Acid Ceramidase Deficiency in Mice Results in a Broad Range of Central Nervous System Abnormalities

. 2017 Apr ; 187 (4) : 864-883.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28342444

Grantová podpora
R21 NS078191 NINDS NIH HHS - United States
P30 CA138313 NCI NIH HHS - United States
F05 NS074790 NINDS NIH HHS - United States
UL1 TR000062 NCATS NIH HHS - United States
UL1 RR029882 NCRR NIH HHS - United States
P30 HD071593 NICHD NIH HHS - United States
R01 HD045561 NICHD NIH HHS - United States
U54 HD090260 NICHD NIH HHS - United States

Odkazy

PubMed 28342444
PubMed Central PMC5397689
DOI 10.1016/j.ajpath.2016.12.005
PII: S0002-9440(17)30028-7
Knihovny.cz E-zdroje

Farber disease is a rare autosomal recessive disorder caused by acid ceramidase deficiency that usually presents as early-onset progressive visceral and neurologic disease. To understand the neurologic abnormality, we investigated behavioral, biochemical, and cellular abnormalities in the central nervous system of Asah1P361R/P361R mice, which serve as a model of Farber disease. Behaviorally, the mutant mice had reduced voluntary locomotion and exploration, increased thigmotaxis, abnormal spectra of basic behavioral activities, impaired muscle grip strength, and defects in motor coordination. A few mutant mice developed hydrocephalus. Mass spectrometry revealed elevations of ceramides, hydroxy-ceramides, dihydroceramides, sphingosine, dihexosylceramides, and monosialodihexosylganglioside in the brain. The highest accumulation was in hydroxy-ceramides. Storage compound distribution was analyzed by mass spectrometry imaging and morphologic analyses and revealed involvement of a wide range of central nervous system cell types (eg, neurons, endothelial cells, and choroid plexus cells), most notably microglia and/or macrophages. Coalescing and mostly perivascular granuloma-like accumulations of storage-laden CD68+ microglia and/or macrophages were seen as early as 3 weeks of age and located preferentially in white matter, periventricular zones, and meninges. Neurodegeneration was also evident in specific cerebral areas in late disease. Overall, our central nervous system studies in Asah1P361R/P361R mice substantially extend the understanding of human Farber disease and suggest that this model can be used to advance therapeutic approaches for this currently untreatable disorder.

Department of Cell and Molecular Pharmacology Medical University of South Carolina Charleston South Carolina

Department of Pharmaceutical Sciences University of Toronto Toronto Ontario Canada

Dominick P Purpura Department of Neuroscience Rose F Kennedy Intellectual and Developmental Disabilities Research Center Albert Einstein College of Medicine Bronx New York

Dominick P Purpura Department of Neuroscience Rose F Kennedy Intellectual and Developmental Disabilities Research Center Albert Einstein College of Medicine Bronx New York; Institute of Inherited Metabolic Disorders Charles University 1st Faculty of Medicine Prague Czech Republic; Institute of Pathology Charles University 1st Faculty of Medicine Prague Czech Republic

INSERM UMR1037 Cancer Research Center of Toulouse Universite Toulouse 3 Paul Sabatier Toulouse France; Metabolic Biochemistry Laboratory Federative Institute of Biology Centre Hospitalier Universitaire de Toulouse Toulouse France

Institute of Medical Science University of Toronto Toronto Ontario Canada

Institute of Medical Science University of Toronto Toronto Ontario Canada; University Health Network Toronto Ontario Canada; Department of Medical Biophysics University of Toronto Toronto Ontario Canada; Medical College of Wisconsin Milwaukee Wisconsin

MetaToul Lipidomic Facility MetaboHUB INSERM UMR1048 Institute of Cardiovascular and Metabolic Diseases Université Paul Sabatier Toulouse 3 Toulouse France

Research Unit on Bioactive Molecules Department of Biomedicinal Chemistry Institute for Advanced Chemistry of Catalonia Spanish National Research Council Barcelona Spain

University Health Network Toronto Ontario Canada

Zobrazit více v PubMed

Levade T., Sandhoff K., Schulze H., Medin J.A. Acid ceramidase deficiency: Farber lipogranulomatosis. In: Valle D., Vogelstein B., Kinzler K.W., Antonarakis S.E., Ballabio A., Mitchell G., editors. The Online Metabolic and Molecular Bases of Inherited Diseases. McGraw-Hill; New York: 2009.

