Active BR signalling adjusts the subcellular localisation of BES1/HSP90 complex formation

. 2020 Jan ; 22 (1) : 129-133. [epub] 20190927

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31469500

Grantová podpora
ARISTEIA
GSRT
ΤΗALES ABISTOLE

Heat shock proteins 90 (HSP90) are essential and play critical roles in the adaptation of organisms to diverse stimuli. In plants, HSP90 are involved in auxin, jasmonate and brassinosteroid (BR) signalling pathways. The BR-promoted activation of the BES1 transcription factor regulates BR-responsive genes. Using genetic, physiological, fluorescence live cell imaging, molecular and biochemical approaches, such as phenotypic analysis, co-immunoprecipitation assay, yeast-two hybrid and Bimolecular fluorescence complementation (BiFC), we studied complex formation between BES1 and HSP90 under control conditions and active BR signalling. Further, we determined the effect of the pharmacological inhibition of HSP90 ATPase activity on hypocotyl elongation of bes1-D mutant. We determined that HSP90 interact with BES1 in the nucleus and in the cytoplasm. During active BR signalling, nuclear complexes were absent while cytoplasmic HSP90/BES1 complexes were prominent. Our results showed that the hypocotyl length of bes1-D mutants was highly reduced when HSP90 was challenged by the geldanamycin (GDA) inhibitor of the ATPase activity of HSP90. Active BR signalling could not rescue the GDA effect on the hypocotyl elongation of bes1-D. Our results reveal that the constitutively active BES1 in the bes1-D mutant is hypersensitive to GDA. The interaction of HSP90 with BES1 argues that HSP90 facilitate the nuclear metastable conformation of BES1 to regulate BR-dependent gene expression, and our data show that HSP90 assist in the compartmentalised cycle of BES1 during active BR signalling.

Zobrazit více v PubMed

Gampala S.S., Kim T.-W., He J.-X., Tang W.Q., Deng Z.P., Bai M.Y., Guan S.H., Lalonde S., Sun Y., Gendron J.M., Chen H., Shibagaki N., Ferl R.J., Ehrhardt D., Chong K., Burlingame A.L., Wang Z.Y. (2007) An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Developmental Cell, 13, 177-189.

Hung J.-J., Wu C.-Y., Liao P.-C., Chang W.-C. (2005) Hsp90 recruited by Sp1 is important for transcription of 12(S)-Lipoxygenase in A431 Cells. The Journal of Biological Chemistry, 280, 36283-36292.

Ioannidi E., Rigas S., Tsitsekian D., Daras G., Alatzas A., Makris A., Tanou G., Argiriou A., Alexandrou D., Poethig S., Hatzopoulos P., Kanellis A.K. (2016) Trichome patterning control involves TTG1 interaction with SPL transcription factors. Plant Molecular Biology, 92, 675-687.

Kadota Y., Shirasu K. (2012) The HSP90 complex of plants. Biochimica et Biophysica Acta., 1823, 689-697.

Kinoshita T., Cano-Delgado A., Seto H., Hiranuma S., Fujioka S., Yoshida S., Chory J. (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature, 433, 167-171.

Lachowiec J., Lemus T., Thomas J.H., Murphy P.J., Nemhauser J.L., Queitsch C. (2013) The protein chaperone HSP90 can facilitate the divergence of gene duplicates. Genetics, 193, 1269-1277.

Leach D.M., Budge S., Walker L., Munro C., Cowen E.L., Alistair J.P., Brown J.P.A. (2012) Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast. PLoS Pathogens, 8(12), e1003069. https://doi.org/10.1371/journal.ppat.1003069

Margaritopoulou T., Kryovrysanaki N., Megkoula P., Prassinos C., Samakovli D., Milioni D., Hatzopoulos P. (2016) HSP90 canonical content organizes a molecular scaffold mechanism to progress flowering. The Plant Journal, 87, 174-187.

Nam K.H., Li J. (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell, 110, 203-212.

Queitsch C., Sangster T.A., Lindquist S. (2002) HSP90 as a capacitor of phenotypic variation. Nature, 417, 618-624.

Reddy P.S., Thirulogachandar V., Vaishnavi C.S., Aakrati A., Sopory S.K., Reddy M.K. (2011) Molecular characterization and expression of a gene encoding cytosolic Hsp90 from Pennisetum glaucum and its role in abiotic stress adaptation. Gene, 474, 29-38.

Rohner N., Jarosz D.F., Kowalko J.E., Yoshizawa M., Jeffery W.R., Borowsky R.L., Lindquist S., Tabin C.J. (2013) Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish. Science, 342, 1372-1375.

Rutherford S.L., Lindquist S. (1998) HSP90 as a capacitor for morphological evolution. Nature, 396, 336-342.

Ryu H., Kim K., Cho H., Hwang I. (2010) Predominant actions of cytosolic BSU1 and nuclear BIN2 regulate subcellular localization of BES1 in brassinosteroid signaling. Molecules and Cells, 29, 291-296.

Samakovli D., Thanou A., Valmas C., Hatzopoulos P. (2007) HSP90 canalizes developmental perturbation. Journal of Experimental Botany, 58, 3513-3524.

Samakovli D., Margaritopoulou T., Prassinos C., Milioni D., Hatzopoulos P. (2014) Brassinosteroid nuclear signaling recruits HSP90 activity. New Phytologist, 203, 743-757.

She J., Han Z., Kim T.W., Wang J., Cheng W., Chang J., Shi S., Wang J., Yang M., Wang Z.Y., Chai J. (2011) Structural insight into brassinosteroid perception by BRI1. Nature, 474, 472-476.

Shigeta T., Zaizen Y., Sugimoto Y., Nakamura Y., Matsuo T., Okamoto S. (2015) Heat shock protein 90 acts in brassinosteroid signaling through interaction with BES1/BZR1 transcription factor. Journal of Plant Physiology, 178, 69-73.

Sun Y., Fan X.Y., Cao D.M., Tang W., He K., Zhu J.Y., He J.X., Bai M.Y., Zhu S., Oh E., Patil S., Kim T.W., Ji H., Wong W.H., Rhee S.Y., Wang Z.Y. (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell, 19, 765-777.

Taipale M., Jarosz D.F., Lindquist S. (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nature Reviews, Molecular Cell Biology, 11, 515-528.

Taipale M., Krykbaeva I., Koeva M., Kayatekin C., Westover K.D., Karras G.I., Lindquist S. (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell, 150, 987-1001.

Tariq M., Nussbaumer U., Chen Y., Beisel C., Paro R. (2009) Trithorax requires Hsp90 for maintenance of active chromatin at sites of gene expression. Proceedings National Academy of Sciences, USA, 106, 1157-1172.

Wang R., Zhang Y., Kieffer M., Yu H., Kepinski S., Estelle M. (2016) HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nature Communications, 7, 10269. https://doi.org/10.1038/ncomms10269.

Wu G.Z., Meyer E.H., Richter A.S., Schuster M., Ling Q., Schöttler M.A., Walther D., Zoschke R., Grimm B., Jarvis R.P., Bock R. (2019) Control of retrograde signalling by protein import and cytosolic folding stress. Nature Plants, 5, 525-538.

Yin Y., Wang Z.Y., Mora-Garcia S., Li J., Yoshida S., Asami T., Chory J. (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell, 109, 181-191.

Yu X., Li L., Zola J., Aluru M., Ye H., Foudree A., Guo H., Anderson S., Aluru S., Liu P., Rodermel S., Yin Y. (2011) A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. The Plant Journal, 65, 634-646.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...