Hematopoietic stem cell transplantation leads to biochemical and functional correction in two mouse models of acid ceramidase deficiency
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39108096
PubMed Central
PMC11489543
DOI
10.1016/j.ymthe.2024.08.004
PII: S1525-0016(24)00526-4
Knihovny.cz E-zdroje
- Klíčová slova
- Farber disease, HSCT, Lysosomal storage disorders, central nervous system, ceramides, spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME),
- MeSH
- ceramidy metabolismus MeSH
- Farberova nemoc * terapie genetika MeSH
- kyselá ceramidasa * genetika metabolismus MeSH
- lidé MeSH
- mícha metabolismus patologie MeSH
- modely nemocí na zvířatech MeSH
- myoklonické epilepsie progresivní genetika terapie metabolismus MeSH
- myši knockoutované MeSH
- myši MeSH
- transplantace hematopoetických kmenových buněk * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Asah1 protein, mouse MeSH Prohlížeč
- ceramidy MeSH
- kyselá ceramidasa * MeSH
Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) are ultra-rare lysosomal storage disorders caused by deficient acid ceramidase (ACDase) activity. Although both conditions are caused by mutations in the ASAH1 gene, clinical presentations differ considerably. FD patients usually die in childhood, while SMA-PME patients can live until adulthood. There is no treatment for FD or SMA-PME. Hematopoietic stem cell transplantation (HSCT) and gene therapy strategies for the treatment of ACDase deficiency are being investigated. We have previously generated and characterized mouse models of both FD and SMA-PME that recapitulate the symptoms described in patients. Here, we show that HSCT improves lifespan, behavior, hematopoietic system anomalies, and plasma cytokine levels and significantly reduces histiocytic infiltration and ceramide accumulation throughout the tissues investigated, including the CNS, in both models of ACDase-deficient mice. HSCT was also successful in preventing lesion development and significant demyelination of the spinal cord seen in SMA-PME mice. Importantly, we note that only early and generally pre-symptomatic treatment was effective, and kidney impairment was not improved in either model.
Zobrazit více v PubMed
Yu F.P.S., Amintas S., Levade T., Medin J.A. Acid ceramidase deficiency: Farber disease and SMA-PME. Orphanet J. Rare Dis. 2018;13:121. doi: 10.1186/s13023-018-0845-z. PubMed DOI PMC
Antonarakis S.E., Valle D., Moser H.W., Moser A., Qualman S.J., Zinkham W.H. Phenotypic variability in siblings with Farber disease. J. Pediatr. 1984;104:406–409. doi: 10.1016/s0022-3476(84)81106-3. PubMed DOI
Ehlert K., Frosch M., Fehse N., Zander A., Roth J., Vormoor J. Farber disease: clinical presentation, pathogenesis and a new approach to treatment. Pediatr. Rheumatol. Online J. 2007;5:15. doi: 10.1186/1546-0096-5-15. PubMed DOI PMC
Najafi A., Tasharrofi B., Zandsalimi F., Rasulinezhad M., Ghahvechi Akbari M., Zamani G., Ashrafi M.R., Heidari M. Spinal Muscular Atrophy with Progressive Myoclonic Epilepsy (SMA-PME): three new cases and review of the mutational spectrum. Ital. J. Pediatr. 2023;49:64. doi: 10.1186/s13052-023-01474-z. PubMed DOI PMC
Kleynerman A., Rybova J., Faber M.L., McKillop W.M., Levade T., Medin J.A. Acid Ceramidase Deficiency: Bridging Gaps between Clinical Presentation, Mouse Models, and Future Therapeutic Interventions. Biomolecules. 2023;13:274. doi: 10.3390/biom13020274. PubMed DOI PMC
