Transcript, protein, metabolite and cellular studies in skin fibroblasts demonstrate variable pathogenic impacts of NPC1 mutations
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32248828
PubMed Central
PMC7132889
DOI
10.1186/s13023-020-01360-5
PII: 10.1186/s13023-020-01360-5
Knihovny.cz E-zdroje
- Klíčová slova
- Cholesterol transport, Lysosomal storage disease, Mutant protein, Niemann-pick type C, Proteostasis,
- MeSH
- fibroblasty metabolismus MeSH
- intracelulární signální peptidy a proteiny MeSH
- lidé MeSH
- membránové glykoproteiny * genetika metabolismus MeSH
- mladiství MeSH
- mutace genetika MeSH
- protein NPC1 MeSH
- transportní proteiny * genetika MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- intracelulární signální peptidy a proteiny MeSH
- membránové glykoproteiny * MeSH
- NPC1 protein, human MeSH Prohlížeč
- protein NPC1 MeSH
- transportní proteiny * MeSH
BACKGROUND: Niemann-Pick type C (NP-C) is a rare neurovisceral genetic disorder caused by mutations in the NPC1 or the NPC2 gene. NPC1 is a multipass-transmembrane protein essential for egress of cholesterol from late endosomes/lysosomes. To evaluate impacts of NPC1 mutations, we examined fibroblast cultures from 26 NP-C1 patients with clinical phenotypes ranging from infantile to adult neurologic onset forms. The cells were tested with multiple assays including NPC1 mRNA expression levels and allele expression ratios, assessment of NPC1 promoter haplotypes, NPC1 protein levels, cellular cholesterol staining, localization of the mutant NPC1 proteins to lysosomes, and cholesterol/cholesteryl ester ratios. These results were correlated with phenotypes of the individual patients. RESULTS: Overall we identified 5 variant promoter haplotypes. Three of them showed reporter activity decreased down to 70% of the control sequence. None of the haplotypes were consistently associated with more severe clinical presentation of NP-C. Levels of transcripts carrying null NPC1 alleles were profoundly lower than levels of the missense variants. Low levels of the mutant NPC1 protein were identified in most samples. The protein localised to lysosomes in cultures expressing medium to normal NPC1 levels. Fibroblasts from patients with severe infantile phenotypes had higher cholesterol levels and higher cholesterol/cholesteryl ester ratios. On the contrary, cell lines from patients with juvenile and adolescent/adult phenotypes showed values comparable to controls. CONCLUSION: No single assay fully correlated with the disease severity. However, low residual levels of NPC1 protein and high cholesterol/cholesteryl ester ratios associated with severe disease. The results suggest not only low NPC1 expression due to non-sense mediated decay or low mutant protein stability, but also dysfunction of the stable mutant NPC1 as contributors to the intracellular lipid transport defect.
