Properties of the strains Enterococcus haemoperoxidus and E. moraviensis, new species among enterococci
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
17702466
DOI
10.1007/bf02931309
Knihovny.cz E-resources
- MeSH
- Drug Resistance, Bacterial * MeSH
- Bacteriocins genetics metabolism MeSH
- Enterococcus drug effects genetics metabolism MeSH
- Microbial Sensitivity Tests MeSH
- Water Microbiology MeSH
- Fresh Water microbiology MeSH
- Urease metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacteriocins MeSH
- Urease MeSH
Antibiotic susceptibility or resistance, urease activity, detection of the structural genes for bacteriocin production, bacteriocin activity as well as sensitivity of the isolates to enterocins (Ent) A and M were determined in 23 isolates of new species Enterococcus haemoperoxidus and E. moraviensis. The majority of the strains were antibiotic sensitive and exhibited low urease activity (< 10 nkat/mL). The most frequently detected genes for Ent were entA and entP. However, only the strain 466 of E. haemoperoxidus produced an antibacterial substance with inhibitory activity against 21 G+ indicators. It was partially purified reaching an activity of up to 12 800 AU/mL. This bacteriocin active strain also possessed the genes for EntA and EntP. The other strains did not inhibit the indicator strains. The substance produced by the 466 strain was active even after a 5-months storage at +4 and -20 degrees C. This substance has proteolytic and hydrophilic character, pH optimum of bacteriocin production by this strain being between 4 and 7. While E. moraviensis strains showed sensitivity to EntA (produced by E. faecium EK13) and to EntM (produced by E. faecium AL41), E. haemoperoxidus strains were sensitive to EntA (except strain 382) but less sensitive to the treatment by EntM.
See more in PubMed
Microbiology (Reading). 1997 Jul;143 ( Pt 7):2287-2294 PubMed
Appl Environ Microbiol. 1999 May;65(5):2170-8 PubMed
J Gen Microbiol. 1976 Jan;92(1):32-48 PubMed
Folia Microbiol (Praha). 2004;49(2):203-7 PubMed
Antimicrob Agents Chemother. 1993 Dec;37(12):2736-9 PubMed
Int J Food Microbiol. 1999 Nov 1;52(1-2):115-9 PubMed
Int J Syst Evol Microbiol. 2001 Jul;51(Pt 4):1567-1574 PubMed
Microbios. 1997;89(359):73-80 PubMed
Int J Food Microbiol. 2003 Dec 1;88(2-3):247-54 PubMed
Appl Environ Microbiol. 1996 May;62(5):1676-82 PubMed
Cytobios. 1998;94(376):73-9 PubMed
Int J Antimicrob Agents. 2000 May;14(4):337-42 PubMed
Microbios. 1995;84(338):7-11 PubMed
FEMS Microbiol Lett. 2001 Sep 11;203(1):23-7 PubMed
Folia Microbiol (Praha). 2006;51(1):57-61 PubMed
Int J Food Microbiol. 2002 Jan 30;72(1-2):125-36 PubMed
APMIS. 1989 Jan;97(1):23-6 PubMed
Int J Food Microbiol. 1999 Mar 1;47(1-2):1-24 PubMed
Folia Microbiol (Praha). 2006;51(3):239-42 PubMed
Folia Microbiol (Praha). 2004;49(6):763-8 PubMed
Folia Microbiol (Praha). 2006;51(5):401-5 PubMed
Lett Appl Microbiol. 1998 Mar;26(3):215-8 PubMed
Appl Environ Microbiol. 1997 Nov;63(11):4321-30 PubMed
Lett Appl Microbiol. 2006 Jun;42(6):553-9 PubMed
Antimicrob Agents Chemother. 1991 Jan;35(1):1-4 PubMed
J Appl Microbiol. 2003;94(3):523-30 PubMed
Lett Appl Microbiol. 1998 Sep;27(3):178-82 PubMed
Folia Microbiol (Praha). 2005;50(5):443-7 PubMed
J Appl Microbiol. 2002;92(1):147-57 PubMed
Lett Appl Microbiol. 1997 Nov;25(5):335-8 PubMed
Biopolymers. 2000;55(1):50-61 PubMed
Int J Food Microbiol. 2003 Oct 15;87(1-2):173-9 PubMed
J Bacteriol. 1998 Apr;180(8):1988-94 PubMed
Probiotic potential of enterococci isolated from canine feed