Acid Ceramidase Deficiency in Mice Results in a Broad Range of Central Nervous System Abnormalities
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
R21 NS078191
NINDS NIH HHS - United States
P30 CA138313
NCI NIH HHS - United States
F05 NS074790
NINDS NIH HHS - United States
UL1 TR000062
NCATS NIH HHS - United States
UL1 RR029882
NCRR NIH HHS - United States
P30 HD071593
NICHD NIH HHS - United States
R01 HD045561
NICHD NIH HHS - United States
U54 HD090260
NICHD NIH HHS - United States
PubMed
28342444
PubMed Central
PMC5397689
DOI
10.1016/j.ajpath.2016.12.005
PII: S0002-9440(17)30028-7
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- centrální nervový systém abnormality patologie MeSH
- chování zvířat MeSH
- Farberova nemoc komplikace patologie MeSH
- fenotyp MeSH
- homozygot MeSH
- hydrocefalus patologie MeSH
- kyselá ceramidasa metabolismus MeSH
- malformace nervového systému etiologie patologie MeSH
- mozeček patologie ultrastruktura MeSH
- myši transgenní MeSH
- myši MeSH
- neurony patologie ultrastruktura MeSH
- pohybová aktivita MeSH
- sfingolipidy metabolismus MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- velký mozek patologie ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Asah1 protein, mouse MeSH Prohlížeč
- kyselá ceramidasa MeSH
- sfingolipidy MeSH
Farber disease is a rare autosomal recessive disorder caused by acid ceramidase deficiency that usually presents as early-onset progressive visceral and neurologic disease. To understand the neurologic abnormality, we investigated behavioral, biochemical, and cellular abnormalities in the central nervous system of Asah1P361R/P361R mice, which serve as a model of Farber disease. Behaviorally, the mutant mice had reduced voluntary locomotion and exploration, increased thigmotaxis, abnormal spectra of basic behavioral activities, impaired muscle grip strength, and defects in motor coordination. A few mutant mice developed hydrocephalus. Mass spectrometry revealed elevations of ceramides, hydroxy-ceramides, dihydroceramides, sphingosine, dihexosylceramides, and monosialodihexosylganglioside in the brain. The highest accumulation was in hydroxy-ceramides. Storage compound distribution was analyzed by mass spectrometry imaging and morphologic analyses and revealed involvement of a wide range of central nervous system cell types (eg, neurons, endothelial cells, and choroid plexus cells), most notably microglia and/or macrophages. Coalescing and mostly perivascular granuloma-like accumulations of storage-laden CD68+ microglia and/or macrophages were seen as early as 3 weeks of age and located preferentially in white matter, periventricular zones, and meninges. Neurodegeneration was also evident in specific cerebral areas in late disease. Overall, our central nervous system studies in Asah1P361R/P361R mice substantially extend the understanding of human Farber disease and suggest that this model can be used to advance therapeutic approaches for this currently untreatable disorder.
Department of Pharmaceutical Sciences University of Toronto Toronto Ontario Canada
Institute of Medical Science University of Toronto Toronto Ontario Canada
Zobrazit více v PubMed
Levade T., Sandhoff K., Schulze H., Medin J.A. Acid ceramidase deficiency: Farber lipogranulomatosis. In: Valle D., Vogelstein B., Kinzler K.W., Antonarakis S.E., Ballabio A., Mitchell G., editors. The Online Metabolic and Molecular Bases of Inherited Diseases. McGraw-Hill; New York: 2009.
