Experimental Treatment with Edaravone in a Mouse Model of Spinocerebellar Ataxia 1

. 2023 Jun 26 ; 24 (13) : . [epub] 20230626

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37445867

Grantová podpora
GAUK24120 Charles University
Cooperatio, areas NEUR, IMMU, DIAG Charles University
CZ.02.1.01/0.0/0.0/16_019/0000787 Ministry of Education Youth and Sports
LX22NPO5107 Ministry of Education Youth and Sports
Specific Student Research Project 260653/2023 Charles University

Edaravone is a mitochondrially targeted drug with a suggested capability to modify the course of diverse neurological diseases. Nevertheless, edaravone has not been tested yet in the context of spinocerebellar ataxia 1 (SCA1), an incurable neurodegenerative disease characterized mainly by cerebellar disorder, with a strong contribution of inflammation and mitochondrial dysfunction. This study aimed to address this gap, exploring the potential of edaravone to slow down SCA1 progression in a mouse knock-in SCA1 model. SCA1154Q/2Q and healthy SCA12Q/2Q mice were administered either edaravone or saline daily for more than 13 weeks. The functional impairments were assessed via a wide spectrum of behavioral assays reflecting motor and cognitive deficits and behavioral abnormalities. Moreover, we used high-resolution respirometry to explore mitochondrial function, and immunohistochemical and biochemical tools to assess the magnitude of neurodegeneration, inflammation, and neuroplasticity. Data were analyzed using (hierarchical) Bayesian regression models, combined with the methods of multivariate statistics. Our analysis pointed out various previously documented neurological and behavioral deficits of SCA1 mice. However, we did not detect any plausible therapeutic effect of edaravone on either behavioral dysfunctions or other disease hallmarks in SCA1 mice. Thus, our results did not provide support for the therapeutic potential of edaravone in SCA1.

Zobrazit více v PubMed

Matilla-Duenas A., Goold R., Giunti P. Clinical, genetic, molecular, and pathophysiological insights into spinocerebellar ataxia type 1. Cerebellum. 2008;7:106–114. doi: 10.1007/s12311-008-0009-0. PubMed DOI

Sánchez I., Balagué E., Matilla-Dueñas A. Ataxin-1 regulates the cerebellar bioenergetics proteome through the GSK3β-mTOR pathway which is altered in Spinocerebellar ataxia type 1 (SCA1) Hum. Mol. Genet. 2016;25:4021–4040. doi: 10.1093/hmg/ddw242. PubMed DOI

Cummings C.J., Orr H.T., Zoghbi H.Y. Progress in pathogenesis studies of spinocerebellar ataxia type 1. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1999;354:1079–1081. doi: 10.1098/rstb.1999.0462. PubMed DOI PMC

Tichanek F., Salomova M., Jedlicka J., Kuncova J., Pitule P., Macanova T., Petrankova Z., Tuma Z., Cendelin J. Hippocampal mitochondrial dysfunction and psychiatric-relevant behavioral deficits in spinocerebellar ataxia 1 mouse model. Sci. Rep. 2020;10:5418. doi: 10.1038/s41598-020-62308-0. PubMed DOI PMC

Rub U., Burk K., Timmann D., den Dunnen W., Seidel K., Farrag K., Brunt E., Heinsen H., Egensperger R., Bornemann A., et al. Spinocerebellar ataxia type 1 (SCA1): New pathoanatomical and clinico-pathological insights. Neuropathol. Appl. Neurobiol. 2012;38:665–680. doi: 10.1111/j.1365-2990.2012.01259.x. PubMed DOI

Watase K., Weeber E.J., Xu B., Antalffy B., Yuva-Paylor L., Hashimoto K., Kano M., Atkinson R., Sun Y., Armstrong D.L., et al. A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron. 2002;34:905–919. doi: 10.1016/S0896-6273(02)00733-X. PubMed DOI

Tichanek F. Psychiatric-Like Impairments in Mouse Models of Spinocerebellar Ataxias. Cerebellum. 2023;22:14–25. doi: 10.1007/s12311-022-01367-7. PubMed DOI

