Different Types of Particle Effects in Creep Tests of CoCrFeNiMn High-Entropy Alloy

. 2022 Oct 20 ; 15 (20) : . [epub] 20221020

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36295428

Grantová podpora
Strategy AV21 Czech Academy of Sciences

Compressive creep tests were performed on a CoCrFeNiMn equiatomic alloy with the dispersion of (i) aluminum nitride or (ii) boron nitride at temperatures of 973 K and 1073 K. The results are compared with previously published creep rates of the unreinforced matrix alloy and the alloy when strengthened by yttrium + titanium oxides. The comparison reveals that the creep rate is essentially unchanged by the presence of aluminum nitride particles, whereas it is reduced by the presence of oxide particles. Boron nitride particles do not influence the creep rate at low stresses but reduce it substantially at high stresses.

Zobrazit více v PubMed

Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., Chang S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004;6:299–303. doi: 10.1002/adem.200300567. DOI

Tsai M.H., Yeh J.W. High-Entropy Alloys: A Critical Review. Mater. Res. Lett. 2014;2:107–123. doi: 10.1080/21663831.2014.912690. DOI

Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014;61:1–93. doi: 10.1016/j.pmatsci.2013.10.001. DOI

Pickering E.J., Jones N.G. High-entropy alloys: A critical assessment of their founding principles and future prospects. Inter. Mater. Rev. 2016;61:183–202. doi: 10.1080/09506608.2016.1180020. DOI

Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081. DOI

Lyu Z., Lee C., Wang S.Y., Fan X., Yeh J.W., Liaw P.K. Effects of Constituent Elements and Fabrication Methods on Mechanical Behavior of High-Entropy Alloys: A Review. Metall. Mater. Trans. A. 2019;50A:1–28. doi: 10.1007/s11661-018-4970-z. DOI

Manzoni A.M., Glatzel U. New multiphase compositionally complex alloys driven by the high entropy alloy approach. Mater. Charact. 2019;147:512–532. doi: 10.1016/j.matchar.2018.06.036. DOI

George E.P., Raabe D., Ritchie R.O. High-entropy alloys. Nat. Rev. Mater. 2019;4:515–534. doi: 10.1038/s41578-019-0121-4. DOI

Torralba J.M., Alvaredo P., García-Junceda A. High-entropy alloys fabricated via powder metallurgy. A critical review. Powder Metall. 2019;62:84–114. doi: 10.1080/00325899.2019.1584454. DOI

Praveen S., Kim H.S. High-Entropy Alloys: Potential candidates for high-temperature applications—An overview. Adv. Eng. Mater. 2018;20:1700645. doi: 10.1002/adem.201700645. DOI

Chen J., Zhou X., Wang W., Liu B., Lv Y., Yang W., Xu D., Liu Y. A review on fundamental of high entropy alloys with promising high-temperature properties. J. Alloys Compd. 2018;760:15–30. doi: 10.1016/j.jallcom.2018.05.067. DOI

Chokshi A.H. High temperature deformation in fine grained high entropy alloys. Mater. Chem. Phys. 2018;210:152–161. doi: 10.1016/j.matchemphys.2017.07.079. DOI

Han L., Xu X., Wang L., Pyczak F., Zhou R., Liu Y. A eutectic high-entropy alloy with good high-temperature strength-plasticity balance. Mater. Res. Lett. 2019;7:460–466. doi: 10.1080/21663831.2019.1650130. DOI

George E.P., Curtin W.A., Tasan C.C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020;188:435–474. doi: 10.1016/j.actamat.2019.12.015. DOI

Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 2004;375–377:213–218. doi: 10.1016/j.msea.2003.10.257. DOI

Gali A., George E.P. Tensile properties of high- and medium-entropy alloys. Intermetallics. 2013;39:74–78. doi: 10.1016/j.intermet.2013.03.018. DOI

Stepanov N.D., Shaysultanov D.G., Yurchenko N.Y., Zherebtsov S.V., Ladygin A.N., Salishchev G.A., Tikhonovsky M.A. High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn high entropy alloy. Mater. Sci. Eng. A. 2015;636:188–195. doi: 10.1016/j.msea.2015.03.097. DOI

Reddy S.R., Bapari S., Bhattacharjee P.P., Chokshi A.H. Superplastic-like flow in a fine-grained equiatomic CoCrFeMnNi high-entropy alloy. Mater. Res. Lett. 2017;5:408–414. doi: 10.1080/21663831.2017.1305460. DOI

Eleti R.R., Bhattacharjee T., Zhao L., Bhattacharjee P.P., Tsuji N. Hot deformation behavior of CoCrFeMnNi FCC high entropy alloy. Mater. Chem. Phys. 2018;210:176–186. doi: 10.1016/j.matchemphys.2017.06.062. DOI