Zobrazit více v PubMed
Vanier MT. Niemann-pick disease type C. Orphanet J Rare Dis. 2010;5:16. doi: 10.1186/1750-1172-5-16. PubMed DOI PMC
Mengel E, Pineda M, Hendriksz CJ, Walterfang M, Torres JV, Kolb SA. Differences in Niemann-pick disease type C symptomatology observed in patients of different ages. Mol Genet Metab. 2017;120:180–189. doi: 10.1016/j.ymgme.2016.12.003. PubMed DOI
Jahnova H, Dvorakova L, Vlaskova H, Hulkova H, Poupetova H, Hrebicek M, et al. Observational, retrospective study of a large cohort of patients with Niemann-pick disease type C in the Czech Republic: a surprisingly stable diagnostic rate spanning almost 40 years. Orphanet J Rare Dis. 2014;9:140. doi: 10.1186/s13023-014-0140-6. PubMed DOI PMC
Greenberg CR, Barnes JG, Kogan S, Seargeant LE. A rare case of Niemann–pick disease type C without neurological involvement in a 66-year-old patient. Mol Genet Metab Rep. 2015;3:18–20. doi: 10.1016/j.ymgmr.2015.02.004. PubMed DOI PMC
Dvorakova L, Sikora J, Hrebicek M, Hulkova H, Bouckova M, Stolnaja L, et al. Subclinical course of adult visceral Niemann-Pick type C1 disease. A rare or underdiagnosed disorder? J Inherit Metab Dis. 2006;29:591. doi: 10.1007/s10545-006-0330-z. PubMed DOI
Wassif CA, Cross JL, Iben J, Sanchez-Pulido L, Cougnoux A, Platt FM, et al. High incidence of unrecognized visceral/neurological late-onset Niemann-pick disease, type C1, predicted by analysis of massively parallel sequencing data sets. Genet Med Off J Am Coll Med Genet. 2015. 10.1038/gim.2015.25. PubMed PMC
Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, et al. Niemann-pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science. 1997;277:228–231. doi: 10.1126/science.277.5323.228. PubMed DOI
Naureckiene S, Sleat DE, Lackland H, Fensom A, Vanier MT, Wattiaux R, et al. Identification of HE1 as the second gene of Niemann-pick C disease. Science. 2000;290:2298–2301. doi: 10.1126/science.290.5500.2298. PubMed DOI
Sleat DE, Wiseman JA, El-Banna M, Price SM, Verot L, Shen MM, et al. Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc Natl Acad Sci Proc Natl Acad Sci. 2004;101:5886–5891. doi: 10.1073/pnas.0308456101. PubMed DOI PMC
Deffieu MS, Pfeffer SR. Niemann-pick type C 1 function requires lumenal domain residues that mediate cholesterol-dependent NPC2 binding. Proc Natl Acad Sci U S A. 2011;108:18932–18936. doi: 10.1073/pnas.1110439108. PubMed DOI PMC
Li X, Saha P, Li J, Blobel G, Pfeffer SR. Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2. Proc Natl Acad Sci U S A. 2016;113:10079–10084. doi: 10.1073/pnas.1611956113. PubMed DOI PMC
Kennedy BE, Charman M, Karten B. Niemann-pick type C2 protein contributes to the transport of endosomal cholesterol to mitochondria without interacting with NPC1. J Lipid Res. 2012;53:2632–2642. doi: 10.1194/jlr.M029942. PubMed DOI PMC
Chu B-B, Liao Y-C, Qi W, Xie C, Du X, Wang J, et al. Cholesterol transport through lysosome-peroxisome membrane contacts. Cell. 2015;161:291–306. doi: 10.1016/j.cell.2015.02.019. PubMed DOI
Miller WL. Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter. Biochim Biophys Acta. 1771;2007:663–676. doi: 10.1016/j.bbalip.2007.02.012. PubMed DOI
Charman M, Kennedy BE, Osborne N, Karten B. MLN64 mediates egress of cholesterol from endosomes to mitochondria in the absence of functional Niemann-pick type C1 protein. J Lipid Res. 2010;51:1023–1034. doi: 10.1194/jlr.M002345. PubMed DOI PMC
