• This record comes from PubMed

Acid Ceramidase Deficiency in Mice Leads to Severe Ocular Pathology and Visual Impairment

. 2019 Feb ; 189 (2) : 320-338. [epub] 20181123

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
K08 EY024645 NEI NIH HHS - United States
P30 EY001931 NEI NIH HHS - United States
T32 EY014537 NEI NIH HHS - United States

Links

PubMed 30472209
PubMed Central PMC6412726
DOI 10.1016/j.ajpath.2018.10.018
PII: S0002-9440(18)30504-2
Knihovny.cz E-resources

Farber disease (FD) is a debilitating lysosomal storage disorder characterized by severe inflammation and neurodegeneration. FD is caused by mutations in the ASAH1 gene, resulting in deficient acid ceramidase (ACDase) activity. Patients with ACDase deficiency exhibit a broad clinical spectrum. In classic cases, patients develop hepatosplenomegaly, nervous system involvement, and childhood mortality. Ocular manifestations include decreased vision, a grayish appearance to the retina with a cherry red spot, and nystagmus. That said, the full effect of ACDase deficiency on the visual system has not been studied in detail. We previously developed a mouse model that is orthologous for a known patient mutation in Asah1 that recapitulates human FD. Herein, we report evidence of a severe ocular pathology in Asah1P361R/P361R mice. Asah1P361R/P361R mice exhibit progressive retinal and optic nerve pathology. Through noninvasive ocular imaging and histopathological analyses of these Asah1P361R/P361R animals, we revealed progressive inflammation, the presence of retinal dysplasia, and significant storage pathology in various cell types in both the retina and optic nerves. Lipidomic analyses of retinal tissues revealed an abnormal accumulation of ceramides and other sphingolipids. Electroretinograms and behavioral tests showed decreased retinal and visual responses. Taken together, these data suggest that ACDase deficiency leads to sphingolipid imbalance, inflammation, dysmorphic retinal and optic nerve pathology, and severe visual impairment.

Department of Cardiology Institute for Clinical and Experimental Medicine Prague Czech Republic

Department of Cell Biology Neurobiology and Anatomy Medical College of Wisconsin Milwaukee Wisconsin

Department of Cell Biology Neurobiology and Anatomy Medical College of Wisconsin Milwaukee Wisconsin; Department of Ophthalmology and Visual Sciences Medical College of Wisconsin Milwaukee Wisconsin

Department of Cell Biology Neurobiology and Anatomy Medical College of Wisconsin Milwaukee Wisconsin; Department of Ophthalmology and Visual Sciences Medical College of Wisconsin Milwaukee Wisconsin; Nuffield Laboratory of Ophthalmology University of Oxford Oxford United Kingdom

Department of Pediatrics Medical College of Wisconsin Milwaukee Wisconsin; Department of Medical Biophysics University of Toronto Toronto Ontario Canada

Institute of Medical Science University of Toronto Toronto Ontario Canada; Department of Pediatrics Medical College of Wisconsin Milwaukee Wisconsin

Institute of Medical Science University of Toronto Toronto Ontario Canada; Department of Pediatrics Medical College of Wisconsin Milwaukee Wisconsin; Department of Medical Biophysics University of Toronto Toronto Ontario Canada; Department of Biochemistry Medical College of Wisconsin Milwaukee Wisconsin; University Health Network Toronto Ontario Canada

Rare Diseases Research Unit Department of Pediatrics and Adolescent Medicine 1st Faculty of Medicine Charles University Prague Czech Republic; Institute of Pathology 1st Faculty of Medicine Charles University Prague Czech Republic

See more in PubMed

Levade T., Sandhoff K., Schulze H., Medin J.A. In: Acid Ceramidase Deficiency: Farber Lipogranulomatosis. Scriver's OMMBID (Online Metabolic and Molecular Bases of Inherited Diseases) Valle D., Beaudet A.L., Vogelstein B., Kinzler K.W., Antonarakis S.E., Ballabio A., editors. McGraw-Hill; New York, NY: 2014.

