HSP90 chaperones regulate stomatal differentiation under normal and heat stress conditions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32669038
PubMed Central
PMC8550182
DOI
10.1080/15592324.2020.1789817
Knihovny.cz E-zdroje
- Klíčová slova
- Stomata, differentiation, heat shock proteins 90, mitogen-activated protein kinases,
- MeSH
- Arabidopsis genetika metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteiny tepelného šoku HSP90 metabolismus MeSH
- průduchy rostlin metabolismus MeSH
- reakce na tepelný šok fyziologie MeSH
- regulace genové exprese u rostlin MeSH
- signální transdukce genetika fyziologie MeSH
- transkripční faktory bHLH genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- MUTE protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
- proteiny tepelného šoku HSP90 MeSH
- SPEECHLESS protein, Arabidopsis MeSH Prohlížeč
- transkripční faktory bHLH MeSH
Stomatal development is tightly connected with the overall plant growth, while changes in environmental conditions, like elevated temperature, affect negatively stomatal formation. Stomatal ontogenesis follows a well-defined series of cell developmental transitions in the cotyledon and leaf epidermis that finally lead to the production of mature stomata. YODA signaling cascade regulates stomatal development mainly through the phosphorylation and inactivation of SPEECHLESS (SPCH) transcription factor, while HSP90 chaperones have a central role in the regulation of YODA cascade. Here, we report that acute heat stress affects negatively stomatal differentiation, leads to high phosphorylation levels of MPK3 and MPK6, and alters the expression of SPCH and MUTE transcription factors. Genetic depletion of HSP90 leads to decreased stomatal differentiation rates. Thus, HSP90 chaperones safeguard the completion of distinct stomatal differentiation steps depending on these two transcription factors under normal and heat stress conditions.
Zobrazit více v PubMed
Hetherington AM, Woodward FI.. The role of stomata in sensing and driving environmental change. Nature. 2003;424:1–5. PMID:12931178. doi:10.1038/nature01843. PubMed DOI
Zoulias N, Harrison EL, Casson SA, Gray JE.. Molecular control of stomatal development. Biochem J. 2018;475:441–454. doi:10.1042/BCJ20170413. PubMed DOI PMC
Gray JE. Plant development: three steps for stomata. Curr Biol. 2007;17:R213–R215. doi:10.1016/j.cub.2007.01.032. PubMed DOI
Pillitteri LJ, Sloan DB, Bogenschutz NL, Torii KU. Termination of asymmetric cell division and differentiation of stomata. Nature. 2007;445:501–505. PMID:17183267. doi:10.1038/nature05467. PubMed DOI
Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell. 2007;19:63–73. doi:10.1105/tpc.106.048298. PubMed DOI PMC
Bush SM, Krysan PJ. Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther, inflorescence, and embryo development. J Exp Bot. 2007;58:2181–2191. doi:10.1093/jxb/erm092. PubMed DOI
Komis G, Šamajová O, Ovečka M, Šamaj J. Cell and developmental biology of plant mitogen-activated protein kinases. Annu Rev Plant Biol. 2018;69:237–265. doi:10.1146/annurev-arplant-042817-040314. PubMed DOI
Taipale M, Jarosz DF, Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Mol Cell Biol. 2010;11:515–528. PMID:20531426. doi:10.1038/nrm2918. PubMed DOI
Queitsch C, Sangster TA, Lindquist S. HSP90 as a capacitor of phenotypic variation. Nature. 2002;417:618–624. PMID:12050657. doi:10.1038/nature749. PubMed DOI
Samakovli D, Thanou A, Valmas C, Hatzopoulos P. HSP90 canalizes developmental perturbation. J Exp Bot. 2007;58:3513–3524. doi:10.1093/jxb/erm191. PubMed DOI
Samakovli D, Margaritopoulou T, Prassinos C, Milioni D, Hatzopoulos P. Brassinosteroid nuclear signaling recruits HSP90 activity. New Phytol. 2014;203:743–757. doi:10.1111/nph.12843. PubMed DOI
Samakovli D, Roka L, Plitsi PK, Kaltsa I, Daras G, Milioni D, Hatzopoulos, P. Active BR signaling adjusts the subcellular localization of BES1/HSP90 complex formation. Plant Biol. 2019. doi:10.1111/plb.13040. PubMed DOI
Jarosz DF, Taipale M, Lindquist S. Protein homeostasis and the phenotypic manifestation of genetic diversity: principles and mechanisms. Annu Rev Genet. 2010;44:189–216. PMID:21047258. doi:10.1146/annurev.genet.40.110405.090412. PubMed DOI
Margaritopoulou T, Kryovrysanaki N, Megkoula P, Prassinos C, Samakovli D, Milioni D, Hatzopoulos P. HSP90 canonical content organizes a molecular scaffold mechanism to progress flowering. Plant J. 2016;87:174–187. doi:10.1111/tpj.13191. PubMed DOI
Tichá T, Samakovli D, Kuchařová A, Vavrdová T, Šamaj J. Multifaceted roles of HEAT SHOCK PROTEIN 90 molecular chaperones in plant development. J Exp Bot. 2020. published online Apr 2020. doi:10.1093/jxb/eraa177. PubMed DOI
Samakovli D, Tichá T, Vavrdová T, Ovečka M, Luptovčiak I, Zapletalová V, Kuchařová A, Křenek P, Krasylenko Y, Margaritopoulou T, et al. YODA-HSP90 module regulates phosphorylation-dependent inactivation of SPEECHLESS to control stomatal development under acute heat stress in Arabidopsis. Mol Plant. 2020;13:612–633. doi:10.1016/j.molp.2020.01.001. PubMed DOI
Putarjunan A, Torii KU. Heat shocking the jedi master: HSP90’s role in regulating stomatal cell fate. Mol Plant. 2020;13:536–538. doi:10.1016/j.molp.2020.03.001. PubMed DOI
Vatèn A, Soyars CL, Tarr PT, Nimchuk ZL, Bergmann DC. Modulation of asymmetric division diversity through cytokinin and SPEECHLESS regulatory interactions in the arabidopsis stomatal lineage. Dev Cell. 2018;47:53–66. doi:10.1016/j.devcel.2018.08.007. PubMed DOI PMC
Han SK, Qi X, Sugihara K, Dang JH, Endo TA, Miller KL, Kim ED, Miura T, Torii KU. MUTE directly orchestrates cell-state switch and the single symmetric division to create stomata. Dev Cell. 2018;45:303–315. 10.1016/j.devcel.2018.04.010. PubMed DOI
HEAT SHOCK PROTEIN 90 proteins and YODA regulate main body axis formation during early embryogenesis