Abenoza P., Sibley R.K. Farber's disease: a fine structural study. Ultrastruct Pathol. 1987;11:397–403. PubMed
Burck U., Moser H.W., Goebel H.H., Gruttner R., Held K.R. A case of lipogranulomatosis Farber: some clinical and ultrastructural aspects. Eur J Pediatr. 1985;143:203–208. PubMed
Zappatini-Tommasi L., Dumontel C., Guibaud P., Girod C. Farber disease: an ultrastructural study: report of a case and review of the literature. Virchows Arch A Pathol Anat Histopathol. 1992;420:281–290. PubMed
Molz G. Farber's disease: pathologic anatomical findings. Virchows Arch A Pathol Pathol Anat. 1968;344:86–99. [in French] PubMed
Moser H.W., Prensky A.L., Wolfe H.J., Rosman N.P. Farber's lipogranulomatosis: report of a case and demonstration of an excess of free ceramide and ganglioside. Am J Med. 1969;47:869–890. PubMed
Zhou J., Tawk M., Tiziano F.D., Veillet J., Bayes M., Nolent F., Garcia V., Servidei S., Bertini E., Castro-Giner F., Renda Y., Carpentier S., Andrieu-Abadie N., Gut I., Levade T., Topaloglu H., Melki J. Spinal muscular atrophy associated with progressive myoclonic epilepsy is caused by mutations in ASAH1. Am J Hum Genet. 2012;91:5–14. PubMed PMC
Dyment D.A., Sell E., Vanstone M.R., Smith A.C., Garandeau D., Garcia V., Carpentier S., Le Trionnaire E., Sabourdy F., Beaulieu C.L., Schwartzentruber J.A., McMillan H.J., FORGE Canada Consortium. Majewski J., Bulman D.E., Levade T., Boycott K.M. Evidence for clinical, genetic and biochemical variability in spinal muscular atrophy with progressive myoclonic epilepsy. Clin Genet. 2014;86:558–563. PubMed
Gan J.J., Garcia V., Tian J., Tagliati M., Parisi J.E., Chung J.M., Lewis R., Baloh R., Levade T., Pierson T.M. Acid ceramidase deficiency associated with spinal muscular atrophy with progressive myoclonic epilepsy. Neuromuscul Disord. 2015;25:959–963. PubMed
Giraldez B.G., Guerrero-Lopez R., Ortega-Moreno L., Verdu A., Carrascosa-Romero M.C., Garcia-Campos O., Garcia-Munozguren S., Pardal-Fernandez J.M., Serratosa J.M. Uniparental disomy as a cause of spinal muscular atrophy and progressive myoclonic epilepsy: phenotypic homogeneity due to the homozygous c.125C>T mutation in ASAH1. Neuromuscul Disord. 2015;25:222–224. PubMed
Rubboli G., Veggiotti P., Pini A., Berardinelli A., Cantalupo G., Bertini E., Tiziano F.D., D'Amico A., Piazza E., Abiusi E., Fiori S., Pasini E., Darra F., Gobbi G., Michelucci R. Spinal muscular atrophy associated with progressive myoclonic epilepsy: a rare condition caused by mutations in ASAH1. Epilepsia. 2015;56:692–698. PubMed
Li C.M., Park J.H., He X., Levy B., Chen F., Arai K., Adler D.A., Disteche C.M., Koch J., Sandhoff K., Schuchman E.H. The human acid ceramidase gene (ASAH): structure, chromosomal location, mutation analysis, and expression. Genomics. 1999;62:223–231. PubMed
Alayoubi A.M., Wang J.C., Au B.C., Carpentier S., Garcia V., Dworski S., El-Ghamrasni S., Kirouac K.N., Exertier M.J., Xiong Z.J., Prive G.G., Simonaro C.M., Casas J., Fabrias G., Schuchman E.H., Turner P.V., Hakem R., Levade T., Medin J.A. Systemic ceramide accumulation leads to severe and varied pathological consequences. EMBO Mol Med. 2013;5:827–842. PubMed PMC
Dworski S., Berger A., Furlonger C., Moreau J.M., Yoshimitsu M., Trentadue J., Au B.C., Paige C.J., Medin J.A. Markedly perturbed hematopoiesis in acid ceramidase deficient mice. Haematologica. 2015;100:e162–e165. PubMed PMC
Martin P., Patrick P., Bateson G., Bateson P. Cambridge University Press; Cambridge: 1993. Measuring Behaviour: An Introductory Guide.
Thomas A., Burant A., Bui N., Graham D., Yuva-Paylor L.A., Paylor R. Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. Psychopharmacology (Berl) 2009;204:361–373. PubMed PMC
Carlson C.G., Rutter J., Bledsoe C., Singh R., Hoff H., Bruemmer K., Sesti J., Gatti F., Berge J., McCarthy L. A simple protocol for assessing inter-trial and inter-examiner reliability for two noninvasive measures of limb muscle strength. J Neurosci Methods. 2010;186:226–230. PubMed
Bedia C., Casas J., Andrieu-Abadie N., Fabrias G., Levade T. Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine. J Biol Chem. 2011;286:28200–28209. PubMed PMC
Garanto A., Mandal N.A., Egido-Gabas M., Marfany G., Fabrias G., Anderson R.E., Casas J., Gonzalez-Duarte R. Specific sphingolipid content decrease in Cerkl knockdown mouse retinas. Exp Eye Res. 2013;110:96–106. PubMed PMC
Franklin K.B.J., Paxinos G. ed 3. Elsevier, Inc.; New York: 2008. The Mouse Brain in Stereotaxic Coordinates.