Dyment D.A., Sell E., Vanstone M.R., Smith A.C., Garandeau D., Garcia V., Carpentier S., Le Trionnaire E., Sabourdy F., Beaulieu C.L., et al. Evidence for clinical, genetic and biochemical variability in spinal muscular atrophy with progressive myoclonic epilepsy. Clin. Genet. 2014;86:558–563. doi: 10.1111/cge.12307. PubMed DOI
Lee M.M., McDowell G.S.V., De Vivo D.C., Friedman D., Berkovic S.F., Spanou M., Dinopoulos A., Grand K., Sanchez-Lara P.A., Allen-Sharpley M., et al. The clinical spectrum of SMA-PME and in vitro normalization of its cellular ceramide profile. Ann. Clin. Transl. Neurol. 2022;9:1941–1952. doi: 10.1002/acn3.51687. PubMed DOI PMC
Zhou H., Wu Z., Wang Y., Wu Q., Hu M., Ma S., Zhou M., Sun Y., Yu B., Ye J., et al. Rare Diseases in Glycosphingolipid Metabolism. Adv. Exp. Med. Biol. 2022;1372:189–213. doi: 10.1007/978-981-19-0394-6_13. PubMed DOI
Rossini L., Durante C., Marzollo A., Biffi A. New Indications for Hematopoietic Stem Cell Gene Therapy in Lysosomal Storage Disorders. Front. Oncol. 2022;12 doi: 10.3389/fonc.2022.885639. PubMed DOI PMC
Thomas E.D., Lochte H.L., Jr., Lu W.C., Ferrebee J.W. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 1957;257:491–496. doi: 10.1056/NEJM195709122571102. PubMed DOI
Lund T.C. Hematopoietic Stem Cell Transplant for Lysosomal Storage Diseases. Pediatr. Endocr. Rev. P. 2013;11:91–98. PubMed
Bigger B.W., Wynn R.F. Novel Approaches and Mechanisms in Hematopoietic Stem Cell Gene Therapy. Discov. Med. 2014;17:207–215. PubMed
Tan E.Y., Boelens J.J., Jones S.A., Wynn R.F. Hematopoietic Stem Cell Transplantation in Inborn Errors of Metabolism. Front. Pediatr. 2019;7:433. doi: 10.3389/fped.2019.00433. PubMed DOI PMC
Tomatsu S., Taylor M., Khan S. Hematopoietic stem cell transplantation for mucopolysaccharidoses past, present, and future. Mol. Genet. Metab. 2019;126:S145. doi: 10.1016/j.ymgme.2018.12.375. PubMed DOI PMC
Ehlert K., Roth J., Frosch M., Fehse N., Zander N., Vormoor J. Farber's disease without central nervous system involvement: bone-marrow transplantation provides a promising new approach. Ann. Rheum. Dis. 2006;65:1665–1666. doi: 10.1136/ard.2005.048322. PubMed DOI PMC
Broomfield A.A., Chakrapani A., Wraith J.E. The effects of early and late bone marrow transplantation in siblings with alpha-mannosidosis. Is early haematopoietic cell transplantation the preferred treatment option? J. Inherit. Metab. Dis. 2010;33:S123–S127. doi: 10.1007/s10545-009-9035-4. PubMed DOI
Escolar M.L., Poe M.D., Provenzale J.M., Richards K.C., Allison J., Wood S., Wenger D.A., Pietryga D., Wall D., Champagne M., et al. Transplantation of umbilical-cord blood in babies with infantile Krabbe's disease. N. Engl. J. Med. 2005;352:2069–2081. doi: 10.1056/NEJMoa042604. PubMed DOI
Goudie C., Alayoubi A.M., Tibout P., Duval M., Maranda B., Mitchell D., Mitchell J.J. Hematopoietic stem cell transplant does not prevent neurological deterioration in infants with Farber disease: Case report and literature review. JIMD Rep. 2019;46:46–51. doi: 10.1002/jmd2.12008. PubMed DOI PMC