Zhang M., George E.P., Gibeling J.C. Elevated-temperature deformation mechanisms in a CrMnFeCoNi high-entropy alloy. Acta Mater. 2021;218:117181. doi: 10.1016/j.actamat.2021.117181. DOI

He J.Y., Zhu C., Zhou D.Q., Liu W.H., Nieh T.G., Lu Z.P. Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures. Intermetallics. 2014;55:9–14. doi: 10.1016/j.intermet.2014.06.015. DOI

Cao C., Fu J., Tong T., Hao Y., Gu P., Hao H., Peng L. Intermediate-temperature creep deformation and microstructural evolution of an equiatomic fcc-structured CoCrFeNiMn high-entropy alloy. Entropy. 2018;20:960. doi: 10.3390/e20120960. PubMed DOI PMC

Kang Y.B., Shim S.H., Lee K.H., Hong S.I. Dislocation creep behavior of CoCrFeMnNi high entropy alloy at intermediate temperatures. Mater. Res. Lett. 2018;6:689–695. doi: 10.1080/21663831.2018.1543731. DOI

Dobeš F., Hadraba H., Chlup Z., Dlouhý A., Vilémová M., Matějíček J. Compressive creep behavior of an oxide-dispersion-strengthened CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng. A. 2018;732:99–104. doi: 10.1016/j.msea.2018.06.108. DOI

Zhang M., George E.P., Gibeling J.C. Tensile creep properties of a CrMnFeCoNi high-entropy alloy. Scripta Mater. 2021;194:113633. doi: 10.1016/j.scriptamat.2020.113633. DOI

Reppich B. Particle strengthening. In: Cahn R.W., Haasen P., Kramer E.J., editors. Materials Science and Technology. Volume 6. VCH; Weinheim, Germany: 1993. pp. 312–358.

Lagneborg R., Bergman B. The stress/creep rate behaviour of precipitation-hardened alloys. Met. Sci. 1976;10:20–28. doi: 10.1179/030634576790431462. DOI

Blum W., Reppich B. Creep of Particle-Strengthened Alloys. In: Wilshire B., Evans R.W., editors. Creep Behavior of Crystalline Solids. Pineridge Press; Swansea, UK: 1985. pp. 83–135.

Rösler J., Arzt E. A new model-based creep equation for dispersion strengthened materials. Acta Metal. Mater. 1990;38:671–683. doi: 10.1016/0956-7151(90)90223-4. DOI

Zhang M., Broyles S.E., Gibeling J.C. An improved description of creep in dispersion-strengthened metals. Acta Mater. 2020;196:384–395. doi: 10.1016/j.actamat.2020.06.036. DOI

Amar A., Li J.F., Xiang S., Liu X., Zhou Y.Z., Le G.M., Wang X.Y., Qu F.S., Ma S.Y., Dong W.M., et al. Additive manufacturing of high-strength CrMnFeCoNi-based high entropy alloys with TiC addition. Intermetallics. 2019;109:162–166. doi: 10.1016/j.intermet.2019.04.005. DOI

Huang S., Wu H., Zhu H., Xie Z., Cheng J. Enhanced tensile properties of CrMnFeCoNi0.8 high entropy alloy with in-situ TiC particles. Intermetallics. 2022;148:107639. doi: 10.1016/j.intermet.2022.107639. DOI

Li B., Qian B., Xu Y., Liu Z.Y., Xuan F.Z. Fine-structured CoCrFeNiMn high-entropy alloy matrix composite with 12 wt% TiN particle reinforcements via selective laser melting assisted additive manufacturing. Mater. Lett. 2019;252:88–91. doi: 10.1016/j.matlet.2019.05.108. DOI

Hadraba H., Chlup Z., Dlouhy A., Dobes F., Roupcova P., Vilemova M., Matejicek J. Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy. Mater. Sci. Eng. A. 2017;689:252–256. doi: 10.1016/j.msea.2017.02.068. DOI

Tsai K.-Y., Tsai M.-H., Yeh J.-W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013;61:4887–4897. doi: 10.1016/j.actamat.2013.04.058. DOI

Langdon T.G. A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 1994;42:2437–2443. doi: 10.1016/0956-7151(94)90322-0. DOI

Mohamed F.A., Langdon T.G. The transition from dislocation climb to viscous glide in creep of solid solution alloys. Acta Metall. 1974;22:779–788. doi: 10.1016/0001-6160(74)90088-1. DOI

Sherby O.D., Klundt R.H., Miller A.K. Flow stress, subgrain size, and subgrain stability at elevated temperature. Metall. Trans. A. 1977;8:843–850. doi: 10.1007/BF02661565. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

High-Temperature Creep Resistance of FeAlOY ODS Ferritic Alloy

. 2024 Oct 11 ; 17 (20) : . [epub] 20241011

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...