Nuclear inclusions of pathogenic ataxin-1 induce oxidative stress and perturb the protein synthesis machinery
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32145456
PubMed Central
PMC7058924
DOI
10.1016/j.redox.2020.101458
PII: S2213-2317(19)31294-7
Knihovny.cz E-zdroje
- Klíčová slova
- Ataxin-1, Oxidative stress, Polyglutamine, Protein network, Ribosome, Sleeping beauty transposon,
- MeSH
- ataxin-1 genetika metabolismus MeSH
- intranukleární inkluzní tělíska * metabolismus MeSH
- jaderné proteiny genetika metabolismus MeSH
- lidé MeSH
- oxidační stres MeSH
- proteiny nervové tkáně * genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ataxin-1 MeSH
- jaderné proteiny MeSH
- proteiny nervové tkáně * MeSH
Spinocerebellar ataxia type-1 (SCA1) is caused by an abnormally expanded polyglutamine (polyQ) tract in ataxin-1. These expansions are responsible for protein misfolding and self-assembly into intranuclear inclusion bodies (IIBs) that are somehow linked to neuronal death. However, owing to lack of a suitable cellular model, the downstream consequences of IIB formation are yet to be resolved. Here, we describe a nuclear protein aggregation model of pathogenic human ataxin-1 and characterize IIB effects. Using an inducible Sleeping Beauty transposon system, we overexpressed the ATXN1(Q82) gene in human mesenchymal stem cells that are resistant to the early cytotoxic effects caused by the expression of the mutant protein. We characterized the structure and the protein composition of insoluble polyQ IIBs which gradually occupy the nuclei and are responsible for the generation of reactive oxygen species. In response to their formation, our transcriptome analysis reveals a cerebellum-specific perturbed protein interaction network, primarily affecting protein synthesis. We propose that insoluble polyQ IIBs cause oxidative and nucleolar stress and affect the assembly of the ribosome by capturing or down-regulating essential components. The inducible cell system can be utilized to decipher the cellular consequences of polyQ protein aggregation. Our strategy provides a broadly applicable methodology for studying polyQ diseases.
Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
Division of Medical Biotechnology Paul Ehrlich Institute 63225 Langen Germany
Faculty of Biology Johannes Gutenberg University Mainz 55122 Mainz Germany
Institute of Applied Biosciences Centre for Research and Technology Hellas 57001 Thessaloniki Greece
Max Delbrueck Center for Molecular Medicine in the Helmholtz Association Berlin 13125 Germany
Zobrazit více v PubMed
Orr H.T., Zoghbi H.Y. SCA1 molecular genetics: a history of a 13 year collaboration against glutamines. Hum. Mol. Genet. 2001;10(20):2307–2311. PubMed
Skinner P.J., Koshy B.T., Cummings C.J., Klement I.A., Helin K., Servadio A., et al. Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature. 1997;389(6654):971–974. PubMed
Takahashi T., Kikuchi S., Katada S., Nagai Y., Nishizawa M., Onodera O. Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum. Mol. Genet. 2008;17(3):345–356. PubMed
Ramdzan Y.M., Trubetskov M.M., Ormsby A.R., Newcombe E.A., Sui X., Tobin M.J., et al. Huntingtin inclusions trigger cellular quiescence, deactivate apoptosis, and lead to delayed necrosis. Cell Rep. 2017;19(5):919–927. PubMed
Bertoni A., Giuliano P., Galgani M., Rotoli D., Ulianich L., Adornetto A., et al. Early and late events induced by polyQ-expanded proteins: identification of a common pathogenic property of polYQ-expanded proteins. J. Biol. Chem. 2011;286(6):4727–4741. PubMed PMC
Burke K.A., Legleiter J. Atomic force microscopy assays for evaluating polyglutamine aggregation in solution and on surfaces. Methods Mol. Biol. 2013;1017:21–40. PubMed
Dahlgren P.R., Karymov M.A., Bankston J., Holden T., Thumfort P., Ingram V.M., et al. Atomic force microscopy analysis of the Huntington protein nanofibril formation. Nanomed. Nanotechnol. Biol. Med. 2005;1(1):52–57. PubMed
Duim W.C., Chen B., Frydman J., Moerner W.E. Sub-diffraction imaging of huntingtin protein aggregates by fluorescence blink-microscopy and atomic force microscopy. ChemPhysChem : a European journal of chemical physics and physical chemistry. 2011;12(13):2387–2390. PubMed PMC
Bauerlein F.J.B., Saha I., Mishra A., Kalemanov M., Martinez-Sanchez A., Klein R., et al. In situ architecture and cellular interactions of PolyQ inclusions. Cell. 2017;171(1):179–187 e10. PubMed