Sikora J., Dworski S., Jones E.E., Kamani M.A., Micsenyi M.C., Sawada T., Le Faouder P., Bertrand-Michel J., Dupuy A., Dunn C.K., et al. Acid Ceramidase Deficiency in Mice Results in a Broad Range of Central Nervous System Abnormalities. Am. J. Pathol. 2017;187:864–883. doi: 10.1016/j.ajpath.2016.12.005. PubMed DOI PMC
Yu F.P.S., Sajdak B.S., Sikora J., Salmon A.E., Nagree M.S., Gurka J., Kassem I.S., Lipinski D.M., Carroll J., Medin J.A. Acid Ceramidase Deficiency in Mice Leads to Severe Ocular Pathology and Visual Impairment. Am. J. Pathol. 2019;189:320–338. doi: 10.1016/j.ajpath.2018.10.018. PubMed DOI PMC
Yu F.P.S., Islam D., Sikora J., Dworski S., Gurka J., López-Vásquez L., Liu M., Kuebler W.M., Levade T., Zhang H., Medin J.A. Chronic lung injury and impaired pulmonary function in a mouse model of acid ceramidase deficiency. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018;314:L406–L420. doi: 10.1152/ajplung.00223.2017. PubMed DOI PMC
Dworski S., Berger A., Furlonger C., Moreau J.M., Yoshimitsu M., Trentadue J., Au B.C.Y., Paige C.J., Medin J.A. Markedly perturbed hematopoiesis in acid ceramidase deficient mice. Haematologica. 2015;100:e162–e165. doi: 10.3324/haematol.2014.108530. PubMed DOI PMC
Rybova J., Kuchar L., Sikora J., McKillop W.M., Medin J.A. Skin inflammation and impaired adipogenesis in a mouse model of acid ceramidase deficiency. J. Inherit. Metab. Dis. 2022;45:1175–1190. doi: 10.1002/jimd.12552. PubMed DOI PMC
Yu F.P.S., Molino S., Sikora J., Rasmussen S., Rybova J., Tate E., Geurts A.M., Turner P.V., McKillop W.M., Medin J.A. Hepatic pathology and altered gene transcription in a murine model of acid ceramidase deficiency. Lab. Invest. 2019;99:1572–1592. doi: 10.1038/s41374-019-0271-4. PubMed DOI
Alayoubi A.M., Wang J.C.M., Au B.C.Y., Carpentier S., Garcia V., Dworski S., El-Ghamrasni S., Kirouac K.N., Exertier M.J., Xiong Z.J., et al. Systemic ceramide accumulation leads to severe and varied pathological consequences. EMBO Mol. Med. 2013;5:827–842. doi: 10.1002/emmm.201202301. PubMed DOI PMC
Nagree M.S., Rybova J., Kleynerman A., Ahrenhoerster C.J., Saville J.T., Xu T., Bachochin M., McKillop W.M., Lawlor M.W., Pshezhetsky A.V., et al. Spinal muscular atrophy-like phenotype in a mouse model of acid ceramidase deficiency. Commun. Biol. 2023;6:560. doi: 10.1038/s42003-023-04932-w. PubMed DOI PMC
Dworski S., Lu P., Khan A., Maranda B., Mitchell J.J., Parini R., Di Rocco M., Hugle B., Yoshimitsu M., Magnusson B., et al. Acid Ceramidase Deficiency is characterized by a unique plasma cytokine and ceramide profile that is altered by therapy. BBA - Mol. Basis Dis. 2017;1863:386–394. doi: 10.1016/j.bbadis.2016.11.031. PubMed DOI PMC
Beckmann N., Kadow S., Schumacher F., Göthert J.R., Kesper S., Draeger A., Schulz-Schaeffer W.J., Wang J., Becker J.U., Kramer M., et al. Pathological manifestations of Farber disease in a new mouse model. Biol. Chem. 2018;399:1183–1202. doi: 10.1515/hsz-2018-0170. PubMed DOI
Cappellari A.M., Torcoletti M., Triulzi F., Corona F. Nervous system involvement in Farber disease. J. Inherit. Metab. Dis. 2016;39:149–150. doi: 10.1007/s10545-015-9890-0. PubMed DOI
Zielonka M., Garbade S.F., Kölker S., Hoffmann G.F., Ries M. A cross-sectional quantitative analysis of the natural history of Farber disease: an ultra-orphan condition with rheumatologic and neurological cardinal disease features. Genet. Med. 2018;20:524–530. doi: 10.1038/gim.2017.133. PubMed DOI
