X-linked Christianson syndrome: heterozygous female Slc9a6 knockout mice develop mosaic neuropathological changes and related behavioral abnormalities
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
F05 NS074790
NINDS NIH HHS - United States
P30 HD071593
NICHD NIH HHS - United States
R01 HD045561
NICHD NIH HHS - United States
1F05 NS074790
NINDS NIH HHS - United States
PubMed
26515654
PubMed Central
PMC4728337
DOI
10.1242/dmm.022780
PII: dmm.022780
Knihovny.cz E-zdroje
- Klíčová slova
- Christianson syndrome, Female heterozygotes, Mosaicism, NHE6 protein, Slc9a6, X-chromosome inactivation,
- MeSH
- alely MeSH
- ataxie genetika MeSH
- chování zvířat MeSH
- epilepsie genetika MeSH
- fenotyp MeSH
- G(M2) gangliosid imunologie MeSH
- genetické nemoci vázané na chromozom X genetika MeSH
- genotyp MeSH
- heterozygot MeSH
- kognitivní poruchy genetika MeSH
- mentální retardace genetika MeSH
- mikrocefalie genetika MeSH
- modely nemocí na zvířatech MeSH
- mozaicismus * MeSH
- mutace MeSH
- myši knockoutované MeSH
- myši MeSH
- Na(+)-H(+) antiport genetika fyziologie MeSH
- poruchy hybnosti oka genetika MeSH
- Purkyňovy buňky cytologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- G(M2) gangliosid MeSH
- Na(+)-H(+) antiport MeSH
- NHE6 protein, mouse MeSH Prohlížeč
Christianson syndrome (CS) is an X-linked neurodevelopmental and neurological disorder characterized in males by core symptoms that include non-verbal status, intellectual disability, epilepsy, truncal ataxia, postnatal microcephaly and hyperkinesis. CS is caused by mutations in the SLC9A6 gene, which encodes a multipass transmembrane sodium (potassium)-hydrogen exchanger 6 (NHE6) protein, functional in early recycling endosomes. The extent and variability of the CS phenotype in female heterozygotes, who presumably express the wild-type and mutant SLC9A6 alleles mosaically as a result of X-chromosome inactivation (XCI), have not yet been systematically characterized. Slc9a6 knockout mice (Slc9a6 KO) were generated by insertion of the bacterial lacZ/β-galactosidase (β-Gal) reporter into exon 6 of the X-linked gene. Mutant Slc9a6 KO male mice have been shown to develop late endosomal/lysosomal dysfunction associated with glycolipid accumulation in selected neuronal populations and patterned degeneration of Purkinje cells (PCs). In heterozygous female Slc9a6 KO mice, β-Gal serves as a transcriptional/XCI reporter and thus facilitates testing of effects of mosaic expression of the mutant allele on penetrance of the abnormal phenotype. Using β-Gal, we demonstrated mosaic expression of the mutant Slc9a6 allele and mosaically distributed lysosomal glycolipid accumulation and PC pathology in the brains of heterozygous Slc9a6 KO female mice. At the behavioral level, we showed that heterozygous female mice suffer from visuospatial memory and motor coordination deficits similar to but less severe than those observed in X-chromosome hemizygous mutant males. Our studies in heterozygous Slc9a6 KO female mice provide important clues for understanding the likely phenotypic range of Christianson syndrome among females heterozygous for SLC9A6 mutations and might improve diagnostic practice and genetic counseling by helping to characterize this presumably underappreciated patient/carrier group.
Zobrazit více v PubMed
Acuna-Hidalgo R., Bo T., Kwint M. P., van de Vorst M., Pinelli M., Veltman J. A., Hoischen A., Vissers L. E. L. M. and Gilissen C. (2015). Post-zygotic point mutations are an underrecognized source of de novo genomic variation. Am. J. Hum. Genet. 97, 67-74. 10.1016/j.ajhg.2015.05.008 PubMed DOI PMC
Bellamy T. C. (2006). Interactions between Purkinje neurones and Bergmann glia. Cerebellum 5, 116-126. 10.1080/14734220600724569 PubMed DOI
Capogna M. (2014). GABAergic cell type diversity in the basolateral amygdala. Curr. Opin. Neurobiol. 26, 110-116. 10.1016/j.conb.2014.01.006 PubMed DOI
Christianson A. L., Stevenson R. E., van der Meyden C. H., Pelser J., Theron F. W., van Rensburg P. L., Chandler M. and Schwartz C. E. (1999). X linked severe mental retardation, craniofacial dysmorphology, epilepsy, ophthalmoplegia, and cerebellar atrophy in a large South African kindred is localised to Xq24-q27. J. Med. Genet. 36, 759-766. 10.1136/jmg.36.10.759 PubMed DOI PMC