Gruber A., Hornburg D., Antonin M., Krahmer N., Collado J., Schaffer M., et al. Molecular and structural architecture of polyQ aggregates in yeast. Proc. Natl. Acad. Sci. U. S. A. 2018;115(15):E3446–E3453. PubMed PMC
Koch P., Breuer P., Peitz M., Jungverdorben J., Kesavan J., Poppe D., et al. Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature. 2011;480(7378):543–546. PubMed
Hansen S.K., Stummann T.C., Borland H., Hasholt L.F., Tumer Z., Nielsen J.E., et al. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3. Stem Cell Res. 2016;17(2):306–317. PubMed
Siska E.K., Koliakos G., Petrakis S. Stem cell models of polyglutamine diseases and their use in cell-based therapies. Front. Neurosci. 2015;9:247. PubMed PMC
Huda F., Fan Y., Suzuki M., Konno A., Matsuzaki Y., Takahashi N., et al. Fusion of human fetal mesenchymal stem cells with "degenerating" cerebellar neurons in spinocerebellar ataxia type 1 model mice. PloS One. 2016;11(11) PubMed PMC
Mates L., Chuah M.K., Belay E., Jerchow B., Manoj N., Acosta-Sanchez A., et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat. Genet. 2009;41(6):753–761. PubMed
Hudecek M., Izsvak Z., Johnen S., Renner M., Thumann G., Ivics Z. Going non-viral: the Sleeping Beauty transposon system breaks on through to the clinical side. Crit. Rev. Biochem. Mol. Biol. 2017;52(4):355–380. PubMed
Kapetanou M., Chondrogianni N., Petrakis S., Koliakos G., Gonos E.S. Proteasome activation enhances stemness and lifespan of human mesenchymal stem cells. Free Radic. Biol. Med. 2016;103:226–235. PubMed
Siska E.K., Weisman I., Romano J., Ivics Z., Izsvak Z., Barkai U., et al. Generation of an immortalized mesenchymal stem cell line producing a secreted biosensor protein for glucose monitoring. PloS One. 2017;12(9) PubMed PMC
Trachana V., Petrakis S., Fotiadis Z., Siska E.K., Balis V., Gonos E.S., et al. Human mesenchymal stem cells with enhanced telomerase activity acquire resistance against oxidative stress-induced genomic damage. Cytotherapy. 2017;19(7):808–820. PubMed
Saarikangas J., Barral Y. Protein aggregates are associated with replicative aging without compromising protein quality control. eLife. 2015;4 PubMed PMC
Petrakis S., Rasko T., Mates L., Ivics Z., Izsvak Z., Kouzi-Koliakou K., et al. Gateway-compatible transposon vector to genetically modify human embryonic kidney and adipose-derived stromal cells. Biotechnol. J. 2012;7(7):891–897. PubMed
Petrakis S., Rasko T., Russ J., Friedrich R.P., Stroedicke M., Riechers S.P., et al. Identification of human proteins that modify misfolding and proteotoxicity of pathogenic ataxin-1. PLoS Genet. 2012;8(8) PubMed PMC
Lorenz C., Lesimple P., Bukowiecki R., Zink A., Inak G., Mlody B., et al. Human iPSC-derived neural progenitors are an effective drug discovery model for neurological mtDNA disorders. Cell stem cell. 2017;20(5):659–674 e9. PubMed
Reinhardt P., Glatza M., Hemmer K., Tsytsyura Y., Thiel C.S., Hoing S., et al. Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling. PloS One. 2013;8(3) PubMed PMC
Wanker E.E., Scherzinger E., Heiser V., Sittler A., Eickhoff H., Lehrach H. Membrane filter assay for detection of amyloid-like polyglutamine-containing protein aggregates. Methods Enzymol. 1999;309:375–386. PubMed
Ami D., Natalello A., Doglia S.M. Fourier transform infrared microspectroscopy of complex biological systems: from intact cells to whole organisms. Methods Mol. Biol. 2012;895:85–100. PubMed
Chondrogianni N., Petropoulos I., Franceschi C., Friguet B., Gonos E.S. Fibroblast cultures from healthy centenarians have an active proteasome. Exp. Gerontol. 2000;35(6–7):721–728. PubMed
Gilmore J.L., Yoshida A., Takahashi H., Deguchi K., Kobori T., Louvet E., et al. Analyses of nuclear proteins and nucleic acid structures using atomic force microscopy. Methods Mol. Biol. 2015;1262:119–153. PubMed
Golan M., Jelinkova S., Kratochvilova I., Skladal P., Pesl M., Rotrekl V., et al. AFM monitoring the influence of selected cryoprotectants on regeneration of cryopreserved cells mechanical properties. Front. Physiol. 2018;9:804. PubMed PMC
Nardone G., Oliver-De La Cruz J., Vrbsky J., Martini C., Pribyl J., Skladal P., et al. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 2017;8:15321. PubMed PMC
Necas D., Klapetek P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012;10(1):181–188.