Abenoza P., Sibley R.K. Farber's disease: a fine structural study. Ultrastruct Pathol. 1987;11:397–403. PubMed

Burck U., Moser H.W., Goebel H.H., Gruttner R., Held K.R. A case of lipogranulomatosis Farber: some clinical and ultrastructural aspects. Eur J Pediatr. 1985;143:203–208. PubMed

Zappatini-Tommasi L., Dumontel C., Guibaud P., Girod C. Farber disease: an ultrastructural study: report of a case and review of the literature. Virchows Arch A Pathol Anat Histopathol. 1992;420:281–290. PubMed

Molz G. Farber's disease: pathologic anatomical findings. Virchows Arch A Pathol Pathol Anat. 1968;344:86–99. [in French] PubMed

Moser H.W., Prensky A.L., Wolfe H.J., Rosman N.P. Farber's lipogranulomatosis: report of a case and demonstration of an excess of free ceramide and ganglioside. Am J Med. 1969;47:869–890. PubMed

Zhou J., Tawk M., Tiziano F.D., Veillet J., Bayes M., Nolent F., Garcia V., Servidei S., Bertini E., Castro-Giner F., Renda Y., Carpentier S., Andrieu-Abadie N., Gut I., Levade T., Topaloglu H., Melki J. Spinal muscular atrophy associated with progressive myoclonic epilepsy is caused by mutations in ASAH1. Am J Hum Genet. 2012;91:5–14. PubMed PMC

Dyment D.A., Sell E., Vanstone M.R., Smith A.C., Garandeau D., Garcia V., Carpentier S., Le Trionnaire E., Sabourdy F., Beaulieu C.L., Schwartzentruber J.A., McMillan H.J., FORGE Canada Consortium. Majewski J., Bulman D.E., Levade T., Boycott K.M. Evidence for clinical, genetic and biochemical variability in spinal muscular atrophy with progressive myoclonic epilepsy. Clin Genet. 2014;86:558–563. PubMed

Gan J.J., Garcia V., Tian J., Tagliati M., Parisi J.E., Chung J.M., Lewis R., Baloh R., Levade T., Pierson T.M. Acid ceramidase deficiency associated with spinal muscular atrophy with progressive myoclonic epilepsy. Neuromuscul Disord. 2015;25:959–963. PubMed

Giraldez B.G., Guerrero-Lopez R., Ortega-Moreno L., Verdu A., Carrascosa-Romero M.C., Garcia-Campos O., Garcia-Munozguren S., Pardal-Fernandez J.M., Serratosa J.M. Uniparental disomy as a cause of spinal muscular atrophy and progressive myoclonic epilepsy: phenotypic homogeneity due to the homozygous c.125C>T mutation in ASAH1. Neuromuscul Disord. 2015;25:222–224. PubMed

Rubboli G., Veggiotti P., Pini A., Berardinelli A., Cantalupo G., Bertini E., Tiziano F.D., D'Amico A., Piazza E., Abiusi E., Fiori S., Pasini E., Darra F., Gobbi G., Michelucci R. Spinal muscular atrophy associated with progressive myoclonic epilepsy: a rare condition caused by mutations in ASAH1. Epilepsia. 2015;56:692–698. PubMed

Li C.M., Park J.H., He X., Levy B., Chen F., Arai K., Adler D.A., Disteche C.M., Koch J., Sandhoff K., Schuchman E.H. The human acid ceramidase gene (ASAH): structure, chromosomal location, mutation analysis, and expression. Genomics. 1999;62:223–231. PubMed

Alayoubi A.M., Wang J.C., Au B.C., Carpentier S., Garcia V., Dworski S., El-Ghamrasni S., Kirouac K.N., Exertier M.J., Xiong Z.J., Prive G.G., Simonaro C.M., Casas J., Fabrias G., Schuchman E.H., Turner P.V., Hakem R., Levade T., Medin J.A. Systemic ceramide accumulation leads to severe and varied pathological consequences. EMBO Mol Med. 2013;5:827–842. PubMed PMC

Dworski S., Berger A., Furlonger C., Moreau J.M., Yoshimitsu M., Trentadue J., Au B.C., Paige C.J., Medin J.A. Markedly perturbed hematopoiesis in acid ceramidase deficient mice. Haematologica. 2015;100:e162–e165. PubMed PMC

Martin P., Patrick P., Bateson G., Bateson P. Cambridge University Press; Cambridge: 1993. Measuring Behaviour: An Introductory Guide.