Watase K., Gatchel J.R., Sun Y., Emamian E., Atkinson R., Richman R., Mizusawa H., Orr H.T., Shaw C., Zoghbi H.Y. Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model. PLoS Med. 2007;4:e182. doi: 10.1371/journal.pmed.0040182. PubMed DOI PMC

Cvetanovic M., Hu Y.S., Opal P. Mutant Ataxin-1 Inhibits Neural Progenitor Cell Proliferation in SCA1. Cerebellum. 2017;16:340–347. doi: 10.1007/s12311-016-0794-9. PubMed DOI PMC

Cvetanovic M., Patel J.M., Marti H.H., Kini A.R., Opal P. Vascular endothelial growth factor ameliorates the ataxic phenotype in a mouse model of spinocerebellar ataxia type 1. Nat. Med. 2011;17:1445–1447. doi: 10.1038/nm.2494. PubMed DOI PMC

Cvetanovic M., Ingram M., Orr H., Opal P. Early activation of microglia and astrocytes in mouse models of spinocerebellar ataxia type 1. Neuroscience. 2015;289:289–299. doi: 10.1016/j.neuroscience.2015.01.003. PubMed DOI PMC

Giovannoni R., Maggio N., Rosaria Bianco M., Cavaliere C., Cirillo G., Lavitrano M., Papa M. Reactive astrocytosis and glial glutamate transporter clustering are early changes in a spinocerebellar ataxia type 1 transgenic mouse model. Neuron Glia Biol. 2007;3:335–351. doi: 10.1017/S1740925X08000185. PubMed DOI

Ferro A., Carbone E., Zhang J., Marzouk E., Villegas M., Siegel A., Nguyen D., Possidente T., Hartman J., Polley K., et al. Short-term succinic acid treatment mitigates cerebellar mitochondrial OXPHOS dysfunction, neurodegeneration and ataxia in a Purkinje-specific spinocerebellar ataxia type 1 (SCA1) mouse model. PLoS ONE. 2017;12:e0188425. doi: 10.1371/journal.pone.0188425. PubMed DOI PMC

Ripolone M., Lucchini V., Ronchi D., Fagiolari G., Bordoni A., Fortunato F., Mondello S., Bonato S., Meregalli M., Torrente Y., et al. Purkinje cell COX deficiency and mtDNA depletion in an animal model of spinocerebellar ataxia type 1. J. Neurosci. Res. 2018;96:1576–1585. doi: 10.1002/jnr.24263. PubMed DOI

Burright E.N., Clark H.B., Servadio A., Matilla T., Feddersen R.M., Yunis W.S., Duvick L.A., Zoghbi H.Y., Orr H.T. SCA1 transgenic mice: A model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell. 1995;82:937–948. doi: 10.1016/0092-8674(95)90273-2. PubMed DOI

Genis D., Matilla T., Volpini V., Rosell J., Dávalos A., Ferrer I., Molins A., Estivill X. Clinical, neuropathologic, and genetic studies of a large spinocerebellar ataxia type 1 (SCA1) kindred: (CAG)n expansion and early premonitory signs and symptoms. Neurology. 1995;45:24–30. doi: 10.1212/WNL.45.1.24. PubMed DOI

Burk K., Globas C., Bosch S., Klockgether T., Zuhlke C., Daum I., Dichgans J. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J. Neurol. 2003;250:207–211. doi: 10.1007/s00415-003-0976-5. PubMed DOI

Fancellu R., Paridi D., Tomasello C., Panzeri M., Castaldo A., Genitrini S., Soliveri P., Girotti F. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J. Neurol. 2013;260:3134–3143. doi: 10.1007/s00415-013-7138-1. PubMed DOI

Lo R.Y., Figueroa K.P., Pulst S.M., Perlman S., Wilmot G., Gomez C., Schmahmann J., Paulson H., Shakkottai V.G., Ying S., et al. Depression and clinical progression in spinocerebellar ataxias. Park. Relat. Disord. 2016;22:87–92. doi: 10.1016/j.parkreldis.2015.11.021. PubMed DOI PMC

Ma J., Wu C., Lei J., Zhang X. Cognitive impairments in patients with spinocerebellar ataxia types 1, 2 and 3 are positively correlated to the clinical severity of ataxia symptoms. Int. J. Clin. Exp. Med. 2014;7:5765–5771. PubMed PMC