Jones E.E., Dworski S., Canals D., Casas J., Fabrias G., Schoenling D., Levade T., Denlinger C., Hannun Y.A., Medin J.A., Drake R.R. On-tissue localization of ceramides and other sphingolipids by MALDI mass spectrometry imaging. Anal Chem. 2014;86:8303–8311. PubMed PMC
McGlynn R., Dobrenis K., Walkley S.U. Differential subcellular localization of cholesterol, gangliosides, and glycosaminoglycans in murine models of mucopolysaccharide storage disorders. J Comp Neurol. 2004;480:415–426. PubMed
Sikora J., Leddy J., Gulinello M., Walkley S.U. X-linked Christianson syndrome: heterozygous female Slc9a6 knockout mice develop mosaic neuropathological changes and related behavioral abnormalities. Dis Model Mech. 2016;9:13–23. PubMed PMC
Micsenyi M.C., Sikora J., Stephney G., Dobrenis K., Walkley S.U. Lysosomal membrane permeability stimulates protein aggregate formation in neurons of a lysosomal disease. J Neurosci. 2013;33:10815–10827. PubMed PMC
Peters A., Palay S.L., Webster H.D. ed 3. Oxford University Press; New York: 1991. Fine Structure of the Nervous System: Neurons and Their Supporting Cells.
Fletcher J.L., Kondagari G.S., Vite C.H., Williamson P., Taylor R.M. Oligodendrocyte loss during the disease course in a canine model of the lysosomal storage disease fucosidosis. J Neuropathol Exp Neurol. 2014;73:536–547. PubMed PMC
Guillemin G.J., Brew B.J. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol. 2004;75:388–397. PubMed
Macauley S.L., Sidman R.L., Schuchman E.H., Taksir T., Stewart G.R. Neuropathology of the acid sphingomyelinase knockout mouse model of Niemann-Pick A disease including structure-function studies associated with cerebellar Purkinje cell degeneration. Exp Neurol. 2008;214:181–192. PubMed
Praggastis M., Tortelli B., Zhang J., Fujiwara H., Sidhu R., Chacko A., Chen Z., Chung C., Lieberman A.P., Sikora J., Davidson C., Walkley S.U., Pipalia N.H., Maxfield F.R., Schaffer J.E., Ory D.S. A murine Niemann-Pick C1 I1061T knock-in model recapitulates the pathological features of the most prevalent human disease allele. J Neurosci. 2015;35:8091–8106. PubMed PMC
Sarna J.R., Larouche M., Marzban H., Sillitoe R.V., Rancourt D.E., Hawkes R. Patterned Purkinje cell degeneration in mouse models of Niemann-Pick type C disease. J Comp Neurol. 2003;456:279–291. PubMed
Partanen S., Haapanen A., Kielar C., Pontikis C., Alexander N., Inkinen T., Saftig P., Gillingwater T.H., Cooper J.D., Tyynela J. Synaptic changes in the thalamocortical system of cathepsin D-deficient mice: a model of human congenital neuronal ceroid-lipofuscinosis. J Neuropathol Exp Neurol. 2008;67:16–29. PubMed
Pressey S.N., Smith D.A., Wong A.M., Platt F.M., Cooper J.D. Early glial activation, synaptic changes and axonal pathology in the thalamocortical system of Niemann-Pick type C1 mice. Neurobiol Dis. 2012;45:1086–1100. PubMed PMC
Chedrawi A.K., Al-Hassnan Z.N., Al-Muhaizea M., Colak D., Al-Younes B., Albakheet A., Tulba S., Kaya N. Novel V97G ASAH1 mutation found in Farber disease patients: unique appearance of the disease with an intermediate severity, and marked early involvement of central and peripheral nervous system. Brain Dev. 2012;34:400–404. PubMed
Cappellari A.M., Torcoletti M., Triulzi F., Corona F. Nervous system involvement in Farber disease. J Inherit Metab Dis. 2016;39:149–150. PubMed
Walkley S.U., Baker H.J., Rattazzi M.C., Haskins M.E., Wu J.Y. Neuroaxonal dystrophy in neuronal storage disorders: evidence for major GABAergic neuron involvement. J Neurol Sci. 1991;104:1–8. PubMed
Prensky A., Ferreira G., Carr S., Moser H. Ceramide and ganglioside accumulation in Farber's lipogranulomatosis. Proc Soc Exp Biol Med. 1967;126:725–728.
