Different Types of Particle Effects in Creep Tests of CoCrFeNiMn High-Entropy Alloy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Strategy AV21
Czech Academy of Sciences
PubMed
36295428
PubMed Central
PMC9611423
DOI
10.3390/ma15207363
PII: ma15207363
Knihovny.cz E-zdroje
- Klíčová slova
- creep, dispersion-strengthened alloy, high-entropy alloy, spark plasma sintering,
- Publikační typ
- časopisecké články MeSH
Compressive creep tests were performed on a CoCrFeNiMn equiatomic alloy with the dispersion of (i) aluminum nitride or (ii) boron nitride at temperatures of 973 K and 1073 K. The results are compared with previously published creep rates of the unreinforced matrix alloy and the alloy when strengthened by yttrium + titanium oxides. The comparison reveals that the creep rate is essentially unchanged by the presence of aluminum nitride particles, whereas it is reduced by the presence of oxide particles. Boron nitride particles do not influence the creep rate at low stresses but reduce it substantially at high stresses.
Zobrazit více v PubMed
Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., Chang S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004;6:299–303. doi: 10.1002/adem.200300567. DOI
Tsai M.H., Yeh J.W. High-Entropy Alloys: A Critical Review. Mater. Res. Lett. 2014;2:107–123. doi: 10.1080/21663831.2014.912690. DOI
Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014;61:1–93. doi: 10.1016/j.pmatsci.2013.10.001. DOI
Pickering E.J., Jones N.G. High-entropy alloys: A critical assessment of their founding principles and future prospects. Inter. Mater. Rev. 2016;61:183–202. doi: 10.1080/09506608.2016.1180020. DOI
Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi: 10.1016/j.actamat.2016.08.081. DOI
Lyu Z., Lee C., Wang S.Y., Fan X., Yeh J.W., Liaw P.K. Effects of Constituent Elements and Fabrication Methods on Mechanical Behavior of High-Entropy Alloys: A Review. Metall. Mater. Trans. A. 2019;50A:1–28. doi: 10.1007/s11661-018-4970-z. DOI
Manzoni A.M., Glatzel U. New multiphase compositionally complex alloys driven by the high entropy alloy approach. Mater. Charact. 2019;147:512–532. doi: 10.1016/j.matchar.2018.06.036. DOI
George E.P., Raabe D., Ritchie R.O. High-entropy alloys. Nat. Rev. Mater. 2019;4:515–534. doi: 10.1038/s41578-019-0121-4. DOI
Torralba J.M., Alvaredo P., García-Junceda A. High-entropy alloys fabricated via powder metallurgy. A critical review. Powder Metall. 2019;62:84–114. doi: 10.1080/00325899.2019.1584454. DOI
Praveen S., Kim H.S. High-Entropy Alloys: Potential candidates for high-temperature applications—An overview. Adv. Eng. Mater. 2018;20:1700645. doi: 10.1002/adem.201700645. DOI
Chen J., Zhou X., Wang W., Liu B., Lv Y., Yang W., Xu D., Liu Y. A review on fundamental of high entropy alloys with promising high-temperature properties. J. Alloys Compd. 2018;760:15–30. doi: 10.1016/j.jallcom.2018.05.067. DOI
Chokshi A.H. High temperature deformation in fine grained high entropy alloys. Mater. Chem. Phys. 2018;210:152–161. doi: 10.1016/j.matchemphys.2017.07.079. DOI
Han L., Xu X., Wang L., Pyczak F., Zhou R., Liu Y. A eutectic high-entropy alloy with good high-temperature strength-plasticity balance. Mater. Res. Lett. 2019;7:460–466. doi: 10.1080/21663831.2019.1650130. DOI
George E.P., Curtin W.A., Tasan C.C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020;188:435–474. doi: 10.1016/j.actamat.2019.12.015. DOI
Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 2004;375–377:213–218. doi: 10.1016/j.msea.2003.10.257. DOI
Gali A., George E.P. Tensile properties of high- and medium-entropy alloys. Intermetallics. 2013;39:74–78. doi: 10.1016/j.intermet.2013.03.018. DOI
Stepanov N.D., Shaysultanov D.G., Yurchenko N.Y., Zherebtsov S.V., Ladygin A.N., Salishchev G.A., Tikhonovsky M.A. High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn high entropy alloy. Mater. Sci. Eng. A. 2015;636:188–195. doi: 10.1016/j.msea.2015.03.097. DOI
Reddy S.R., Bapari S., Bhattacharjee P.P., Chokshi A.H. Superplastic-like flow in a fine-grained equiatomic CoCrFeMnNi high-entropy alloy. Mater. Res. Lett. 2017;5:408–414. doi: 10.1080/21663831.2017.1305460. DOI
