Skin inflammation and impaired adipogenesis in a mouse model of acid ceramidase deficiency

. 2022 Nov ; 45 (6) : 1175-1190. [epub] 20220919

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36083604

Acid ceramidase catalyzes the degradation of ceramide into sphingosine and a free fatty acid. Acid ceramidase deficiency results in lipid accumulation in many tissues and leads to the development of Farber disease (FD). Typical manifestations of classical FD include formation of subcutaneous nodules and joint contractures as well as the development of a hoarse voice. Healthy skin depends on a unique lipid profile to form a barrier that confers protection from pathogens, prevents excessive water loss, and mediates cell-cell communication. Ceramides comprise ~50% of total epidermis lipids and regulate cutaneous homeostasis and inflammation. Abnormal skin development including visual skin lesions has been reported in FD patients, but a detailed study of FD skin has not been performed. We conducted a pathophysiological study of the skin in our mouse model of FD. We observed altered lipid composition in FD skin dominated by accumulation of all studied ceramide species and buildup of abnormal storage structures affecting mainly the dermis. A deficiency of acid ceramidase activity also led to the activation of inflammatory IL-6/JAK/signal transducer and activator of transcription 3 and noncanonical NF-κB signaling pathways. Last, we report reduced proliferation of FD mouse fibroblasts and adipose-derived stem/stromal cells (ASC) along with impaired differentiation of ASCs into mature adipocytes.

Zobrazit více v PubMed

Yu FPS, Amintas S, Levade T, Medin JA. Acid ceramidase deficiency: Farber disease and SMA‐PME. Orphanet J Rare Dis. 2018;13:121. doi:10.1186/s13023-018-0845-z PubMed DOI PMC

Moser HW, Linke T, Fensom AH, et al. Acid ceramidase deficiency: Farber lipogranulomatosis. In: Scriver CR, ed. The metabolic and molecular bases of inherited disease. 8th ed. McGraw‐Hill; 2001:3573‐3585.

Antonarakis SE, Valle D, Moser HW, Moser A, Qualman SJ, Zinkham WH. Phenotypic variability in siblings with Farber disease. J Pediatr. 1984;104:406‐409. doi:10.1016/s0022-3476(84)81106-3 PubMed DOI

Schmoeckel C. Subtle clues to diagnosis of skin diseases by electron microscopy. “Farber bodies” in disseminated lipogranulomatosis (Farber's disease). Am J Dermatopathol. 1980;2:153‐156. doi:10.1097/00000372-198000220-00011 PubMed DOI

Chedrawi AK, Al‐Hassnan ZN, Al‐Muhaizea M, et al. Novel V97G ASAH1 mutation found in Farber disease patients: Unique appearance of the disease with an intermediate severity, and marked early involvement of central and peripheral nervous system. Brain Dev. 2012;34:400‐404. doi:10.1016/j.braindev.2011.07.003 PubMed DOI

Alayoubi AM, Wang JC, Au BC, et al. Systemic ceramide accumulation leads to severe and varied pathological consequences. EMBO Mol Med. 2013;5:827‐842. doi:10.1002/emmm.201202301 PubMed DOI PMC

Sikora J, Dworski S, Jones EE, et al. Acid ceramidase deficiency in mice results in a broad range of central nervous system abnormalities. Am J Pathol. 2017;187:864‐883. doi:10.1016/j.ajpath.2016.12.005 PubMed DOI PMC

Yu FPS, Islam D, Sikora J, et al. Chronic lung injury and impaired pulmonary function in a mouse model of acid ceramidase deficiency. Am J Physiol Lung Cell Mol Physiol. 2018;314:L406‐L420. doi:10.1152/ajplung.00223.2017 PubMed DOI PMC

Yu FPS, Molino S, Sikora J, et al. Hepatic pathology and altered gene transcription in a murine model of acid ceramidase deficiency. Lab Invest. 2019;99:1572‐1592. doi:10.1038/s41374-019-0271-4 PubMed DOI

Yu FPS, Sajdak BS, Sikora J, et al. Acid ceramidase deficiency in mice leads to severe ocular pathology and visual impairment. Am J Pathol. 2019;189:320‐338. doi:10.1016/j.ajpath.2018.10.018 PubMed DOI PMC

Hartree EF. Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972;48:422‐427. doi:10.1016/0003-2697(72)90094-2 PubMed DOI

Natomi H, Sugano K, Iwamori M, Takaku F, Nagai Y. Region‐specific distribution of glycosphingolipids in the rabbit gastrointestinal tract: Preferential enrichment of sulfoglycolipids in the mucosal regions exposed to acid. Biochim Biophys Acta. 1988;961:213‐222. PubMed