Schuchman E.H. Acid ceramidase and the treatment of ceramide diseases: the expanding role of enzyme replacement therapy. Biochim Biophys Acta. 2016;1862:1459–1471. PubMed

Zielonka M., Garbade S.F., Kölker S., Hoffmann G.F., Ries M. A cross-sectional quantitative analysis of the natural history of Farber disease: an ultra-orphan condition with rheumatologic and neurological cardinal disease features. Genet Med. 2017;20:524–530. PubMed

Ehlert K., Frosch M., Fehse N., Zander A., Roth J., Vormoor J. Farber disease: clinical presentation, pathogenesis and a new approach to treatment. Pediatr Rheumatol. 2007;5:15–22. PubMed PMC

Bao X.H., Tian J.M., Ji T.Y., Chang X.Z. A case report of childhood Farber's disease and literature review. Zhonghua Er Ke Za Zhi. 2017;55:54–58. PubMed

Arana L., Gangoiti P., Ouro A., Trueba M., Gómez-Muñoz A. Ceramide and ceramide 1-phosphate in health and disease. Lipids Health Dis. 2010;9:15. PubMed PMC

Chen H., Tran J.A., Brush R.S., Saadi A., Rahman A.K., Yu M., Yasumura D., Matthes M.T., Ahern K., Yang H. Ceramide signaling in retinal degeneration. Retin Degenerative Dis. 2012;723:553–558. PubMed PMC

Hannun Y.A., Obeid L.M. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol. 2017;19:175–191. PubMed PMC

Cogan D.G., Kuwabara T., Moser H., Hazard G.W. Retinopathy in a case of Farber's lipogranulomatosis. Arch Ophthalmol. 1966;75:752–757. PubMed

Moser H.W., Prensky A.L., Wolfe H.J., Rosman N.P. Farber's lipogranulomatosis: report of a case and demonstration of an excess of free ceramide and ganglioside. Am J Med. 1969;47:869–890. PubMed

Zarbin M.A., Green W.R., Moser A.B., Tiffany C. Increased levels of ceramide in the retina of a patient with Farber's disease. Arch Ophthalmol. 1988;106:1163. PubMed

Cvitanovic-Sojat L., Juraski R.G., Sabourdy F., Fensom A.H., Fumic K., Paschke E., Levade T. Farber lipogranulomatosis type 1–late presentation and early death in a Croatian boy with a novel homozygous ASAH1 mutation. Eur J Paediatr Neurol. 2011;15:171–173. PubMed

Zetterström R. Disseminated lipogranulomatosis (Farber's disease) Acta Paediatr. 1958;47:501–510. PubMed

Tanaka T., Takahashi K., Hakozaki H., Kimoto H., Suzuki Y. Farber's disease (disseminated lipogranulomatosis) a pathological, histochemical and ultrastructural study. Pathol Int. 1979;29:135–155. PubMed

Chandwani R., Kuwar A.S. Farber's disease. Indian Pediatr. 2002;39:502. PubMed

Sango K., Takano M., Ajiki K., Tokashiki A., Arai N., Kawano H., Horie H., Yamanaka S. Impaired neurite outgrowth in the retina of a murine model of Sandhoff disease. Invest Ophthalmol Vis Sci. 2005;46:3420–3425. PubMed

Dannhausen K., Karlstetter M., Caramoy A., Volz C., Jägle H., Liebisch G., Utermöhlen O., Langmann T. Acid sphingomyelinase (aSMase) deficiency leads to abnormal microglia behavior and disturbed retinal function. Biochem Biophys Res Commun. 2015;464:434–440. PubMed

Wu B.X., Fan J., Boyer N.P., Jenkins R.W., Koutalos Y., Hannun Y.A., Crosson C.E. Lack of acid sphingomyelinase induces age-related retinal degeneration. PLoS One. 2015;10:e0133032. PubMed PMC

Grishchuk Y., Stember K.G., Matsunaga A., Olivares A.M., Cruz N.M., King V.E., Humphrey D.M., Wang S.L., Muzikansky A., Betensky R.A. Retinal dystrophy and optic nerve pathology in the mouse model of mucolipidosis IV. Am J Pathol. 2016;186:199–209. PubMed PMC

Alayoubi A.M., Wang J.C., Au B.C., Carpentier S., Garcia V., Dworski S., El-Ghamrasni S., Kirouac K.N., Exertier M.J., Xiong Z.J., Prive G.G., Simonaro C.M., Casas J., Fabrias G., Schuchman E.H., Turner P.V., Hakem R., Levade T., Medin J.A. Systemic ceramide accumulation leads to severe and varied pathological consequences. EMBO Mol Med. 2013;5:827–842. PubMed PMC

Sikora J., Dworski S., Jones E.E., Kamani M.A., Micsenyi M.C., Sawada T., Le Faouder P., Bertrand-Michel J., Dupuy A., Dunn C.K., Yang Xuan Ingrid C., Casas J., Fabrias G., Hampson D.R., Levade T., Drake Richard R., Medin J.A., Walkley S.U. Acid ceramidase deficiency in mice results in a broad range of central nervous system abnormalities. Am J Pathol. 2017;187:864–883. PubMed PMC

Yu F.P., Islam D., Sikora J., Dworski S., Gurka' J., Lopez-Vasquez L., Liu M., Kuebler W.M., Levade T., Zhang H., Medin J.A. Chronic lung injury and impaired pulmonary function in a mouse model of acid ceramidase deficiency. Am J Physiol Lung Cell Mol Physiol. 2017;314:406–420. PubMed PMC

Dubra A., Harvey Z. Registration of 2D images from fast scanning ophthalmic instruments. Biomed Image Registration. 2010;6204:60–71.