McMurtray A.M., Clark D.G., Flood M.K., Perlman S., Mendez M.F. Depressive and memory symptoms as presenting features of spinocerebellar ataxia. J. Neuropsychiatry Clin. Neurosci. 2006;18:420–422. doi: 10.1176/jnp.2006.18.3.420. PubMed DOI

Sokolovsky N., Cook A., Hunt H., Giunti P., Cipolotti L. A preliminary characterisation of cognition and social cognition in spinocerebellar ataxia types 2, 1, and 7. Behav. Neurol. 2010;23:17–29. doi: 10.1155/2010/395045. PubMed DOI PMC

Asher M., Rosa J.G., Cvetanovic M. Mood alterations in mouse models of Spinocerebellar Ataxia type 1. Sci. Rep. 2021;11:713. doi: 10.1038/s41598-020-80664-9. PubMed DOI PMC

Asher M., Rosa J.G., Rainwater O., Duvick L., Bennyworth M., Lai R.Y., Kuo S.H., Cvetanovic M. Cerebellar contribution to the cognitive alterations in SCA1: Evidence from mouse models. Hum. Mol. Genet. 2020;29:117–131. doi: 10.1093/hmg/ddz265. PubMed DOI PMC

Asher M., Johnson A., Zecevic B., Pease D., Cvetanovic M. Ataxin-1 regulates proliferation of hippocampal neural precursors. Neuroscience. 2016;322:54–65. doi: 10.1016/j.neuroscience.2016.02.011. PubMed DOI

Hatanaka Y., Watase K., Wada K., Nagai Y. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1. Sci. Rep. 2015;5:16102. doi: 10.1038/srep16102. PubMed DOI PMC

Khacho M., Clark A., Svoboda D.S., MacLaurin J.G., Lagace D.C., Park D.S., Slack R.S. Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis. Hum. Mol. Genet. 2017;26:3327–3341. doi: 10.1093/hmg/ddx217. PubMed DOI PMC

Devine M.J., Kittler J.T. Mitochondria at the neuronal presynapse in health and disease. Nat. Rev. Neurosci. 2018;19:63–80. doi: 10.1038/nrn.2017.170. PubMed DOI

Khacho M., Harris R., Slack R.S. Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat. Rev. Neurosci. 2019;20:34–48. doi: 10.1038/s41583-018-0091-3. PubMed DOI

Pushpakom S., Iorio F., Eyers P.A., Escott K.J., Hopper S., Wells A., Doig A., Guilliams T., Latimer J., McNamee C., et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019;18:41–58. doi: 10.1038/nrd.2018.168. PubMed DOI

Strupp M., Teufel J., Zwergal A., Schniepp R., Khodakhah K., Feil K. Aminopyridines for the treatment of neurologic disorders. Neurol. Clin. Pract. 2017;7:65–76. doi: 10.1212/CPJ.0000000000000321. PubMed DOI PMC

Gandini J., Manto M., Bremova-Ertl T., Feil K., Strupp M. The neurological update: Therapies for cerebellar ataxias in 2020. J. Neurol. 2020;267:1211–1220. doi: 10.1007/s00415-020-09717-3. PubMed DOI

Cendelin J., Cvetanovic M., Gandelman M., Hirai H., Orr H.T., Pulst S.M., Strupp M., Tichanek F., Tuma J., Manto M. Consensus Paper: Strengths and Weaknesses of Animal Models of Spinocerebellar Ataxias and Their Clinical Implications. Cerebellum. 2022;21:452–481. doi: 10.1007/s12311-021-01311-1. PubMed DOI PMC

Miyaji Y., Yoshimura S., Sakai N., Yamagami H., Egashira Y., Shirakawa M., Uchida K., Kageyama H., Tomogane Y. Effect of edaravone on favorable outcome in patients with acute cerebral large vessel occlusion: Subanalysis of RESCUE-Japan Registry. Neurol. Med. Chir. 2015;55:241–247. doi: 10.2176/nmc.ra.2014-0219. PubMed DOI PMC

Fidalgo M., Ricardo Pires J., Viseu I., Magalhães P., Gregório H., Afreixo V., Gregório T. Edaravone for acute ischemic stroke—Systematic review with meta-analysis. Clin. Neurol. Neurosurg. 2022;219:107299. doi: 10.1016/j.clineuro.2022.107299. PubMed DOI