Wisniewski J.R., Zougman A., Nagaraj N., Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6(5):359–362. PubMed
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Molecular & cellular proteomics. MCP. 2014;13(9):2513–2526. PubMed PMC
Pertea M., Kim D., Pertea G.M., Leek J.T., Salzberg S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016;11(9):1650–1667. PubMed PMC
Yu G., Wang L.G., Han Y., He Q.Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS A J. Integr. Biol. 2012;16(5):284–287. PubMed PMC
Kuleshov M.V., Jones M.R., Rouillard A.D., Fernandez N.F., Duan Q., Wang Z., et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–W97. PubMed PMC
Alanis-Lobato G., Andrade-Navarro M.A., Schaefer M.H. HIPPIE v2.0: enhancing meaningfulness and reliability of protein-protein interaction networks. Nucleic Acids Res. 2017;45(D1):D408–D414. PubMed PMC
Arrondo J.L., Goni F.M. Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog. Biophys. Mol. Biol. 1999;72(4):367–405. PubMed
Heimburg T., Schuenemann J., Weber K., Geisler N. Specific recognition of coiled coils by infrared spectroscopy: analysis of the three structural domains of type III intermediate filament proteins. Biochemistry. 1996;35(5):1375–1382. PubMed
Natalello A., Frana A.M., Relini A., Apicella A., Invernizzi G., Casari C., et al. A major role for side-chain polyglutamine hydrogen bonding in irreversible ataxin-3 aggregation. PloS One. 2011;6(4) PubMed PMC
Tanaka M., Morishima I., Akagi T., Hashikawa T., Nukina N. Intra- and intermolecular beta-pleated sheet formation in glutamine-repeat inserted myoglobin as a model for polyglutamine diseases. J. Biol. Chem. 2001;276(48):45470–45475. PubMed
Rekas A., Alattia J.R., Nagai T., Miyawaki A., Ikura M. Crystal structure of venus, a yellow fluorescent protein with improved maturation and reduced environmental sensitivity. J. Biol. Chem. 2002;277(52):50573–50578. PubMed
Zandomeneghi G., Krebs M.R., McCammon M.G., Fandrich M. FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils. Protein Sci. 2004;13(12):3314–3321. PubMed PMC
Trache A., Meininger G.A. Atomic force microscopy (AFM) Curr Protoc Microbiol. 2008 2C.2.1-2C.2.17. PubMed
Vahabi S., Nazemi Salman B., Javanmard A. Atomic force microscopy application in biological research: a review study. Iran. J. Med. Sci. 2013;38(2):76–83. PubMed PMC
Thomas G., Burnham N.A., Camesano T.A., Wen Q. Measuring the mechanical properties of living cells using atomic force microscopy. JoVE. 2013;76 PubMed PMC
Kim Y.E., Hosp F., Frottin F., Ge H., Mann M., Hayer-Hartl M., et al. Soluble oligomers of PolyQ-expanded huntingtin target a multiplicity of key cellular factors. Mol. Cell. 2016;63(6):951–964. PubMed
Kim J., Waldvogel H.J., Faull R.L., Curtis M.A., Nicholson L.F. The RAGE receptor and its ligands are highly expressed in astrocytes in a grade-dependant manner in the striatum and subependymal layer in Huntington's disease. J. Neurochem. 2015;134(5):927–942. PubMed
Tong X., Gui H., Jin F., Heck B.W., Lin P., Ma J., et al. Ataxin-1 and Brother of ataxin-1 are components of the Notch signalling pathway. EMBO Rep. 2011;12(5):428–435. PubMed PMC
Yue S., Serra H.G., Zoghbi H.Y., Orr H.T. The spinocerebellar ataxia type 1 protein, ataxin-1, has RNA-binding activity that is inversely affected by the length of its polyglutamine tract. Hum. Mol. Genet. 2001;10(1):25–30. PubMed
