baloch M.M., Bhadeshia H.K.D.H. Directional Recrystallisation in Inconel MA 6000 Nickel Base Oxide Dispersion Strengthened Superalloy. Mater. Sci. Technol. 1990;6:1236–1246. doi: 10.1179/mst.1990.6.12.1236. DOI
Somani M.C., Muraleedharan K., Birla N.C., Singh V., Prasad Y.V.R.K. Hot Deformation Characteristics of INCONEL Alloy MA 754 and Development of a Processing Map. Metall. Mater. Trans. A. 1994;25:1693–1702. doi: 10.1007/BF02668534. DOI
Ukai S., Oono-Hori N., Ohtsuka S. Comprehensive Nuclear Materials. Elsevier; Amsterdam, The Netherlands: 2020. Oxide Dispersion Strengthened Steels; pp. 255–292. DOI
Kalinin G., Barabash V., Cardella A., Dietz J., Ioki K., Matera R., Santoro R., Tivey R., Garching JWS I. Assessment and Selection of Materials for ITER In-Vessel Components. J. Nucl. Mater. 2000;283-287:10–19. doi: 10.1016/S0022-3115(00)00305-6. DOI
Zinkle S.J., Maziasz P.J., Stoller R.E. Dose Dependence of the Microstructural Evolution in Neutron-Irradiated Austenitic Stainless Steel. J. Nucl. Mater. 1993;206:266–286. doi: 10.1016/0022-3115(93)90128-L. DOI
Harries D.R. Review Neutron Irradiation-Induced Embrittlement in Type 316 and Other Austenitic Steels and Alloys. J. Nucl. Mater. 1979;82:2–21. doi: 10.1016/0022-3115(79)90034-5. DOI
Liu C., Yu C., Hashimoto N., Ohnuki S., Ando M., Shiba K., Jitsukawa S. Micro-Structure and Micro-Hardness of ODS Steels after Ion Irradiation. J. Nucl. Mater. 2011;417:270–273. doi: 10.1016/j.jnucmat.2011.01.067. DOI
Kritzer P. Corrosion in High-Temperature and Supercritical Water and Aqueous Solutions: A Review. J. Supercrit. Fluids. 2004;29:1–29. doi: 10.1016/S0896-8446(03)00031-7. DOI
Was G.S., Teysseyre S., McKinley J., Jiao Z. Corrosion of Austenitic Alloys in Supercritical Water. Corrosion. 2006;62:989–1005. doi: 10.5006/1.3278237. DOI
Behnamian Y., Mostafaei A., Kohandehghan A., Amirkhiz B.S., Zahiri R., Zheng W., Guzonas D., Chmielus M., Chen W., Luo J.L. A Comparative Study on the Oxidation of Austenitic Alloys 304 and 304-Oxide Dispersion Strengthened Steel in Supercritical Water at 650 °C. J. Supercrit. Fluids. 2017;119:245–260. doi: 10.1016/j.supflu.2016.10.002. DOI
Yetisir M., Xu R., Gaudet M., Movassat M., Hamilton H., Nimrouzi M., Goldak J.A. Various Design Aspects of the Canadian Supercritical Water-Cooled Reactor Core. J. Nucl. Eng. Radiat. Sci. 2016;2:011007. doi: 10.1115/1.4031247. DOI
Was G.S. Fundamentals of Radiation Materials Science: Metals and Alloys. 2nd ed. Springer; Berlin, Germany: 2016. pp. 1–1002. DOI
Dutt B.S., Shanthi G., Sasikala G., Babu M.N., Venugopal S., Albert S.K., Bhaduri A.K., Jayakumar T. ScienceDirect Effect of Nitrogen Addition and Test Temperatures on Elastic-Plastic Fracture Toughness of SS 316 LN. Procedia Eng. 2014;86:302–307. doi: 10.1016/j.proeng.2014.11.042. DOI
Hu H., Zhou Z., Li M., Zhang L., Wang M., Li S., Ge C. Study of the Corrosion Behavior of a 18Cr-Oxide Dispersion Strengthened Steel in Supercritical Water. Corros. Sci. 2012;65:209–213. doi: 10.1016/j.corsci.2012.08.021. DOI
Hu H.L., Zhou Z.J., Liao L., Zhang L.F., Wang M., Li S.F., Ge C.C. Corrosion Behavior of a 14Cr-ODS Steel in Supercritical Water. J. Nucl. Mater. 2013;437:196–200. doi: 10.1016/j.jnucmat.2013.02.002. DOI
Isselin J., Kasada R., Kimura A. Corrosion Behaviour of 16%Cr–4%Al and 16%Cr ODS Ferritic Steels under Different Metallurgical Conditions in a Supercritical Water Environment. Corros. Sci. 2010;52:3266–3270. doi: 10.1016/j.corsci.2010.05.043. DOI
Zhang L., Bao Y., Tang R. Selection and Corrosion Evaluation Tests of Candidate SCWR Fuel Cladding Materials. Nucl. Eng. Des. 2012;249:180–187. doi: 10.1016/j.nucengdes.2011.08.086. DOI
Shen Z., Zhang L., Tang R., Zhang Q. The Effect of Temperature on the SSRT Behavior of Austenitic Stainless Steels in SCW. J. Nucl. Mater. 2014;454:274–282. doi: 10.1016/j.jnucmat.2014.08.006. DOI
Monnet I., Dubuisson P., Serruys Y., Ruault M.O., Kaıtasovkaıtasov O., Jouffrey B. Microstructural Investigation of the Stability under Irradiation of Oxide Dispersion Strengthened Ferritic Steels. J. Nucl. Mater. 2004;335:311–321. doi: 10.1016/j.jnucmat.2004.05.018. DOI
Yamamoto Y., Brady M.P., Lu Z.P., Liu C.T., Takeyama M., Maziasz P.J., Pint B.A. Alumina-Forming Austenitic Stainless Steels Strengthened by Laves Phase and MC Carbide Precipitates. Metall. Mater. Trans. A. 2007;38:2737–2746. doi: 10.1007/s11661-007-9319-y. DOI
High-Temperature Creep Resistance of FeAlOY ODS Ferritic Alloy