Yu W, Gong J-S, Ko M, Garver WS, Yanagisawa K, Michikawa M. Altered cholesterol metabolism in Niemann-pick type C1 mouse brains affects mitochondrial function. J Biol Chem. 2005;280:11731–11739. doi: 10.1074/jbc.M412898200. PubMed DOI
Fernandez A, Llacuna L, Fernandez-Checa JC, Colell A. Mitochondrial cholesterol loading exacerbates amyloid peptide-induced inflammation and neurotoxicity. J Neurosci. 2009;29:6394–6405. doi: 10.1523/JNEUROSCI.4909-08.2009. PubMed DOI PMC
Vanier MT, Latour P. Laboratory diagnosis of Niemann-pick disease type C: the filipin staining test. Methods Cell Biol. 2015;126:357–375. doi: 10.1016/bs.mcb.2014.10.028. PubMed DOI
Imrie J, Heptinstall L, Knight S, Strong K. Observational cohort study of the natural history of Niemann-pick disease type C in the UK: a 5-year update from the UK clinical database. BMC Neurol. 2015;15:257. doi: 10.1186/s12883-015-0511-1. PubMed DOI PMC
Vanier MT, Rodriguez-Lafrasse C, Rousson R, Gazzah N, Juge MC, Pentchev PG, et al. Type C Niemann-pick disease: spectrum of phenotypic variation in disruption of intracellular LDL-derived cholesterol processing. Biochim Biophys Acta. 1991;1096:328–37. 10.1016/0925-4439(91)90069-l. PubMed
Kruth HS, Comly ME, Butler JD, Vanier MT, Fink JK, Wenger DA, et al. Type C Niemann-pick disease. Abnormal metabolism of low density lipoprotein in homozygous and heterozygous fibroblasts. J Biol Chem. 1986;261:16769–74. PMID: 3782141. PubMed
Vanier MT, Gissen P, Bauer P, Coll MJ, Burlina A, Hendriksz CJ, et al. Diagnostic tests for Niemann-pick disease type C (NP-C): a critical review. Mol Genet Metab. 2016. 10.1016/j.ymgme.2016.06.004. PubMed
Geberhiwot T, Moro A, Dardis A, Ramaswami U, Sirrs S, Marfa MP, et al. Consensus clinical management guidelines for Niemann-pick disease type C. Orphanet J Rare Dis. 2018;13:50. doi: 10.1186/s13023-018-0785-7. PubMed DOI PMC
Fernandez-Valero E, Ballart A, Iturriaga C, Lluch M, Macias J, Vanier M, et al. Identification of 25 new mutations in 40 unrelated Spanish Niemann-pick type C patients: genotype-phenotype correlations: identification of 25 new mutations. Clin Genet. 2005;68:245–254. doi: 10.1111/j.1399-0004.2005.00490.x. PubMed DOI
Park WD, O’Brien JF, Lundquist PA, Kraft DL, Vockley CW, Karnes PS, et al. Identification of 58 novel mutations in Niemann-pick disease type C: correlation with biochemical phenotype and importance of PTC1 -like domains in NPC1. Hum Mutat. 2003;22:313–325. doi: 10.1002/humu.10255. PubMed DOI
Garver WS, Jelinek D, Meaney FJ, Flynn J, Pettit KM, Shepherd G, et al. The national Niemann-pick type C1 disease database: correlation of lipid profiles, mutations, and biochemical phenotypes. J Lipid Res. 2010;51:406–415. doi: 10.1194/jlr.P000331. PubMed DOI PMC
Millat G, Marçais C, Tomasetto C, Chikh K, Fensom AH, Harzer K, et al. Niemann-pick C1 disease: correlations between NPC1 mutations, levels of NPC1 protein, and phenotypes emphasize the functional significance of the putative sterol-sensing domain and of the cysteine-rich luminal loop. Am J Hum Genet. 2001;68:1373–1385. doi: 10.1086/320606. PubMed DOI PMC
Ribeiro I, Marcão A, Amaral O, Sá Miranda M, Vanier MT, Millat G. Niemann-pick type C disease: NPC1 mutations associated with severe and mild cellular cholesterol trafficking alterations. Hum Genet. 2001;109:24–32. doi: 10.1007/s004390100531. PubMed DOI