Wu N.L., Hingorani S., Cushing-Haugen K.L., Lee S.J., Chow E.J. Late Kidney Morbidity and Mortality in Hematopoietic Cell Transplant Survivors. Transpl. Cell. Ther. 2021;27:434.e1–434.e6. doi: 10.1016/j.jtct.2021.02.013. PubMed DOI PMC
Hingorani S., Guthrie K.A., Schoch G., Weiss N.S., McDonald G.B. Chronic kidney disease in long-term survivors of hematopoietic cell transplant. Bone Marrow Transpl. 2007;39:223–229. doi: 10.1038/sj.bmt.1705573. PubMed DOI
Wynn R.F., Wraith J.E., Mercer J., O'Meara A., Tylee K., Thornley M., Church H.J., Bigger B.W. Improved metabolic correction in patients with lysosomal storage disease treated with hematopoietic stem cell transplant compared with enzyme replacement therapy. J. Pediatr. 2009;154:609–611. doi: 10.1016/j.jpeds.2008.11.005. PubMed DOI
Torcoletti M., Petaccia A., Pinto R.M., Hladnik U., Locatelli F., Agostoni C., Corona F. Farber disease in infancy resembling juvenile idiopathic arthritis: identification of two new mutations and a good early response to allogeneic haematopoietic stem cell transplantation. Rheumatology (Oxford) 2014;53:1533–1534. doi: 10.1093/rheumatology/keu010. PubMed DOI
Zappatini-Tommasi L., Dumontel C., Guibaud P., Girod C. Farber disease: an ultrastructural study. Report of a case and review of the literature. Virchows Arch. A. Pathol. Anat. Histopathol. 1992;420:281–290. doi: 10.1007/BF01600282. PubMed DOI
Singh S., Anshita D., Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int. Immunopharmacol. 2021;101 doi: 10.1016/j.intimp.2021.107598. PubMed DOI PMC
Solomon M., Muro S. Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives. Adv. Drug Deliv. Rev. 2017;118:109–134. doi: 10.1016/j.addr.2017.05.004. PubMed DOI PMC
Fratantoni J.C., Neufeld E.F., Uhlendorf B.W., Jacobson C.B. Intrauterine diagnosis of the hurler and hunter syndromes. N. Engl. J. Med. 1969;280:686–688. doi: 10.1056/NEJM196903272801303. PubMed DOI
Edelmann M.J., Maegawa G.H.B. CNS-Targeting Therapies for Lysosomal Storage Diseases: Current Advances and Challenges. Front. Mol. Biosci. 2020;7 doi: 10.3389/fmolb.2020.559804. PubMed DOI PMC
Schuchman E.H., He X., Dworski S., Zhu C., DeAngelis V., Solyom A., Levade T., Medin J.A., Simonaro C.M. Proof-of-concept studies underlying enzyme replacement therapy for acid ceramidase deficiency. Mol. Genet. Metab. 2017;120:S120. doi: 10.1016/j.ymgme.2016.11.310. DOI
Mitchell J., Solyom A., Makay B., Arslan N., Batu E.D., Ozen S., Hügle B., Schuchman E., Magnusson B. Farber disease: Implications of anti-inflammatory treatment. Mol. Genet. Metab. 2016;117:S81–S82. doi: 10.1016/j.ymgme.2015.12.364. DOI
Vormoor J., Ehlert K., Groll A.H., Koch H.G., Frosch M., Roth J. Successful hematopoietic stem cell transplantation in Farber disease. J. Pediatr. 2004;144:132–134. doi: 10.1016/j.jpeds.2003.09.051. PubMed DOI
Lee M.M., McDowell G.S.V., De Vivo D.C., Friedman D., Berkovic S.F., Spanou M., Dinopoulos A., Grand K., Sanchez-Lara P.A., Allen-Sharpley M., et al. The clinical spectrum of SMA-PME and in vitro normalization of its cellular ceramide profile. Ann. Clin. Transl. Neurol. 2022;9:1941–1952. doi: 10.1002/acn3.51687. PubMed DOI PMC