Sahin U., Ferhi O., Jeanne M., Benhenda S., Berthier C., Jollivet F., et al. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. J. Cell Biol. 2014;204(6):931–945. PubMed PMC
Hosp F., Vossfeldt H., Heinig M., Vasiljevic D., Arumughan A., Wyler E., et al. Quantitative interaction proteomics of neurodegenerative disease proteins. Cell Rep. 2015;11(7):1134–1146. PubMed PMC
Koeppen A.H. The pathogenesis of spinocerebellar ataxia. Cerebellum. 2005;4(1):62–73. PubMed
Buijsen R.A.M., Gardiner S.L., Bouma M.J., van der Graaf L.M., Boogaard M.W., Pepers B.A., et al. Generation of 3 spinocerebellar ataxia type 1 (SCA1) patient-derived induced pluripotent stem cell lines LUMCi002-A, B, and C and 2 unaffected sibling control induced pluripotent stem cell lines LUMCi003-A and B. Stem Cell Res. 2018;29:125–128. PubMed
Ishida Y., Kawakami H., Kitajima H., Nishiyama A., Sasai Y., Inoue H., et al. Vulnerability of Purkinje cells generated from spinocerebellar ataxia type 6 patient-derived iPSCs. Cell Rep. 2016;17(6):1482–1490. PubMed
Mertens J., Reid D., Lau S., Kim Y., Gage F.H. Aging in a dish: iPSC-derived and directly induced neurons for studying Brain aging and age-related neurodegenerative diseases. Annu. Rev. Genet. 2018;52:271–293. PubMed PMC
Victor M.B., Richner M., Olsen H.E., Lee S.W., Monteys A.M., Ma C., et al. Striatal neurons directly converted from Huntington's disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat. Neurosci. 2018;21(3):341–352. PubMed PMC
de Chiara C., Menon R.P., Dal Piaz F., Calder L., Pastore A. Polyglutamine is not all: the functional role of the AXH domain in the ataxin-1 protein. J. Mol. Biol. 2005;354(4):883–893. PubMed
Petrakis S., Schaefer M.H., Wanker E.E., Andrade-Navarro M.A. Aggregation of polyQ-extended proteins is promoted by interaction with their natural coiled-coil partners. Bioessays. 2013;35(6):503–507. PubMed PMC
Belay E., Matrai J., Acosta-Sanchez A., Ma L., Quattrocelli M., Mates L., et al. Novel hyperactive transposons for genetic modification of induced pluripotent and adult stem cells: a nonviral paradigm for coaxed differentiation. Stem Cell. 2010;28(10):1760–1771. PubMed
Jackel C., Nogueira M.S., Ehni N., Kraus C., Ranke J., Dohmann M., et al. A vector platform for the rapid and efficient engineering of stable complex transgenes. Sci. Rep. 2016;6:34365. PubMed PMC
Kowarz E., Loscher D., Marschalek R. Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines. Biotechnol. J. 2015;10(4):647–653. PubMed
Hartley J.L., Temple G.F., Brasch M.A. DNA cloning using in vitro site-specific recombination. Genome Res. 2000;10(11):1788–1795. PubMed PMC
Vodyanik M.A., Yu J., Zhang X., Tian S., Stewart R., Thomson J.A., et al. A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell stem cell. 2010;7(6):718–729. PubMed PMC
Scuteri A., Miloso M., Foudah D., Orciani M., Cavaletti G., Tredici G. Mesenchymal stem cells neuronal differentiation ability: a real perspective for nervous system repair? Curr. Stem Cell Res. Ther. 2011;6(2):82–92. PubMed
Guo L., Giasson B.I., Glavis-Bloom A., Brewer M.D., Shorter J., Gitler A.D., et al. A cellular system that degrades misfolded proteins and protects against neurodegeneration. Mol. Cell. 2014;55(1):15–30. PubMed PMC
Wagner W., Bork S., Horn P., Krunic D., Walenda T., Diehlmann A., et al. Aging and replicative senescence have related effects on human stem and progenitor cells. PloS One. 2009;4(6) PubMed PMC