Kobayashi S., Fukuma S., Ikenoue T., Fukuhara S., Kobayashi S. Effect of Edaravone on Neurological Symptoms in Real-World Patients With Acute Ischemic Stroke. Stroke. 2019;50:1805–1811. doi: 10.1161/STROKEAHA.118.024351. PubMed DOI

Rothstein J.D. Edaravone: A new drug approved for ALS. Cell. 2017;171:725. doi: 10.1016/j.cell.2017.10.011. PubMed DOI

Hamzeiy H., Savaş D., Tunca C., Şen N.E., Gündoğdu Eken A., Şahbaz I., Calini D., Tiloca C., Ticozzi N., Ratti A., et al. Elevated Global DNA Methylation Is Not Exclusive to Amyotrophic Lateral Sclerosis and Is Also Observed in Spinocerebellar Ataxia Types 1 and 2. Neurodegener Dis. 2018;18:38–48. doi: 10.1159/000486201. PubMed DOI

Lattante S., Pomponi M.G., Conte A., Marangi G., Bisogni G., Patanella A.K., Meleo E., Lunetta C., Riva N., Mosca L., et al. ATXN1 intermediate-length polyglutamine expansions are associated with amyotrophic lateral sclerosis. Neurobiol. Aging. 2018;64:e151–e157.e155. doi: 10.1016/j.neurobiolaging.2017.11.011. PubMed DOI

Ren Y., Wei B., Song X., An N., Zhou Y., Jin X., Zhang Y. Edaravone’s free radical scavenging mechanisms of neuroprotection against cerebral ischemia: Review of the literature. Int. J. Neurosci. 2015;125:555–565. doi: 10.3109/00207454.2014.959121. PubMed DOI

Kraus R.L., Pasieczny R., Lariosa-Willingham K., Turner M.S., Jiang A., Trauger J.W. Antioxidant properties of minocycline: Neuroprotection in an oxidative stress assay and direct radical-scavenging activity. J. Neurochem. 2005;94:819–827. doi: 10.1111/j.1471-4159.2005.03219.x. PubMed DOI

Banno M., Mizuno T., Kato H., Zhang G., Kawanokuchi J., Wang J., Kuno R., Jin S., Takeuchi H., Suzumura A. The radical scavenger edaravone prevents oxidative neurotoxicity induced by peroxynitrite and activated microglia. Neuropharmacology. 2005;48:283–290. doi: 10.1016/j.neuropharm.2004.10.002. PubMed DOI

Miyamoto N., Maki T., Pham L.D., Hayakawa K., Seo J.H., Mandeville E.T., Mandeville J.B., Kim K.W., Lo E.H., Arai K. Oxidative stress interferes with white matter renewal after prolonged cerebral hypoperfusion in mice. Stroke. 2013;44:3516–3521. doi: 10.1161/STROKEAHA.113.002813. PubMed DOI PMC

Lee B.J., Egi Y., van Leyen K., Lo E.H., Arai K. Edaravone, a free radical scavenger, protects components of the neurovascular unit against oxidative stress in vitro. Brain Res. 2010;1307:22–27. doi: 10.1016/j.brainres.2009.10.026. PubMed DOI PMC

Stucki D.M., Ruegsegger C., Steiner S., Radecke J., Murphy M.P., Zuber B., Saxena S. Mitochondrial impairments contribute to Spinocerebellar ataxia type 1 progression and can be ameliorated by the mitochondria-targeted antioxidant MitoQ. Free Radic. Biol. Med. 2016;97:427–440. doi: 10.1016/j.freeradbiomed.2016.07.005. PubMed DOI

Yuan Y., Zha H., Rangarajan P., Ling E.A., Wu C. Anti-inflammatory effects of Edaravone and Scutellarin in activated microglia in experimentally induced ischemia injury in rats and in BV-2 microglia. BMC Neurosci. 2014;15:125. doi: 10.1186/s12868-014-0125-3. PubMed DOI PMC