Sugita M., Iwamori M., Evans J., McCluer R.H., Dulaney J.T., Moser H.W. High performance liquid chromatography of ceramides: application to analysis in human tissues and demonstration of ceramide excess in Farber's disease. J Lipid Res. 1974;15:223–226. PubMed
Sugita M., Connolly P., Dulaney J.T., Moser H.W. Fatty acid composition of free ceramides of kidney and cerebellum from a patient with Farber's disease. Lipids. 1973;8:401–406. PubMed
Clausen J., Rampini S. Chemical studies of Farber's disease. Acta Neurol Scand. 1970;46:313–322. PubMed
Tong M., de la Monte S.M. Mechanisms of ceramide-mediated neurodegeneration. J Alzheimers Dis. 2009;16:705–714. PubMed PMC
Grosch S., Schiffmann S., Geisslinger G. Chain length-specific properties of ceramides. Prog Lipid Res. 2012;51:50–62. PubMed
Cruickshanks N., Roberts J.L., Bareford M.D., Tavallai M., Poklepovic A., Booth L., Spiegel S., Dent P. Differential regulation of autophagy and cell viability by ceramide species. Cancer Biol Ther. 2015;16:733–742. PubMed PMC
Signorelli P., Munoz-Olaya J.M., Gagliostro V., Casas J., Ghidoni R., Fabrias G. Dihydroceramide intracellular increase in response to resveratrol treatment mediates autophagy in gastric cancer cells. Cancer Lett. 2009;282:238–243. PubMed
Zhao L., Spassieva S.D., Jucius T.J., Shultz L.D., Shick H.E., Macklin W.B., Hannun Y.A., Obeid L.M., Ackerman S.L. A deficiency of ceramide biosynthesis causes cerebellar Purkinje cell neurodegeneration and lipofuscin accumulation. PLoS Genet. 2011;7:e1002063. PubMed PMC
Hu W., Xu R., Sun W., Szulc Z.M., Bielawski J., Obeid L.M., Mao C. Alkaline ceramidase 3 (ACER3) hydrolyzes unsaturated long-chain ceramides, and its down-regulation inhibits both cell proliferation and apoptosis. J Biol Chem. 2010;285:7964–7976. PubMed PMC
Filippov V., Song M.A., Zhang K., Vinters H.V., Tung S., Kirsch W.M., Yang J., Duerksen-Hughes P.J. Increased ceramide in brains with Alzheimer's and other neurodegenerative diseases. J Alzheimers Dis. 2012;29:537–547. PubMed PMC
Han X., Holtzman D.M., McKeel D.W., Jr. Plasmalogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem. 2001;77:1168–1180. PubMed
Wang G., Dinkins M., He Q., Zhu G., Poirier C., Campbell A., Mayer-Proschel M., Bieberich E. Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD) J Biol Chem. 2012;287:21384–21395. PubMed PMC
Puglielli L., Ellis B.C., Saunders A.J., Kovacs D.M. Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis. J Biol Chem. 2003;278:19777–19783. PubMed
Abbott S.K., Li H., Munoz S.S., Knoch B., Batterham M., Murphy K.E., Halliday G.M., Garner B. Altered ceramide acyl chain length and ceramide synthase gene expression in Parkinson's disease. Mov Disord. 2014;29:518–526. PubMed
Vanni N., Fruscione F., Ferlazzo E., Striano P., Robbiano A., Traverso M., Sander T., Falace A., Gazzerro E., Bramanti P., Bielawski J., Fassio A., Minetti C., Genton P., Zara F. Impairment of ceramide synthesis causes a novel progressive myoclonus epilepsy. Ann Neurol. 2014;76:206–212. PubMed
de la Monte S.M., Tong M. Brain metabolic dysfunction at the core of Alzheimer's disease. Biochem Pharmacol. 2014;88:548–559. PubMed PMC
Chen C.S., Patterson M.C., Wheatley C.L., O'Brien J.F., Pagano R.E. Broad screening test for sphingolipid-storage diseases. Lancet. 1999;354:901–905. PubMed
Skin inflammation and impaired adipogenesis in a mouse model of acid ceramidase deficiency
Acid Ceramidase Deficiency in Mice Leads to Severe Ocular Pathology and Visual Impairment
Chronic lung injury and impaired pulmonary function in a mouse model of acid ceramidase deficiency