Thomas A., Burant A., Bui N., Graham D., Yuva-Paylor L.A., Paylor R. Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. Psychopharmacology (Berl) 2009;204:361–373. PubMed PMC

Carlson C.G., Rutter J., Bledsoe C., Singh R., Hoff H., Bruemmer K., Sesti J., Gatti F., Berge J., McCarthy L. A simple protocol for assessing inter-trial and inter-examiner reliability for two noninvasive measures of limb muscle strength. J Neurosci Methods. 2010;186:226–230. PubMed

Bedia C., Casas J., Andrieu-Abadie N., Fabrias G., Levade T. Acid ceramidase expression modulates the sensitivity of A375 melanoma cells to dacarbazine. J Biol Chem. 2011;286:28200–28209. PubMed PMC

Garanto A., Mandal N.A., Egido-Gabas M., Marfany G., Fabrias G., Anderson R.E., Casas J., Gonzalez-Duarte R. Specific sphingolipid content decrease in Cerkl knockdown mouse retinas. Exp Eye Res. 2013;110:96–106. PubMed PMC

Franklin K.B.J., Paxinos G. ed 3. Elsevier, Inc.; New York: 2008. The Mouse Brain in Stereotaxic Coordinates.

Jones E.E., Dworski S., Canals D., Casas J., Fabrias G., Schoenling D., Levade T., Denlinger C., Hannun Y.A., Medin J.A., Drake R.R. On-tissue localization of ceramides and other sphingolipids by MALDI mass spectrometry imaging. Anal Chem. 2014;86:8303–8311. PubMed PMC

McGlynn R., Dobrenis K., Walkley S.U. Differential subcellular localization of cholesterol, gangliosides, and glycosaminoglycans in murine models of mucopolysaccharide storage disorders. J Comp Neurol. 2004;480:415–426. PubMed

Sikora J., Leddy J., Gulinello M., Walkley S.U. X-linked Christianson syndrome: heterozygous female Slc9a6 knockout mice develop mosaic neuropathological changes and related behavioral abnormalities. Dis Model Mech. 2016;9:13–23. PubMed PMC

Micsenyi M.C., Sikora J., Stephney G., Dobrenis K., Walkley S.U. Lysosomal membrane permeability stimulates protein aggregate formation in neurons of a lysosomal disease. J Neurosci. 2013;33:10815–10827. PubMed PMC

Peters A., Palay S.L., Webster H.D. ed 3. Oxford University Press; New York: 1991. Fine Structure of the Nervous System: Neurons and Their Supporting Cells.

Fletcher J.L., Kondagari G.S., Vite C.H., Williamson P., Taylor R.M. Oligodendrocyte loss during the disease course in a canine model of the lysosomal storage disease fucosidosis. J Neuropathol Exp Neurol. 2014;73:536–547. PubMed PMC

Guillemin G.J., Brew B.J. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol. 2004;75:388–397. PubMed

Macauley S.L., Sidman R.L., Schuchman E.H., Taksir T., Stewart G.R. Neuropathology of the acid sphingomyelinase knockout mouse model of Niemann-Pick A disease including structure-function studies associated with cerebellar Purkinje cell degeneration. Exp Neurol. 2008;214:181–192. PubMed

Praggastis M., Tortelli B., Zhang J., Fujiwara H., Sidhu R., Chacko A., Chen Z., Chung C., Lieberman A.P., Sikora J., Davidson C., Walkley S.U., Pipalia N.H., Maxfield F.R., Schaffer J.E., Ory D.S. A murine Niemann-Pick C1 I1061T knock-in model recapitulates the pathological features of the most prevalent human disease allele. J Neurosci. 2015;35:8091–8106. PubMed PMC

Sarna J.R., Larouche M., Marzban H., Sillitoe R.V., Rancourt D.E., Hawkes R. Patterned Purkinje cell degeneration in mouse models of Niemann-Pick type C disease. J Comp Neurol. 2003;456:279–291. PubMed

Partanen S., Haapanen A., Kielar C., Pontikis C., Alexander N., Inkinen T., Saftig P., Gillingwater T.H., Cooper J.D., Tyynela J. Synaptic changes in the thalamocortical system of cathepsin D-deficient mice: a model of human congenital neuronal ceroid-lipofuscinosis. J Neuropathol Exp Neurol. 2008;67:16–29. PubMed

Pressey S.N., Smith D.A., Wong A.M., Platt F.M., Cooper J.D. Early glial activation, synaptic changes and axonal pathology in the thalamocortical system of Niemann-Pick type C1 mice. Neurobiol Dis. 2012;45:1086–1100. PubMed PMC

Chedrawi A.K., Al-Hassnan Z.N., Al-Muhaizea M., Colak D., Al-Younes B., Albakheet A., Tulba S., Kaya N. Novel V97G ASAH1 mutation found in Farber disease patients: unique appearance of the disease with an intermediate severity, and marked early involvement of central and peripheral nervous system. Brain Dev. 2012;34:400–404. PubMed

Cappellari A.M., Torcoletti M., Triulzi F., Corona F. Nervous system involvement in Farber disease. J Inherit Metab Dis. 2016;39:149–150. PubMed

Walkley S.U., Baker H.J., Rattazzi M.C., Haskins M.E., Wu J.Y. Neuroaxonal dystrophy in neuronal storage disorders: evidence for major GABAergic neuron involvement. J Neurol Sci. 1991;104:1–8. PubMed

Prensky A., Ferreira G., Carr S., Moser H. Ceramide and ganglioside accumulation in Farber's lipogranulomatosis. Proc Soc Exp Biol Med. 1967;126:725–728.