Porsolt R.D., Bertin A., Blavet N., Deniel M., Jalfre M. Immobility induced by forced swimming in rats: Effects of agents which modify central catecholamine and serotonin activity. Eur. J. Pharmacol. 1979;57:201–210. doi: 10.1016/0014-2999(79)90366-2. PubMed DOI

Larsen S., Nielsen J., Hansen C.N., Nielsen L.B., Wibrand F., Stride N., Schroder H.D., Boushel R., Helge J.W., Dela F., et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J. Physiol. 2012;590:3349–3360. doi: 10.1113/jphysiol.2012.230185. PubMed DOI PMC

Tuma J., Kolinko Y., Vozeh F., Cendelin J. Mutation-related differences in exploratory, spatial, and depressive-like behavior in pcd and Lurcher cerebellar mutant mice. Front. Behav. Neurosci. 2015;9:116. doi: 10.3389/fnbeh.2015.00116. PubMed DOI PMC

Porras-Garcia E., Cendelin J., Dominguez-del-Toro E., Vozeh F., Delgado-Garcia J.M. Purkinje cell loss affects differentially the execution, acquisition and prepulse inhibition of skeletal and facial motor responses in Lurcher mice. Eur. J. Neurosci. 2005;21:979–988. doi: 10.1111/j.1460-9568.2005.03940.x. PubMed DOI

Cendelin J., Tichanek F. Cerebellar degeneration averts blindness-induced despaired behavior during spatial task in mice. Neurosci. Lett. 2020;722:134854. doi: 10.1016/j.neulet.2020.134854. PubMed DOI

Salomova M., Tichanek F., Jelinkova D., Cendelin J. Forced activity and environmental enrichment mildly improve manifestation of rapid cerebellar degeneration in mice. Behav. Brain Res. 2021;401:113060. doi: 10.1016/j.bbr.2020.113060. PubMed DOI

Lorivel T., Cendelin J., Hilber P. Familiarization effects on the behavioral disinhibition of the cerebellar Lurcher mutant mice: Use of the innovative Dual Maze. Behav. Brain Res. 2021;398:112972. doi: 10.1016/j.bbr.2020.112972. PubMed DOI

Hilber P., Lorivel T., Delarue C., Caston J. Stress and anxious-related behaviors in Lurcher mutant mice. Brain Res. 2004;1003:108–112. doi: 10.1016/j.brainres.2004.01.008. PubMed DOI

Bohne P., Mourabit D.B., Josten M., Mark M.D. Cognitive deficits in episodic ataxia type 2 mouse models. Hum. Mol. Genet. 2021;30:1811–1832. doi: 10.1093/hmg/ddab149. PubMed DOI PMC

Clark H.B., Burright E.N., Yunis W.S., Larson S., Wilcox C., Hartman B., Matilla A., Zoghbi H.Y., Orr H.T. Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and histological alterations. J. Neurosci. 1997;17:7385–7395. doi: 10.1523/JNEUROSCI.17-19-07385.1997. PubMed DOI PMC

Mellesmoen A., Sheeler C., Ferro A., Rainwater O., Cvetanovic M. Brain Derived Neurotrophic Factor (BDNF) Delays Onset of Pathogenesis in Transgenic Mouse Model of Spinocerebellar Ataxia Type 1 (SCA1) Front. Cell. Neurosci. 2018;12:509. doi: 10.3389/fncel.2018.00509. PubMed DOI PMC

Holper L., Ben-Shachar D., Mann J.J. Multivariate meta-analyses of mitochondrial complex I and IV in major depressive disorder, bipolar disorder, schizophrenia, Alzheimer disease, and Parkinson disease. Neuropsychopharmacology. 2019;44:837–849. doi: 10.1038/s41386-018-0090-0. PubMed DOI PMC

Manolaras I., Del Bondio A., Griso O., Reutenauer L., Eisenmann A., Habermann B.H., Puccio H. Mitochondrial dysfunction and calcium dysregulation in COQ8A-ataxia Purkinje neurons are rescued by CoQ10 treatment. Brain. 2023:awad099. doi: 10.1093/brain/awad099. PubMed DOI

Burtscher J., Di Pardo A., Maglione V., Schwarzer C., Squitieri F. Mitochondrial Respiration Changes in R6/2 Huntington’s Disease Model Mice during Aging in a Brain Region Specific Manner. Int. J. Mol. Sci. 2020;21:5412. doi: 10.3390/ijms21155412. PubMed DOI PMC