Yamamoto T, Ninomiya H, Matsumoto M, Ohta Y, Nanba E, Tsutsumi Y, et al. Genotype-phenotype relationship of Niemann-pick disease type C: a possible correlation between clinical onset and levels of NPC1 protein in isolated skin fibroblasts. J Med Genet. 2000;37:707–712. doi: 10.1136/jmg.37.9.707. PubMed DOI PMC
Tängemo C, Weber D, Theiss S, Mengel E, Runz H. Niemann-pick type C disease: characterizing lipid levels in patients with variant lysosomal cholesterol storage. J Lipid Res. 2011;52:813–825. doi: 10.1194/jlr.P013524. PubMed DOI PMC
Gelsthorpe ME, Baumann N, Millard E, Gale SE, Langmade SJ, Schaffer JE, et al. Niemann-pick type C1 I1061T mutant encodes a functional protein that is selected for endoplasmic reticulum-associated degradation due to protein misfolding. J Biol Chem. 2008;283:8229–8236. doi: 10.1074/jbc.M708735200. PubMed DOI PMC
Macías-Vidal J, Girós M, Guerrero M, Gascón P, Serratosa J, Bachs O, et al. The proteasome inhibitor bortezomib reduced cholesterol accumulation in fibroblasts from Niemann-pick type C patients carrying missense mutations. FEBS J. 2014;281:4450–4466. doi: 10.1111/febs.12954. PubMed DOI
Millat G, Marçais C, Rafi MA, Yamamoto T, Morris JA, Pentchev PG, et al. Niemann-pick C1 disease: the I1061T substitution is a frequent mutant allele in patients of Western European descent and correlates with a classic juvenile phenotype. Am J Hum Genet. 1999;65:1321–1329. doi: 10.1086/302626. PubMed DOI PMC
Sun X, Marks DL, Park WD, Wheatley CL, Puri V, O’Brien JF, et al. Niemann-pick C variant detection by altered sphingolipid trafficking and correlation with mutations within a specific domain of NPC1. Am J Hum Genet. 2001;68:1361–1372. doi: 10.1086/320599. PubMed DOI PMC
Patterson MC, Vecchio D, Jacklin E, Abel L, Chadha-Boreham H, Luzy C, et al. Long-term miglustat therapy in children with Niemann-pick disease type C. J Child Neurol. 2010;25:300–305. doi: 10.1177/0883073809344222. PubMed DOI
Abi-Mosleh L, Infante RE, Radhakrishnan A, Goldstein JL, Brown MS. Cyclodextrin overcomes deficient lysosome-to-endoplasmic reticulum transport of cholesterol in Niemann-pick type C cells. Proc Natl Acad Sci U S A. 2009;106:19316–19321. doi: 10.1073/pnas.0910916106. PubMed DOI PMC
Vite CH, Bagel JH, Swain GP, Prociuk M, Sikora TU, Stein VM, et al. Intracisternal cyclodextrin prevents cerebellar dysfunction and Purkinje cell death in feline Niemann-Pick type C1 disease. Sci Transl Med. 2015;7:276ra26. doi: 10.1126/scitranslmed.3010101. PubMed DOI PMC
Kirkegaard T, Gray J, Priestman DA, Wallom K-L, Atkins J, Olsen OD, et al. Heat shock protein-based therapy as a potential candidate for treating the sphingolipidoses. Sci Transl Med. 2016;8:355ra118. doi: 10.1126/scitranslmed.aad9823. PubMed DOI PMC
Nadjar Y, Hutter-Moncada AL, Latour P, Ayrignac X, Kaphan E, Tranchant C, et al. Adult Niemann-pick disease type C in France: clinical phenotypes and long-term miglustat treatment effect. Orphanet J Rare Dis. 2018;13:175. doi: 10.1186/s13023-018-0913-4. PubMed DOI PMC
Gong X, Qian H, Zhou X, Wu J, Wan T, Cao P, et al. Structural insights into the Niemann-pick C1 (NPC1)-mediated cholesterol transfer and Ebola infection. Cell. 2016;165:1467–1478. doi: 10.1016/j.cell.2016.05.022. PubMed DOI PMC
Garver WS, Jelinek D, Francis GA, Murphy BD. The Niemann-pick C1 gene is downregulated by feedback inhibition of the SREBP pathway in human fibroblasts. J Lipid Res. 2008;49:1090–1102. doi: 10.1194/jlr.M700555-JLR200. PubMed DOI PMC