Ruggeri F.S., Longo G., Faggiano S., Lipiec E., Pastore A., Dietler G. Infrared nanospectroscopy characterization of oligomeric and fibrillar aggregates during amyloid formation. Nat. Commun. 2015;6:7831. PubMed PMC
Ruggeri F.S., Vieweg S., Cendrowska U., Longo G., Chiki A., Lashuel H.A., et al. Nanoscale studies link amyloid maturity with polyglutamine diseases onset. Sci. Rep. 2016;6:31155. PubMed PMC
Sathasivam K., Lane A., Legleiter J., Warley A., Woodman B., Finkbeiner S., et al. Identical oligomeric and fibrillar structures captured from the brains of R6/2 and knock-in mouse models of Huntington's disease. Hum. Mol. Genet. 2010;19(1):65–78. PubMed PMC
Wacker J.L., Zareie M.H., Fong H., Sarikaya M., Muchowski P.J. Hsp 70 and Hsp 40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer. Nat. Struct. Mol. Biol. 2004;11(12):1215–1222. PubMed
Hands S., Sajjad M.U., Newton M.J., Wyttenbach A. In vitro and in vivo aggregation of a fragment of huntingtin protein directly causes free radical production. J. Biol. Chem. 2011;286(52):44512–44520. PubMed PMC
Beal M.F. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol. 1995;38(3):357–366. PubMed
Hetman M., Pietrzak M. Emerging roles of the neuronal nucleolus. Trends Neurosci. 2012;35(5):305–314. PubMed PMC
Lu M., Boschetti C., Tunnacliffe A. Long term aggresome accumulation leads to DNA damage, p53-dependent cell cycle arrest, and steric interference in mitosis. J. Biol. Chem. 2015;290(46):27986–28000. PubMed PMC
Bhaskar K., Miller M., Chludzinski A., Herrup K., Zagorski M., Lamb B.T. The PI3K-Akt-mTOR pathway regulates Abeta oligomer induced neuronal cell cycle events. Mol. Neurodegener. 2009;4:14. PubMed PMC
Wu Y.T., Tan H.L., Huang Q., Ong C.N., Shen H.M. Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy. 2009;5(6):824–834. PubMed
Schaefer M.H., Wanker E.E., Andrade-Navarro M.A. Evolution and function of CAG/polyglutamine repeats in protein-protein interaction networks. Nucleic Acids Res. 2012;40(10):4273–4287. PubMed PMC
Pelassa I., Cora D., Cesano F., Monje F.J., Montarolo P.G., Fiumara F. Association of polyalanine and polyglutamine coiled coils mediates expansion disease-related protein aggregation and dysfunction. Hum. Mol. Genet. 2014;23(13):3402–3420. PubMed PMC
Wagner A.S., Politi A.Z., Ast A., Bravo-Rodriguez K., Baum K., Buntru A., et al. Self-assembly of mutant huntingtin exon-1 fragments into large complex fibrillar structures involves nucleated branching. J. Mol. Biol. 2018;430(12):1725–1744. PubMed
Yang W., Dunlap J.R., Andrews R.B., Wetzel R. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 2002;11(23):2905–2917. PubMed
Itahana K., Bhat K.P., Jin A., Itahana Y., Hawke D., Kobayashi R., et al. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol. Cell. 2003;12(5):1151–1164. PubMed
Blum E.S., Abraham M.C., Yoshimura S., Lu Y., Shaham S. Control of nonapoptotic developmental cell death in Caenorhabditis elegans by a polyglutamine-repeat protein. Science. 2012;335(6071):970–973. PubMed PMC
Slomnicki L.P., Pietrzak M., Vashishta A., Jones J., Lynch N., Elliot S., et al. Requirement of neuronal ribosome synthesis for growth and maintenance of the dendritic tree. J. Biol. Chem. 2016;291(11):5721–5739. PubMed PMC
Experimental Treatment with Edaravone in a Mouse Model of Spinocerebellar Ataxia 1