Chiu S.J., Li X.T., Nicholas P., Toth C.A., Izatt J.A., Farsiu S. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt Express. 2010;18:19413–19428. PubMed PMC

Fox M.W. The visual cliff test for the study of visual depth perception in the mouse. Anim Behav. 1965;13:232–233. PubMed

Yu F.P.S., Dworski S., Medin J.A. Deletion of MCP-1 impedes pathogenesis of acid ceramidase deficiency. Sci Rep. 2018;8:1808. PubMed PMC

Eviatar L., Sklower S.L., Wisniewski K., Feldman R.S., Gochoco A. Farber lipogranulomatosis: an unusual presentation in a black child. Pediatr Neurol. 1986;2:371–374. PubMed

Zarbin M.A., Green W.R., Moser H.W., Morton S.J. Farber's disease: light and electron microscopic study of the eye. Arch Ophthalmol. 1985;103:73–80. PubMed

Cogan D.G., Kuwabara T. The sphingolipidoses and the eye. Arch Ophthalmol. 1968;79:437–452. PubMed

Brownstein S., Carpenter S., Polomeno R.C., Little J.M. Sandhoff's disease (Gm2 gangliosidosis type 2): histopathology and ultrastructure of the eye. Arch Ophthalmol. 1980;98:1089–1097. PubMed

Yanovitch T.L., Banugaria S.G., Proia A.D., Kishnani P.S. Clinical and histologic ocular findings in pompe disease. J Pediatr Ophthalmol Strabismus. 2010;47:34–40. PubMed

Dworski S., Berger A., Furlonger C., Moreau J.M., Yoshimitsu M., Trentadue J., Au B.C., Paige C.J., Medin J.A. Markedly perturbed hematopoiesis in acid ceramidase deficient mice. Haematologica. 2015;100:162–165. PubMed PMC

Dworski S., Lu P., Khan A., Maranda B., Mitchell J.J., Parini R., Di Rocco M., Hugle B., Yoshimitsu M., Magnusson B., Makay B., Arslan N., Guelbert N., Ehlert K., Jarisch A., Gardner-Medwin J., Dagher R., Terreri M.T., Marques Lorenco C., Barillas-Arias L., Tanpaiboon P., Solyom A., Norris J.S., He X., Schuchman E.H., Levade T., Medin J.A. Acid ceramidase deficiency is characterized by a unique plasma cytokine and ceramide profile that is altered by therapy. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1863:386–394. PubMed PMC

Gasparin F., Takahashi B.S., Scolari M.R., Gasparin F., Pedral L.S., Damico F.M. Experimental models of autoimmune inflammatory ocular diseases. Arq Bras Oftalmol. 2012;75:143–147. PubMed

Chen J., Qian H., Horai R., Chan C., Caspi R.R. Use of optical coherence tomography and electroretinography to evaluate retinal pathology in a mouse model of autoimmune uveitis. PLoS One. 2013;8:e63904. PubMed PMC

Commodaro A.G., Peron J.P.S., Lopes C.T., Arslanian C., Belfort R., Rizzo L.V., Bueno V. Evaluation of experimental autoimmune uveitis in mice treated with FTY720. Invest Ophthalmol Vis Sci. 2010;51:2568–2574. PubMed

Chan C., Caspi R.R., Ni M., Leake W.C., Wiggert B., Chader G.J., Nussenblatt R.B. Pathology of experimental autoimmune uveoretinitis in mice. J Autoimmun. 1990;3:247–255. PubMed

Caspi R.R., Silver P.B., Luger D., Tang J., Cortes L.M., Pennesi G., Mattapallil M.J., Chan C. Mouse models of experimental autoimmune uveitis. Ophthalmic Res. 2008;40:169–174. PubMed PMC

Albert D.M., Lahav M., Carmichael L.E., Percy D.H. Canine herpes-induced retinal dysplasia and associated ocular anomalies. Invest Ophthalmol Vis Sci. 1976;15:267–278. PubMed