Musalkova D, Majer F, Kuchar L, et al. Transcript, protein, metabolite and cellular studies in skin fibroblasts demonstrate variable pathogenic impacts of NPC1 mutations. Orphanet J Rare Dis. 2020;15:85. doi:10.1186/s13023-020-01360-5 PubMed DOI PMC

Liebisch G, Binder M, Schifferer R, Langmann T, Schulz B, Schmitz G. High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI‐MS/MS). Biochim Biophys Acta. 2006;1761:121‐128. doi:10.1016/j.bbalip.2005.12.007 PubMed DOI

Kuchar L, Ledvinova J, Hrebicek M, et al. Prosaposin deficiency and saposin B deficiency (activator‐deficient metachromatic leukodystrophy): Report on two patients detected by analysis of urinary sphingolipids and carrying novel PSAP gene mutations. Am J med Genet A. 2009;149A:613‐621. doi:10.1002/ajmg.a.32712 PubMed DOI PMC

Kuchar L, Sikora J, Gulinello ME, et al. Quantitation of plasmatic lysosphingomyelin and lysosphingomyelin‐509 for differential screening of Niemann‐Pick A/B and C diseases. Anal Biochem. 2017;525:73‐77. doi:10.1016/j.ab.2017.02.019 PubMed DOI

Zhang Y, Tong D, Mishra A, et al. Isolation and patch‐clamp of primary adipocytes. Methods Mol Biol. 2017;1566:145‐150. doi:10.1007/978-1-4939-6820-6_14 PubMed DOI

Aune UL, Ruiz L, Kajimura S. Isolation and differentiation of stromal vascular cells to beige/brite cells. J Vis Exp. 2013. doi:10.3791/50191 PubMed DOI PMC

Zhang LJ. Isolation, culture, and characterization of primary mouse epidermal keratinocytes. Methods Mol Biol. 2019;1940:205‐215. doi:10.1007/978-1-4939-9086-3_15 PubMed DOI

Asfaw B, Schindler D, Ledvinova J, et al. Degradation of blood group a glycolipid A‐6‐2 by normal and mutant human skin fibroblasts. J Lipid Res. 1998;39:1768‐1780. PubMed

Rybova J, Ledvinova J, Sikora J, et al. Neural cells generated from human induced pluripotent stem cells as a model of CNS involvement in mucopolysaccharidosis type II. J Inherit Metab Dis. 2018;41:221‐229. doi:10.1007/s10545-017-0108-5 PubMed DOI

Maru GB, Gandhi K, Ramchandani A, et al. The role of inflammation in skin cancer. Adv Exp med Biol. 2014;816:437‐469. doi:10.1007/978-3-0348-0837-8_17 PubMed DOI

Dondelinger Y, Jouan‐Lanhouet S, Divert T, et al. NF‐kappaB‐independent role of IKKalpha/IKKbeta in preventing RIPK1 kinase‐dependent apoptotic and Necroptotic cell death during TNF signaling. Mol Cell. 2015;60:63‐76. doi:10.1016/j.molcel.2015.07.032 PubMed DOI

Bista P, Zeng W, Ryan S, Bailly V, Browning JL, Lukashev ME. TRAF3 controls activation of the canonical and alternative NFkappaB by the lymphotoxin beta receptor. J Biol Chem. 2010;285:12971‐12978. doi:10.1074/jbc.M109.076091 PubMed DOI PMC

McLafferty E, Hendry C, Alistair F. The integumentary system: Anatomy, physiology and function of skin. Nurs Stand. 2012;27:35‐42. doi:10.7748/ns2012.10.27.7.35.c9358 PubMed DOI

Bao XH, Tian JM, Ji TY, Chang XZ. A case report of childhood Farber's disease and literature review. Zhonghua Er Ke Za Zhi. 2017;55:54‐58. doi:10.3760/cma.j.issn.0578-1310.2017.01.011 PubMed DOI

El‐Kamah GY, El‐darouti MA, Kotoury AIS, Mostafa MI. Farber disease overlapping with stiff skin syndrome: Expanding thr spectrum. Egypt J Med Hum Genet. 2009;10:97‐104.

