Agro-Morphological and Molecular Characterization Reveal Deep Insights in Promising Genetic Diversity and Marker-Trait Associations in Fagopyrum esculentum and Fagopyrum tataricum
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
771367
Horizon 2020, Research and innovation programme of the European Union, ECOBREED project
Agrobiodiversity, P4-0072
Slovenian Research Agency
PubMed
37765484
PubMed Central
PMC10534386
DOI
10.3390/plants12183321
PII: plants12183321
Knihovny.cz E-zdroje
- Klíčová slova
- agro-morphological traits, breeding, buckwheat, genetic diversity, marker-trait associations, microsatellite markers,
- Publikační typ
- časopisecké články MeSH
Characterisation of genetic diversity is critical to adequately exploit the potential of germplasm collections and identify important traits for breeding programs and sustainable crop improvement. Here, we characterised the phenotypic and genetic diversity of a global collection of the two cultivated buckwheat species Fagopyrum esculentum and Fagopyrum tataricum (190 and 51 accessions, respectively) using 37 agro-morphological traits and 24 SSR markers. A wide range of variation was observed in both species for most of the traits analysed. The two species differed significantly in most traits, with traits related to seeds and flowering contributing most to differentiation. The accessions of each species were divided into three major phenoclusters with no clear geographic clustering. At the molecular level, the polymorphic SSR markers were highly informative, with an average polymorphic information content (PIC) of over 0.65 in both species. Genetic diversity, as determined by Nei's expected heterozygosity (He), was high (He = 0.77 and He = 0.66, respectively) and differed significantly between species (p = 0.03) but was homogeneously distributed between regions, confirming the lack of genetic structure as determined by clustering approaches. The weak genetic structure revealed by the phenotypic and SSR data and the low fixation indices in both species suggested frequent seed exchange and extensive cultivation and selection. In addition, 93 and 140 significant (p < 0.05) marker-trait associations (MTAs) were identified in both species using a general linear model and a mixed linear model, most of which explained >20% of the phenotypic variation in associated traits. Core collections of 23 and 13 phenotypically and genetically diverse accessions, respectively, were developed for F. esculentum and F. tataricum. Overall, the data analysed provided deep insights into the agro-morphological and genetic diversity and genetic relationships among F. esculentum and F. tataricum accessions and pointed to future directions for genomics-based breeding programs and germplasm management.
Zobrazit více v PubMed
Zhang K., He M., Fan Y., Zhao H., Gao B., Yang K., Li F., Tang Y., Gao Q., Lin T. Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genome Biol. 2021;22:23. doi: 10.1186/s13059-020-02217-7. PubMed DOI PMC
Zhao H., He Y., Zhang K., Li S., Chen Y., He M., He F., Gao B., Yang D., Fan Y. Rewiring of the seed metabolome during Tartary buckwheat domestication. Plant Biotechnol. J. 2023;21:150–164. doi: 10.1111/pbi.13932. PubMed DOI PMC
Chapman M.A., He Y., Zhou M. Beyond a reference genome: Pangenomes and population genomics of underutilized and orphan crops for future food and nutrition security. New Phytol. 2022;234:1583–1597. doi: 10.1111/nph.18021. PubMed DOI PMC
Zhang Q., Xu J.G. Determining the geographical origin of common buckwheat from China by multivariate analysis based on mineral elements, amino acids and vitamins. Sci. Rep. 2017;7:9696. doi: 10.1038/s41598-017-08808-y. PubMed DOI PMC
Liu Y., Cai C., Yao Y., Xu B. Alteration of phenolic profiles and antioxidant capacities of common buckwheat and tartary buckwheat produced in China upon thermal processing. J. Sci. Food Agric. 2019;99:5565–5576. doi: 10.1002/jsfa.9825. PubMed DOI