Albert D.M., Lahav M., Colby E.D., Shadduck J.A., Sang D.N. Retinal neoplasia and dysplasia, I: induction by feline leukemia virus. Invest Ophthalmol Vis Sci. 1977;16:325–337. PubMed

Carreras B., Griffin D.E., Silverstein A.M. Sindbis virus-induced ocular immunopathology. Invest Ophthalmol Vis Sci. 1982;22:571–578. PubMed

El Alwani M., Wu B.X., Obeid L.M., Hannun Y.A. Bioactive sphingolipids in the modulation of the inflammatory response. Pharmacol Ther. 2006;112:171–183. PubMed

Wang H. Crosslink between lipids and uveitis: a lipidomic analysis. Invest Ophthalmol Vis Sci. 2017;58:5758.

Rivera J., Proia R.L., Olivera A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol. 2008;8:753–763. PubMed PMC

Cyster J.G., Schwab S.R. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol. 2012;30:69–94. PubMed

Maceyka M., Spiegel S. Sphingolipid metabolites in inflammatory disease. Nat Rev Immunol. 2014;510:58–67. PubMed PMC

Chan A.Y., Chen R., Stone D.S., Eckerd A., Mandal N. Bioactive sphingolipids as mediators of ocular inflammation: observations in an animal model. Invest Ophthalmol Vis Sci. 2012;53:1239.

Copland D.A., Liu J., Schewitz-Bowers L.P., Brinkmann V., Anderson K., Nicholson L.B., Dick A.D. Therapeutic dosing of fingolimod (FTY720) prevents cell infiltration, rapidly suppresses ocular inflammation, and maintains the blood-ocular barrier. Am J Pathol. 2012;180:672–681. PubMed PMC

Kurose S., Ikeda E., Tokiwa M., Hikita N., Mochizuki M. Effects of FTY720, a novel immunosuppressant, on experimental autoimmune uveoretinitis in rats. Exp Eye Res. 2000;70:7–15. PubMed

Raveney B.J., Copland D.A., Nicholson L.B., Dick A.D. Fingolimod (FTY720) as an acute rescue therapy for intraocular inflammatory disease. Arch Ophthalmol. 2008;126:1390–1395. PubMed

Chueh S.J., Kahan B.D. Update on FTY720: review of mechanisms and clinical results. Curr Opin Organ Transplant. 2003;8:288–298.

Berdyshev E.V., Gorshkova I., Skobeleva A., Bittman R., Lu X., Dudek S.M., Mirzapoiazova T., Garcia J.G., Natarajan V. FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells. J Biol Chem. 2009;284:5467–5477. PubMed PMC

Denny C.A., Alroy J., Pawlyk B.S., Sandberg M.A., D'Azzo A., Seyfried T.N. Neurochemical, morphological, and neurophysiological abnormalities in retinas of Sandhoff and GM1 gangliosidosis mice. J Neurochem. 2007;101:1294–1302. PubMed

Brüggen B., Kremser C., Bickert A., Ebel P., Dorp K., Schultz K., Dörmann P., Willecke K., Dedek K. Defective ceramide synthases in mice cause reduced amplitudes in electroretinograms and altered sphingolipid composition in retina and cornea. Eur J Neurosci. 2016;44:1700–1713. PubMed

Sanvicens N., Cotter T.G. Ceramide is the key mediator of oxidative stress-induced apoptosis in retinal photoreceptor cells. J Neurochem. 2006;98:1432–1444. PubMed

Strettoi E., Gargini C., Novelli E., Sala G., Piano I., Gasco P., Ghidoni R. Inhibition of ceramide biosynthesis preserves photoreceptor structure and function in a mouse model of retinitis pigmentosa. Proc Natl Acad Sci U S A. 2010;107:18706–18711. PubMed PMC

Chen H., Tran J.T., Eckerd A., Huynh T.P., Elliott M.H., Brush R.S., Mandal N.A. Inhibition of de novo ceramide biosynthesis by FTY720 protects rat retina from light-induced degeneration. J Lipid Res. 2013;54:1616–1629. PubMed PMC

He X., Dworski S., Zhu C., DeAngelis V., Solyom A., Medin J.A., Simonaro C.M., Schuchman E.H. Enzyme replacement therapy for Farber disease: proof-of-concept studies in cells and mice. BBA Clin. 2017;7:85–96. PubMed PMC

Ramsubir S., Nonaka T., Girbés C.B., Carpentier S., Levade T., Medin J.A. In vivo delivery of human acid ceramidase via cord blood transplantation and direct injection of lentivirus as novel treatment approaches for Farber disease. Mol Genet Metab. 2008;95:133–141. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...