Reutzel M., Grewal R., Dilberger B., Silaidos C., Joppe A., Eckert G.P. Cerebral Mitochondrial Function and Cognitive Performance during Aging: A Longitudinal Study in NMRI Mice. Oxid. Med. Cell. Longev. 2020;2020:4060769. doi: 10.1155/2020/4060769. PubMed DOI PMC

Jiao S.S., Yao X.Q., Liu Y.H., Wang Q.H., Zeng F., Lu J.J., Liu J., Zhu C., Shen L.L., Liu C.H., et al. Edaravone alleviates Alzheimer’s disease-type pathologies and cognitive deficits. Proc. Natl. Acad. Sci. USA. 2015;112:5225–5230. doi: 10.1073/pnas.1422998112. PubMed DOI PMC

Ishii H., Petrenko A.B., Sasaki M., Satoh Y., Kamiya Y., Tobita T., Furutani K., Matsuhashi M., Kohno T., Baba H. Free radical scavenger edaravone produces robust neuroprotection in a rat model of spinal cord injury. Brain Res. 2018;1682:24–35. doi: 10.1016/j.brainres.2017.12.035. PubMed DOI

Shan H., Jiao G., Cheng X., Dou Z. Safety and efficacy of edaravone for patients with acute stroke: A protocol for randomized clinical trial. Medicine. 2021;100:e24811. doi: 10.1097/MD.0000000000024811. PubMed DOI PMC

Li H., Min J., Mao X., Wang X., Yang Y., Chen Y. Edaravone ameliorates experimental autoimmune thyroiditis in rats through HO-1-dependent STAT3/PI3K/Akt pathway. Am. J. Transl. Res. 2018;10:2037–2046. PubMed PMC

Yang T., Mao Y.F., Liu S.Q., Hou J., Cai Z.Y., Hu J.Y., Ni X., Deng X.M., Zhu X.Y. Protective effects of the free radical scavenger edaravone on acute pancreatitis-associated lung injury. Eur. J. Pharmacol. 2010;630:152–157. doi: 10.1016/j.ejphar.2009.12.025. PubMed DOI

Laidou S., Alanis-Lobato G., Pribyl J., Raskó T., Tichy B., Mikulasek K., Tsagiopoulou M., Oppelt J., Kastrinaki G., Lefaki M., et al. Nuclear inclusions of pathogenic ataxin-1 induce oxidative stress and perturb the protein synthesis machinery. Redox Biol. 2020;32:101458. doi: 10.1016/j.redox.2020.101458. PubMed DOI PMC

Shimizu H., Nishimura Y., Shiide Y., Matsuda H., Akimoto M., Matsuda M., Nakamaru Y., Kato Y., Kondo K. Evaluation of Pharmacokinetics, Safety, and Drug-Drug Interactions of an Oral Suspension of Edaravone in Healthy Adults. Clin. Pharmacol. Drug Dev. 2021;10:1174–1187. doi: 10.1002/cpdd.925. PubMed DOI PMC

Xu J., Wang Y., Wang A., Gao Z., Gao X., Chen H., Zhou J., Zhao X., Wang Y. Safety and efficacy of Edaravone Dexborneol versus edaravone for patients with acute ischaemic stroke: A phase II, multicentre, randomised, double-blind, multiple-dose, active-controlled clinical trial. Stroke Vasc. Neurol. 2019;4:109–114. doi: 10.1136/svn-2018-000221. PubMed DOI PMC

Zhao L.Q., Parikh A., Xiong Y.X., Ye Q.Y., Ying G., Zhou X.F., Luo H.Y. Neuroprotection of Oral Edaravone on Middle Cerebral Artery Occlusion in Rats. Neurotox. Res. 2022;40:995–1006. doi: 10.1007/s12640-022-00520-8. PubMed DOI

Mitoma H., Manto M. The physiological basis of therapies for cerebellar ataxias. Ther. Adv. Neurol. Disord. 2016;9:396–413. doi: 10.1177/1756285616648940. PubMed DOI PMC