Mohseni R., Hamidieh A.A., Shoae-Hassani A., Ghahvechi-Akbari M., Majma A., Mohammadi M., Nikougoftar M., Shervin-Badv R., Ai J., Montazerlotfelahi H., Ashrafi M.R. An open-label phase 1 clinical trial of the allogeneic side population adipose-derived mesenchymal stem cells in SMA type 1 patients. Neurol. Sci. 2022;43:399–410. doi: 10.1007/s10072-021-05291-2. PubMed DOI
Cabanes C., Bonilla S., Tabares L., Martínez S. Neuroprotective effect of adult hematopoietic stem cells in a mouse model of motoneuron degeneration. Neurobiol. Dis. 2007;26:408–418. doi: 10.1016/j.nbd.2007.01.008. PubMed DOI
Li G., Kidd J., Kaspar C., Dempsey S., Bhat O.M., Camus S., Ritter J.K., Gehr T.W.B., Gulbins E., Li P.L. Podocytopathy and Nephrotic Syndrome in Mice with Podocyte-Specific Deletion of the Asah1 Gene: Role of Ceramide Accumulation in Glomeruli. Am. J. Pathol. 2020;190:1211–1223. doi: 10.1016/j.ajpath.2020.02.008. PubMed DOI PMC
Renaghan A.D., Jaimes E.A., Malyszko J., Perazella M.A., Sprangers B., Rosner M.H. Acute Kidney Injury and CKD Associated with Hematopoietic Stem Cell Transplantation. Clin. J. Am. Soc. Nephrol. 2020;15:289–297. doi: 10.2215/CJN.08580719. PubMed DOI PMC
Rodrigues N., Fragao-Marques M., Costa C., Branco C., Marques F., Vasconcelos P., Martins C., Leite-Moreira A., Lopes J.A. Predictive Risk Score for Acute Kidney Injury in Hematopoietic Stem Cell Transplant. Cancers (Basel) 2023;15:3720. doi: 10.3390/cancers15143720. PubMed DOI PMC
Kong S.G., Jeong S., Lee S., Jeong J.Y., Kim D.J., Lee H.S. Early transplantation-related mortality after allogeneic hematopoietic cell transplantation in patients with acute leukemia. BMC Cancer. 2021;21:177. doi: 10.1186/s12885-021-07897-3. PubMed DOI PMC
Savas B., Astarita G., Aureli M., Sahali D., Ollero M. Gangliosides in Podocyte Biology and Disease. Int. J. Mol. Sci. 2020;21:9645. doi: 10.3390/ijms21249645. PubMed DOI PMC
Masson E., Wiernsperger N., Lagarde M., El Bawab S. Glucosamine induces cell-cycle arrest and hypertrophy of mesangial cells: implication of gangliosides. Biochem. J. 2005;388:537–544. doi: 10.1042/BJ20041506. PubMed DOI PMC
Liu X., Quan N. Immune Cell Isolation from Mouse Femur Bone Marrow. Bio. Protoc. 2015;5 doi: 10.21769/bioprotoc.1631. PubMed DOI PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Hartree E.F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 1972;48:422–427. doi: 10.1016/0003-2697(72)90094-2. PubMed DOI
Bugajev V., Paulenda T., Utekal P., Mrkacek M., Halova I., Kuchar L., Kuda O., Vavrova P., Schuster B., Fuentes-Liso S., et al. Crosstalk between ORMDL3, serine palmitoyltransferase, and 5-lipoxygenase in the sphingolipid and eicosanoid metabolic pathways. J. Lipid Res. 2021;62 doi: 10.1016/j.jlr.2021.100121. PubMed DOI PMC
Kuchar L., Ledvinová J., Hrebícek M., Mysková H., Dvoráková L., Berná L., Chrastina P., Asfaw B., Elleder M., Petermöller M., et al. Prosaposin deficiency and saposin B deficiency (activator-deficient metachromatic leukodystrophy): report on two patients detected by analysis of urinary sphingolipids and carrying novel PSAP gene mutations. Am. J. Med. Genet. A. 2009;149A:613–621. doi: 10.1002/ajmg.a.32712. PubMed DOI PMC
Hulkova H., Ledvinova J., Kuchar L., Smid F., Honzikova J., Elleder M. Glycosphingolipid profile of the apical pole of human placental capillaries: the relevancy of the observed data to Fabry disease. Glycobiology. 2012;22:725–732. doi: 10.1093/glycob/cws050. PubMed DOI