Cotton A. M., Price E. M., Jones M. J., Balaton B. P., Kobor M. S. and Brown C. J. (2015). Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation. Hum. Mol. Genet. 24, 1528-1539. 10.1093/hmg/ddu564 PubMed DOI PMC
Deane E. C., Ilie A. E., Sizdahkhani S., Das Gupta M., Orlowski J. and McKinney R. A. (2013). Enhanced recruitment of endosomal Na+/H+ exchanger NHE6 into Dendritic spines of hippocampal pyramidal neurons during NMDA receptor-dependent long-term potentiation. J. Neurosci. 33, 595-610. 10.1523/JNEUROSCI.2583-12.2013 PubMed DOI PMC
Deng X., Berletch J. B., Nguyen D. K. and Disteche C. M. (2014). X chromosome regulation: diverse patterns in development, tissues and disease. Nat. Rev. Genet. 15, 367-378. 10.1038/nrg3687 PubMed DOI PMC
Dere E., Huston J. P. and De Souza Silva M. A. (2007). The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci. Biobehav. Rev. 31, 673-704. 10.1016/j.neubiorev.2007.01.005 PubMed DOI
Dobyns W. B., Filauro A., Tomson B. N., Chan A. S., Ho A. W., Ting N. T., Oosterwijk J. C. and Ober C. (2004). Inheritance of most X-linked traits is not dominant or recessive, just X-linked. Am. J. Med. Genet. 129A, 136-143. 10.1002/ajmg.a.30123 PubMed DOI
Ennaceur A. and Delacour J. (1988). A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav. Brain. Res. 31, 47-59. 10.1016/0166-4328(88)90157-X PubMed DOI
Franklin K. B. J. and Paxinos G. (2008). The Mouse Brain in Stereotaxic Coordinates. New York: Elsevier, Inc.
Garbern J. Y., Neumann M., Trojanowski J. Q., Lee V. M., Feldman G., Norris J. W., Friez M. J., Schwartz C. E., Stevenson R. and Sima A. A. F. (2010). A mutation affecting the sodium/proton exchanger, SLC9A6, causes mental retardation with tau deposition. Brain 133, 1391-1402. 10.1093/brain/awq071 PubMed DOI PMC
Gilfillan G. D., Selmer K. K., Roxrud I., Smith R., Kyllerman M., Eiklid K., Kroken M., Mattingsdal M., Egeland T., Stenmark H. et al. (2008). SLC9A6 mutations cause X-linked mental retardation, microcephaly, epilepsy, and ataxia, a phenotype mimicking Angelman syndrome. Am. J. Hum. Genet. 82, 1003-1010. 10.1016/j.ajhg.2008.01.013 PubMed DOI PMC
Janak P. H. and Tye K. M. (2015). From circuits to behaviour in the amygdala. Nature 517, 284-292. 10.1038/nature14188 PubMed DOI PMC
Kondapalli K. C., Hack A., Schushan M., Landau M., Ben-Tal N. and Rao R. (2013). Functional evaluation of autism-associated mutations in NHE9. Nat. Commun. 4, 2510-2522. 10.1038/ncomms3510 PubMed DOI PMC
Kondapalli K. C., Prasad H. and Rao R. (2014). An inside job: how endosomal Na(+)/H(+) exchangers link to autism and neurological disease. Front. Cell. Neurosci. 8, 172-193. 10.3389/fncel.2014.00172 PubMed DOI PMC
Macauley S. L., Sidman R. L., Schuchman E. H., Taksir T. and Stewart G. R. (2008). Neuropathology of the acid sphingomyelinase knockout mouse model of Niemann-Pick A disease including structure-function studies associated with cerebellar Purkinje cell degeneration. Exp. Neurol. 214, 181-192. 10.1016/j.expneurol.2008.07.026 PubMed DOI
McGlynn R., Dobrenis K. and Walkley S. U. (2004). Differential subcellular localization of cholesterol, gangliosides, and glycosaminoglycans in murine models of mucopolysaccharide storage disorders. J. Comp. Neurol. 480, 415-426. 10.1002/cne.20355 PubMed DOI
Mignot C., Héron D., Bursztyn J., Momtchilova M., Mayer M., Whalen S., Legall A., Billette de Villemeur T. and Burglen L. (2013). Novel mutation in SLC9A6 gene in a patient with Christianson syndrome and retinitis pigmentosum. Brain. Dev. 35, 172-176. 10.1016/j.braindev.2012.03.010 PubMed DOI
Ohgaki R., van IJzendoorn S. C. D., Matsushita M., Hoekstra D. and Kanazawa H. (2011). Organellar Na+/H+ exchangers: novel players in organelle pH regulation and their emerging functions. Biochemistry 50, 443-450. 10.1021/bi101082e PubMed DOI
Ouyang Q., Lizarraga S. B., Schmidt M., Yang U., Gong J., Ellisor D., Kauer J. A. and Morrow E. M. (2013). Christianson syndrome protein NHE6 modulates TrkB endosomal signaling required for neuronal circuit development. Neuron 80, 97-112. 10.1016/j.neuron.2013.07.043 PubMed DOI PMC