Cendelin J., Mitoma H., Manto M. Neurotransplantation Therapy and Cerebellar Reserve. CNS Neurol. Disord. Drug Targets. 2018;17:172–183. doi: 10.2174/1871527316666170810114559. PubMed DOI

Zu T., Duvick L.A., Kaytor M.D., Berlinger M.S., Zoghbi H.Y., Clark H.B., Orr H.T. Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J. Neurosci. 2004;24:8853–8861. doi: 10.1523/JNEUROSCI.2978-04.2004. PubMed DOI PMC

Boy J., Schmidt T., Wolburg H., Mack A., Nuber S., Bottcher M., Schmitt I., Holzmann C., Zimmermann F., Servadio A., et al. Reversibility of symptoms in a conditional mouse model of spinocerebellar ataxia type 3. Hum. Mol. Genet. 2009;18:4282–4295. doi: 10.1093/hmg/ddp381. PubMed DOI

Nag N., Tarlac V., Storey E. Assessing the efficacy of specific cerebellomodulatory drugs for use as therapy for spinocerebellar ataxia type 1. Cerebellum. 2013;12:74–82. doi: 10.1007/s12311-012-0399-x. PubMed DOI

Schmidt J., Schmidt T., Golla M., Lehmann L., Weber J.J., Hübener-Schmid J., Riess O. In vivo assessment of riluzole as a potential therapeutic drug for spinocerebellar ataxia type 3. J. Neurochem. 2016;138:150–162. doi: 10.1111/jnc.13606. PubMed DOI

Romano S., Coarelli G., Marcotulli C., Leonardi L., Piccolo F., Spadaro M., Frontali M., Ferraldeschi M., Vulpiani M.C., Ponzelli F., et al. Riluzole in patients with hereditary cerebellar ataxia: A randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2015;14:985–991. doi: 10.1016/S1474-4422(15)00201-X. PubMed DOI

Duarte-Silva S., Neves-Carvalho A., Soares-Cunha C., Teixeira-Castro A., Oliveira P., Silva-Fernandes A., Maciel P. Lithium chloride therapy fails to improve motor function in a transgenic mouse model of Machado-Joseph disease. Cerebellum. 2014;13:713–727. doi: 10.1007/s12311-014-0589-9. PubMed DOI

Saute J.A., de Castilhos R.M., Monte T.L., Schumacher-Schuh A.F., Donis K.C., D’Ávila R., Souza G.N., Russo A.D., Furtado G.V., Gheno T.C., et al. A randomized, phase 2 clinical trial of lithium carbonate in Machado-Joseph disease. Mov. Disord. 2014;29:568–573. doi: 10.1002/mds.25803. PubMed DOI

Friedrich J., Kordasiewicz H.B., O’Callaghan B., Handler H.P., Wagener C., Duvick L., Swayze E.E., Rainwater O., Hofstra B., Benneyworth M., et al. Antisense oligonucleotide-mediated ataxin-1 reduction prolongs survival in SCA1 mice and reveals disease-associated transcriptome profiles. JCI Insight. 2018;3:e123193. doi: 10.1172/jci.insight.123193. PubMed DOI PMC

O’Callaghan B., Hofstra B., Handler H.P., Kordasiewicz H.B., Cole T., Duvick L., Friedrich J., Rainwater O., Yang P., Benneyworth M., et al. Antisense Oligonucleotide Therapeutic Approach for Suppression of Ataxin-1 Expression: A Safety Assessment. Mol. Ther. Nucleic Acids. 2020;21:1006–1016. doi: 10.1016/j.omtn.2020.07.030. PubMed DOI PMC

Zhang N., Bewick B., Schultz J., Tiwari A., Krencik R., Zhang A., Adachi K., Xia G., Yun K., Sarkar P., et al. DNAzyme Cleavage of CAG Repeat RNA in Polyglutamine Diseases. Neurotherapeutics. 2021;18:1710–1728. doi: 10.1007/s13311-021-01075-w. PubMed DOI PMC

Kaemmerer W.F., Low W.C. Cerebellar allografts survive and transiently alleviate ataxia in a transgenic model of spinocerebellar ataxia type-1. Exp. Neurol. 1999;158:301–311. doi: 10.1006/exnr.1999.7099. PubMed DOI