Eleti R.R., Bhattacharjee T., Zhao L., Bhattacharjee P.P., Tsuji N. Hot deformation behavior of CoCrFeMnNi FCC high entropy alloy. Mater. Chem. Phys. 2018;210:176–186. doi: 10.1016/j.matchemphys.2017.06.062. DOI
Zhang M., George E.P., Gibeling J.C. Elevated-temperature deformation mechanisms in a CrMnFeCoNi high-entropy alloy. Acta Mater. 2021;218:117181. doi: 10.1016/j.actamat.2021.117181. DOI
He J.Y., Zhu C., Zhou D.Q., Liu W.H., Nieh T.G., Lu Z.P. Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures. Intermetallics. 2014;55:9–14. doi: 10.1016/j.intermet.2014.06.015. DOI
Cao C., Fu J., Tong T., Hao Y., Gu P., Hao H., Peng L. Intermediate-temperature creep deformation and microstructural evolution of an equiatomic fcc-structured CoCrFeNiMn high-entropy alloy. Entropy. 2018;20:960. doi: 10.3390/e20120960. PubMed DOI PMC
Kang Y.B., Shim S.H., Lee K.H., Hong S.I. Dislocation creep behavior of CoCrFeMnNi high entropy alloy at intermediate temperatures. Mater. Res. Lett. 2018;6:689–695. doi: 10.1080/21663831.2018.1543731. DOI
Dobeš F., Hadraba H., Chlup Z., Dlouhý A., Vilémová M., Matějíček J. Compressive creep behavior of an oxide-dispersion-strengthened CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng. A. 2018;732:99–104. doi: 10.1016/j.msea.2018.06.108. DOI
Zhang M., George E.P., Gibeling J.C. Tensile creep properties of a CrMnFeCoNi high-entropy alloy. Scripta Mater. 2021;194:113633. doi: 10.1016/j.scriptamat.2020.113633. DOI
Reppich B. Particle strengthening. In: Cahn R.W., Haasen P., Kramer E.J., editors. Materials Science and Technology. Volume 6. VCH; Weinheim, Germany: 1993. pp. 312–358.
Lagneborg R., Bergman B. The stress/creep rate behaviour of precipitation-hardened alloys. Met. Sci. 1976;10:20–28. doi: 10.1179/030634576790431462. DOI
Blum W., Reppich B. Creep of Particle-Strengthened Alloys. In: Wilshire B., Evans R.W., editors. Creep Behavior of Crystalline Solids. Pineridge Press; Swansea, UK: 1985. pp. 83–135.
Rösler J., Arzt E. A new model-based creep equation for dispersion strengthened materials. Acta Metal. Mater. 1990;38:671–683. doi: 10.1016/0956-7151(90)90223-4. DOI
Zhang M., Broyles S.E., Gibeling J.C. An improved description of creep in dispersion-strengthened metals. Acta Mater. 2020;196:384–395. doi: 10.1016/j.actamat.2020.06.036. DOI
Amar A., Li J.F., Xiang S., Liu X., Zhou Y.Z., Le G.M., Wang X.Y., Qu F.S., Ma S.Y., Dong W.M., et al. Additive manufacturing of high-strength CrMnFeCoNi-based high entropy alloys with TiC addition. Intermetallics. 2019;109:162–166. doi: 10.1016/j.intermet.2019.04.005. DOI
Huang S., Wu H., Zhu H., Xie Z., Cheng J. Enhanced tensile properties of CrMnFeCoNi0.8 high entropy alloy with in-situ TiC particles. Intermetallics. 2022;148:107639. doi: 10.1016/j.intermet.2022.107639. DOI
Li B., Qian B., Xu Y., Liu Z.Y., Xuan F.Z. Fine-structured CoCrFeNiMn high-entropy alloy matrix composite with 12 wt% TiN particle reinforcements via selective laser melting assisted additive manufacturing. Mater. Lett. 2019;252:88–91. doi: 10.1016/j.matlet.2019.05.108. DOI
Hadraba H., Chlup Z., Dlouhy A., Dobes F., Roupcova P., Vilemova M., Matejicek J. Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy. Mater. Sci. Eng. A. 2017;689:252–256. doi: 10.1016/j.msea.2017.02.068. DOI
Tsai K.-Y., Tsai M.-H., Yeh J.-W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013;61:4887–4897. doi: 10.1016/j.actamat.2013.04.058. DOI
Langdon T.G. A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 1994;42:2437–2443. doi: 10.1016/0956-7151(94)90322-0. DOI
Mohamed F.A., Langdon T.G. The transition from dislocation climb to viscous glide in creep of solid solution alloys. Acta Metall. 1974;22:779–788. doi: 10.1016/0001-6160(74)90088-1. DOI
Sherby O.D., Klundt R.H., Miller A.K. Flow stress, subgrain size, and subgrain stability at elevated temperature. Metall. Trans. A. 1977;8:843–850. doi: 10.1007/BF02661565. DOI
High-Temperature Creep Resistance of FeAlOY ODS Ferritic Alloy