Morris JA, Zhang D, Coleman KG, Nagle J, Pentchev PG, Carstea ED. The genomic organization and polymorphism analysis of the human Niemann-pick C1 gene. Biochem Biophys Res Commun. 1999;261:493–498. doi: 10.1006/bbrc.1999.1070. PubMed DOI
Watari H, Blanchette-Mackie EJ, Dwyer NK, Watari M, Burd CG, Patel S, et al. Determinants of NPC1 expression and action: key promoter regions, posttranscriptional control, and the importance of a “cysteine-rich” loop. Exp Cell Res. 2000;259:247–256. doi: 10.1006/excr.2000.4976. PubMed DOI
Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, et al. A gene network regulating lysosomal biogenesis and function. Science. 2009;325:473–477. doi: 10.1126/science.1174447. PubMed DOI
Gevry N, Schoonjans K, Guay F, Murphy BD. Cholesterol supply and SREBPs modulate transcription of the Niemann-pick C-1 gene in steroidogenic tissues. J Lipid Res. 2008;49:1024–1033. doi: 10.1194/jlr.M700554-JLR200. PubMed DOI
Gévry NY, Lalli E, Sassone-Corsi P, Murphy BD. Regulation of niemann-pick c1 gene expression by the 3′5’-cyclic adenosine monophosphate pathway in steroidogenic cells. Mol Endocrinol Baltim Md. 2003;17:704–715. doi: 10.1210/me.2002-0093. PubMed DOI
Hentze MW, Kulozik AE. A perfect message: RNA surveillance and nonsense-mediated decay. Cell. 1999;96:307–310. doi: 10.1016/s0092-8674(00)80542-5. PubMed DOI
Pentchev PG, Comly ME, Kruth HS, Tokoro T, Butler J, Sokol J, et al. Group C Niemann-pick disease: faulty regulation of low-density lipoprotein uptake and cholesterol storage in cultured fibroblasts. FASEB J Off Publ Fed Am Soc Exp Biol. 1987;1:40–45. doi: 10.1096/fasebj.1.1.3609608. PubMed DOI
Shammas H, Kuech E-M, Rizk S, Das AM, Naim HY. Different Niemann-pick C1 genotypes generate protein phenotypes that vary in their intracellular processing. Trafficking and Localization Sci Rep. 2019;9:5292. doi: 10.1038/s41598-019-41707-y. PubMed DOI PMC
Turner GC, Varshavsky A. Detecting and measuring cotranslational protein degradation in vivo. Science. 2000;289:2117–2120. doi: 10.1126/science.289.5487.2117. PubMed DOI
Mavridou I, Dimitriou E, Vanier MT, Vilageliu L, Grinberg D, Latour P, et al. The Spectrum of Niemann-pick type C disease in Greece. JIMD Rep. 2017;36:41–48. doi: 10.1007/8904_2016_41. PubMed DOI PMC
Ohgane K, Karaki F, Dodo K, Hashimoto Y. Discovery of Oxysterol-derived pharmacological chaperones for NPC1: implication for the existence of second sterol-binding site. Chem Biol. 2013;20:391–402. doi: 10.1016/j.chembiol.2013.02.009. PubMed DOI
Schultz ML, Krus KL, Lieberman AP. Lysosome and endoplasmic reticulum quality control pathways in Niemann-Pick type C disease. Brain Res. 2016;1649 Pt B:181–188. doi: 10.1016/j.brainres.2016.03.035. PubMed DOI PMC
Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–159. doi: 10.1006/abio.1987.9999. PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods San Diego Calif. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Bornig H, Geyer G. Staining of cholesterol with the fluorescent antibiotic “filipin”. Acta Histochem. 1974;50:110–115. PubMed
Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509. PubMed
Liebisch G, Binder M, Schifferer R, Langmann T, Schulz B, Schmitz G. High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS) Biochim Biophys Acta. 1761;2006:121–128. doi: 10.1016/j.bbalip.2005.12.007. PubMed DOI
Skin inflammation and impaired adipogenesis in a mouse model of acid ceramidase deficiency