Pescosolido M. F., Stein D. M., Schmidt M., El Achkar C. M., Sabbagh M., Rogg J. M., Tantravahi U., McLean R. L., Liu J. S., Poduri A. et al. (2014). Genetic and phenotypic diversity of NHE6 mutations in Christianson syndrome. Ann. Neurol. 76, 581-593. 10.1002/ana.24225 PubMed DOI PMC
Plenge R. M., Stevenson R. A., Lubs H. A., Schwartz C. E. and Willard H. F. (2002). Skewed X-chromosome inactivation is a common feature of X-linked mental retardation disorders. Am. J. Hum. Genet. 71, 168-173. 10.1086/341123 PubMed DOI PMC
Praggastis M., Tortelli B., Zhang J., Fujiwara H., Sidhu R., Chacko A., Chen Z., Chung C., Lieberman A. P., Sikora J. et al. (2015). A murine Niemann-Pick C1 I1061T knock-in model recapitulates the pathological features of the most prevalent human disease allele. J. Neurosci. 35, 8091-8106. 10.1523/JNEUROSCI.4173-14.2015 PubMed DOI PMC
Sarna J., Miranda S. R. P., Schuchman E. H. and Hawkes R. (2001). Patterned cerebellar Purkinje cell death in a transgenic mouse model of Niemann Pick type A/B disease. Eur. J. Neurosci. 13, 1873-1880. 10.1046/j.0953-816x.2001.01564.x PubMed DOI
Schroer R. J., Holden K. R., Tarpey P. S., Matheus M. G., Griesemer D. A., Friez M. J., Fan J. Z., Simensen R. J., Strømme P., Stevenson R. E. et al. (2010). Natural history of Christianson syndrome. Am. J. Med. Genet. A 152A, 2775-2783. 10.1002/ajmg.a.33093 PubMed DOI PMC
Schuurs-Hoeijmakers J. H. M., Vulto-van Silfhout A. T., Vissers L. E. L. M., van de Vondervoort I. I. G. M. II, van Bon B. W. M., de Ligt J., Gilissen C., Hehir-Kwa J. Y., Neveling K., del Rosario M. et al. (2013). Identification of pathogenic gene variants in small families with intellectually disabled siblings by exome sequencing. J. Med. Genet. 50, 802-811. 10.1136/jmedgenet-2013-101644 PubMed DOI
Sillitoe R. V. and Joyner A. L. (2007). Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu. Rev. Cell. Dev. Biol. 23, 549-577. 10.1146/annurev.cellbio.23.090506.123237 PubMed DOI
Stanley J. L., Lincoln R. J., Brown T. A., McDonald L. M., Dawson G. R. and Reynolds D. S. (2005). The mouse beam walking assay offers improved sensitivity over the mouse rotarod in determining motor coordination deficits induced by benzodiazepines. J. Psychopharmacol. 19, 221-227. 10.1177/0269881105051524 PubMed DOI
Stromme P., Dobrenis K., Sillitoe R. V., Gulinello M., Ali N. F., Davidson C., Micsenyi M. C., Stephney G., Ellevog L., Klungland A. et al. (2011). X-linked Angelman-like syndrome caused by Slc9a6 knockout in mice exhibits evidence of endosomal-lysosomal dysfunction. Brain 134, 3369-3383. 10.1093/brain/awr250 PubMed DOI PMC
Tarpey P. S., Smith R., Pleasance E., Whibley A., Edkins S., Hardy C., O'Meara S., Latimer C., Dicks E., Menzies A. et al. (2009). A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat. Genet. 41, 535-543. 10.1038/ng.367 PubMed DOI PMC
Tzschach A., Grasshoff U., Beck-Woedl S., Dufke C., Bauer C., Kehrer M., Evers C., Moog U., Oehl-Jaschkowitz B., Di Donato N. et al. (2015). Next-generation sequencing in X-linked intellectual disability. Eur. J. Hum. Genet. 23, 1513-1518. 10.1038/ejhg.2015.5 PubMed DOI PMC
Wang F., Xu Q., Wang W., Takano T. and Nedergaard M. (2012). Bergmann glia modulate cerebellar Purkinje cell bistability via Ca2+-dependent K+ uptake. Proc. Natl. Acad. Sci. USA 109, 7911-7916. 10.1073/pnas.1120380109 PubMed DOI PMC
Wu H., Luo J., Yu H., Rattner A., Mo A., Wang Y., Smallwood P. M., Erlanger B., Wheelan S. J. and Nathans J. (2014). Cellular resolution maps of X chromosome inactivation: implications for neural development, function, and disease. Neuron 81, 103-119. 10.1016/j.neuron.2013.10.051 PubMed DOI PMC
Yang F., Babak T., Shendure J. and Disteche C. M. (2010). Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res. 20, 614-622. 10.1101/gr.103200.109 PubMed DOI PMC
Yang C., Chapman A. G., Kelsey A. D., Minks J., Cotton A. M. and Brown C. J. (2011). X-chromosome inactivation: molecular mechanisms from the human perspective. Hum. Genet. 130, 175-185. 10.1007/s00439-011-0994-9 PubMed DOI