Kendall AC, Kiezel‐Tsugunova M, Brownbridge LC, Harwood JL, Nicolaou A. Lipid functions in skin: Differential effects of n‐3 polyunsaturated fatty acids on cutaneous ceramides, in a human skin organ culture model. Biochim Biophys Acta Biomembr. 2017;1859:1679‐1689. doi:10.1016/j.bbamem.2017.03.016 PubMed DOI PMC

Kendall AC, Pilkington SM, Massey KA, Sassano G, Rhodes LE, Nicolaou A. Distribution of bioactive lipid mediators in human skin. J Invest Dermatol. 2015;135:1510‐1520. doi:10.1038/jid.2015.41 PubMed DOI

Sjovall P, Skedung L, Gregoire S, et al. Imaging the distribution of skin lipids and topically applied compounds in human skin using mass spectrometry. Sci Rep. 2018;8:16683. doi:10.1038/s41598-018-34286-x PubMed DOI PMC

Choi MJ, Maibach HI. Role of ceramides in barrier function of healthy and diseased skin. Am J Clin Dermatol. 2005;6:215‐223. doi:10.2165/00128071-200506040-00002 PubMed DOI

Rabionet M, Bernard P, Pichery M, et al. Epidermal 1‐O‐acylceramides appear with the establishment of the water permeability barrier in mice and are produced by maturating keratinocytes. Lipids. 2022;57:183‐195. doi:10.1002/lipd.12342 PubMed DOI

Bayerle A, Marsching C, Rabionet M, et al. Endogenous levels of 1‐O‐acylceramides increase upon acidic ceramidase deficiency and decrease due to loss of Dgat1 in a tissue‐dependent manner. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865:158741. doi:10.1016/j.bbalip.2020.158741 PubMed DOI

Hannun YA, Obeid LM. The ceramide‐centric universe of lipid‐mediated cell regulation: Stress encounters of the lipid kind. J Biol Chem. 2002;277:25847‐25850. doi:10.1074/jbc.R200008200 PubMed DOI

Masukawa Y, Narita H, Shimizu E, et al. Characterization of overall ceramide species in human stratum corneum. J Lipid Res. 2008;49:1466‐1476. doi:10.1194/jlr.M800014-JLR200 PubMed DOI

Uchida Y. Ceramide signaling in mammalian epidermis. Biochim Biophys Acta. 2014;1841:453‐462. doi:10.1016/j.bbalip.2013.09.003 PubMed DOI PMC

Chalfant CE, Spiegel S. Sphingosine 1‐phosphate and ceramide 1‐phosphate: Expanding roles in cell signaling. J Cell Sci. 2005;118:4605‐4612. doi:10.1242/jcs.02637 PubMed DOI

Vejselova D, Kutlu HM, Kus G. Examining impacts of ceranib‐2 on the proliferation, morphology and ultrastructure of human breast cancer cells. Cytotechnology. 2016;68:2721‐2728. doi:10.1007/s10616-016-9997-7 PubMed DOI PMC

Grosch S, Schiffmann S, Geisslinger G. Chain length‐specific properties of ceramides. Prog Lipid Res. 2012;51:50‐62. doi:10.1016/j.plipres.2011.11.001 PubMed DOI

Loiseau N, Obata Y, Moradian S, et al. Altered sphingoid base profiles predict compromised membrane structure and permeability in atopic dermatitis. J Dermatol Sci. 2013;72:296‐303. doi:10.1016/j.jdermsci.2013.08.003 PubMed DOI PMC

Toncic RJ, Jakasa I, Hadzavdic SL, et al. Altered levels of sphingosine, Sphinganine and their ceramides in atopic dermatitis are related to skin barrier function, disease severity and local cytokine milieu. Int J Mol Sci. 2020;21(6):1958. doi:10.3390/ijms21061958 PubMed DOI PMC

Niwa Y, Kanda H, Shikauchi Y, et al. Methylation silencing of SOCS‐3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene. 2005;24:6406‐6417. doi:10.1038/sj.onc.1208788 PubMed DOI

Johnson DE, O'Keefe RA, Grandis JR. Targeting the IL‐6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234‐248. doi:10.1038/nrclinonc.2018.8 PubMed DOI PMC

Weih F, Caamano J. Regulation of secondary lymphoid organ development by the nuclear factor‐kappaB signal transduction pathway. Immunol Rev. 2003;195:91‐105. doi:10.1034/j.1600-065x.2003.00064.x PubMed DOI

Sun SC. The noncanonical NF‐kappaB pathway. Immunol Rev. 2012;246:125‐140. doi:10.1111/j.1600-065X.2011.01088.x PubMed DOI PMC

Schwartz DM, Bonelli M, Gadina M, O'Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12:25‐36. doi:10.1038/nrrheum.2015.167 PubMed DOI PMC

Appari M, Channon KM, McNeill E. Metabolic regulation of adipose tissue macrophage function in obesity and diabetes. Antioxid Redox Signal. 2018;29:297‐312. doi:10.1089/ars.2017.7060 PubMed DOI PMC

Dworski S, Lu P, Khan A, et al. Acid ceramidase deficiency is characterized by a unique plasma cytokine and ceramide profile that is altered by therapy. Biochim Biophys Acta Mol Basis Dis. 2017;1863:386‐394. doi:10.1016/j.bbadis.2016.11.031 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...