Sugita M., Iwamori M., Evans J., McCluer R.H., Dulaney J.T., Moser H.W. High performance liquid chromatography of ceramides: application to analysis in human tissues and demonstration of ceramide excess in Farber's disease. J Lipid Res. 1974;15:223–226. PubMed

Sugita M., Connolly P., Dulaney J.T., Moser H.W. Fatty acid composition of free ceramides of kidney and cerebellum from a patient with Farber's disease. Lipids. 1973;8:401–406. PubMed

Clausen J., Rampini S. Chemical studies of Farber's disease. Acta Neurol Scand. 1970;46:313–322. PubMed

Tong M., de la Monte S.M. Mechanisms of ceramide-mediated neurodegeneration. J Alzheimers Dis. 2009;16:705–714. PubMed PMC

Grosch S., Schiffmann S., Geisslinger G. Chain length-specific properties of ceramides. Prog Lipid Res. 2012;51:50–62. PubMed

Cruickshanks N., Roberts J.L., Bareford M.D., Tavallai M., Poklepovic A., Booth L., Spiegel S., Dent P. Differential regulation of autophagy and cell viability by ceramide species. Cancer Biol Ther. 2015;16:733–742. PubMed PMC

Signorelli P., Munoz-Olaya J.M., Gagliostro V., Casas J., Ghidoni R., Fabrias G. Dihydroceramide intracellular increase in response to resveratrol treatment mediates autophagy in gastric cancer cells. Cancer Lett. 2009;282:238–243. PubMed

Zhao L., Spassieva S.D., Jucius T.J., Shultz L.D., Shick H.E., Macklin W.B., Hannun Y.A., Obeid L.M., Ackerman S.L. A deficiency of ceramide biosynthesis causes cerebellar Purkinje cell neurodegeneration and lipofuscin accumulation. PLoS Genet. 2011;7:e1002063. PubMed PMC

Hu W., Xu R., Sun W., Szulc Z.M., Bielawski J., Obeid L.M., Mao C. Alkaline ceramidase 3 (ACER3) hydrolyzes unsaturated long-chain ceramides, and its down-regulation inhibits both cell proliferation and apoptosis. J Biol Chem. 2010;285:7964–7976. PubMed PMC

Filippov V., Song M.A., Zhang K., Vinters H.V., Tung S., Kirsch W.M., Yang J., Duerksen-Hughes P.J. Increased ceramide in brains with Alzheimer's and other neurodegenerative diseases. J Alzheimers Dis. 2012;29:537–547. PubMed PMC

Han X., Holtzman D.M., McKeel D.W., Jr. Plasmalogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem. 2001;77:1168–1180. PubMed

Wang G., Dinkins M., He Q., Zhu G., Poirier C., Campbell A., Mayer-Proschel M., Bieberich E. Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD) J Biol Chem. 2012;287:21384–21395. PubMed PMC

Puglielli L., Ellis B.C., Saunders A.J., Kovacs D.M. Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis. J Biol Chem. 2003;278:19777–19783. PubMed

Abbott S.K., Li H., Munoz S.S., Knoch B., Batterham M., Murphy K.E., Halliday G.M., Garner B. Altered ceramide acyl chain length and ceramide synthase gene expression in Parkinson's disease. Mov Disord. 2014;29:518–526. PubMed

Vanni N., Fruscione F., Ferlazzo E., Striano P., Robbiano A., Traverso M., Sander T., Falace A., Gazzerro E., Bramanti P., Bielawski J., Fassio A., Minetti C., Genton P., Zara F. Impairment of ceramide synthesis causes a novel progressive myoclonus epilepsy. Ann Neurol. 2014;76:206–212. PubMed

de la Monte S.M., Tong M. Brain metabolic dysfunction at the core of Alzheimer's disease. Biochem Pharmacol. 2014;88:548–559. PubMed PMC

Chen C.S., Patterson M.C., Wheatley C.L., O'Brien J.F., Pagano R.E. Broad screening test for sphingolipid-storage diseases. Lancet. 1999;354:901–905. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...