Vrinten D.H., Hamers F.F. ‘CatWalk’ automated quantitative gait analysis as a novel method to assess mechanical allodynia in the rat; a comparison with von Frey testing. Pain. 2003;102:203–209. doi: 10.1016/s0304-3959(02)00382-2. PubMed DOI

Cendelin J., Voller J., Vozeh F. Ataxic gait analysis in a mouse model of the olivocerebellar degeneration. Behav. Brain Res. 2010;210:8–15. doi: 10.1016/j.bbr.2010.01.035. PubMed DOI

Ziegel J., Jensen E.B.V., Dorph-Petersen K.A. Variance estimation for generalized Cavalieri estimators. Biometrika. 2011;98:187–198. doi: 10.1093/biomet/asq064. DOI

Gundersen H.J., Jensen E.B., Kieu K., Nielsen J. The efficiency of systematic sampling in stereology—Reconsidered. J. Microsc. 1999;193:199–211. doi: 10.1046/j.1365-2818.1999.00457.x. PubMed DOI

Palomero-Gallagher N., Kedo O., Mohlberg H., Zilles K., Amunts K. Multimodal mapping and analysis of the cyto- and receptorarchitecture of the human hippocampus. Brain Struct. Funct. 2020;225:881–907. doi: 10.1007/s00429-019-02022-4. PubMed DOI PMC

Komlódi T., Sobotka O., Krumschnabel G., Bezuidenhout N., Hiller E., Doerrier C., Gnaiger E. Comparison of Mitochondrial Incubation Media for Measurement of Respiration and Hydrogen Peroxide Production. Methods Mol. Biol. 2018;1782:137–155. PubMed

Jedlička J., Tůma Z., Razak K., Kunc R., Kala A., Proskauer Pena S., Lerchner T., Ježek K., Kuncová J. Impact of aging on mitochondrial respiration in various organs. Physiol. Res. 2022;71:S227–s236. doi: 10.33549/physiolres.934995. PubMed DOI PMC

R Core Team . A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2022. [(accessed on 10 March 2023)]. Available online: https://www.R-project.org/

Posit Team RStudio: Integrated Development Environment for R. Posit Software, PBC; Boston, MA, USA: 2022. [(accessed on 10 March 2023)]. Available online: http://www.posit.co/

Bürkner P.-C. Advanced Bayesian Multilevel Modeling with the R Package brms. R J. 2018;10:395–411. doi: 10.32614/RJ-2018-017. DOI

Bürkner P.-C. An R Package for Bayesian Multilevel Models Using Stan. J. Stat. Softw. 2017;80:1–28. doi: 10.18637/jss.v080.i01. DOI

Carpenter B., Gelman A., Hoffman M.D., Lee D., Goodrich B., Betancourt M., Brubaker M., Guo J., Li P., Riddell A. Stan: A probabilistic programming language. J. Stat. Softw. 2017;76:1–32. doi: 10.18637/jss.v076.i01. PubMed DOI PMC

Stan Development Team RStan: The R interface to Stan. [(accessed on 12 March 2023)]. Available online: https://mc-stan.org/

Gelman A., Carlin J.B., Stern H.S., Dunson D.B., Vehtari A., Rubin D.B. Bayesian Data Analysis. 3rd ed. CRC Press; Boca Raton, FL, USA: 2014.

Vehtari A., Gelman A., Gabry J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 2017;27:1413–1432. doi: 10.1007/s11222-016-9696-4. DOI

Oksanen J., Simpson G., Blanchet F., Kindt R., Legendre P., Minchin P., O’Hara R., Solymos P., Stevens M., Szoecs E., et al. vegan: Community Ecology Package. R Package Version 2.6-4. 2022. [(accessed on 15 March 2023)]. Available online: https://CRAN.R-project.org/package=vegan.

Makowski D., Ben-Shachar M.S., Chen S.H.A., Lüdecke D. Indices of Effect Existence and Significance in the Bayesian Framework. Front. Psychol. 2019;10:2767. doi: 10.3389/fpsyg.2019.02767. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Lurcher Mouse as a Model of Cerebellar Syndromes

. 2025 Feb 28 ; 24 (2) : 54. [epub] 20250228

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...