He Q., Ma D., Li W., Xing L., Zhang H., Wang Y., Du C., Li X., Jia Z., Li X., et al. High-quality Fagopyrum esculentum genome provides insights into the flavonoid accumulation among different tissues and self-incompatibility. J. Integr. Plant Biol. 2023;65:1423–1441. doi: 10.1111/jipb.13459. PubMed DOI
Yilmaz H.Ö., Ayhan N.Y., Meriç Ç.S. Buckwheat: A useful food and its effects on human health. Curr. Nutr. Food Sci. 2020;16:29–34. doi: 10.2174/1573401314666180910140021. DOI
Ruan J., Zhou Y., Yan J., Zhou M., Woo S.-H., Weng W., Cheng J., Zhang K. Tartary buckwheat: An under-utilized edible and medicinal herb for food and nutritional security. Food Rev. Int. 2022;38:440–454. doi: 10.1080/87559129.2020.1734610. DOI
Zhou J., He W., Wang J., Liao X., Xiang K., Ma M., Liu Z., Li Y., Tembrock L.R., Wu Z., et al. The pan-plastome of tartary buckwheat (Fagopyrum tataricum): Key insights into genetic diversity and the history of lineage divergence. BMC Plant Biol. 2023;23:212. doi: 10.1186/s12870-023-04218-7. PubMed DOI PMC
Luthar Z., Golob A., Germ M., Vombergar B., Kreft I. Tartary buckwheat in human nutrition. Plants. 2021;10:700. doi: 10.3390/plants10040700. PubMed DOI PMC
Zhu F. Buckwheat starch: Structures, properties, and applications. Trends Food Sci. Technol. 2016;49:121–135. doi: 10.1016/j.tifs.2015.12.002. DOI
Singh M., Malhotra N., Sharma K. Buckwheat (Fagopyrum sp.) genetic resources: What can they contribute towards nutritional security of changing world? Genet. Resour. Crop Evol. 2020;67:1639–1658. doi: 10.1007/s10722-020-00961-0. DOI
Joshi D.C., Chaudhari G.V., Sood S., Kant L., Pattanayak A., Zhang K., Fan Y., Janovská D., Meglič V., Zhou M. Revisiting the versatile buckwheat: Reinvigorating genetic gains through integrated breeding and genomics approach. Planta. 2019;250:783–801. doi: 10.1007/s00425-018-03080-4. PubMed DOI
Rodríguez J.P., Rahman H., Thushar S., Singh R.K. Healthy and resilient cereals and pseudo-cereals for marginal agriculture: Molecular advances for improving nutrient bioavailability. Front. Genet. 2020;11:49. doi: 10.3389/fgene.2020.00049. PubMed DOI PMC
Baniya B.K. Present status of buckwheat genetic resources in Nepal. [(accessed on 17 March 2023)];Curr. Adv. Buckwheat Res. 1995 :47–53. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=448ab40498a265467404074df030f000bac30911.
Choi Y.-M., Yoon H., Lee S., Yoon Hyun D., Lee M.C., Oh S., Rauf M. Characterization of agro-morphological traits of Tartary buckwheat germplasm under spring cultivation and analysis of health-related primary bioactive components in seeds by HPLC method. J. Plant Biol. 2021;64:87–98. doi: 10.1007/s12374-020-09286-y. DOI
Joshi B.K., Okuno K., Ohsawa R., Hayashi H., Otobe C., Kawase M. Characterization and evaluation of Nepalese tartary buckwheat accessions simultaneously in augmented design. Fagopyrum. 2011;28:23–41.
Rauf M., Yoon H., Lee S., Hyun D.Y., Lee M.C., Oh S., Choi Y.M. Evaluation of Fagopyrum esculentum Moench germplasm based on agro-morphological traits and the rutin and quercetin content of seeds under spring cultivation. Genet. Resour. Crop Evol. 2020;67:1385–1403. doi: 10.1007/s10722-020-00899-3. DOI
Kump B., Javornik B. Genetic diversity and relationships among cultivated and wild accessions of tartary buckwheat (Fagopyrum tataricum Gaertn.) as revealed by RAPD markers. Genet. Resour. Crop Evol. 2002;49:565–572. doi: 10.1023/A:1021250300572. DOI
Kump B., Javornik B. Evaluation of genetic variability among common buckwheat (Fagopyrum esculentum Moench) populations by RAPD markers. Plant Sci. 1996;114:149–158. doi: 10.1016/0168-9452(95)04321-7. DOI
Hou Y., Zhang Z., Wu B., Li Y. Genetic diversity in tartary buckwheat revealed by AFLP analysis. Sci. Agric. Sin. 2009;42:4166–4174.
Kishore G., Pandey A., Dobhal R., Gupta S. Population genetic study of Fagopyrum tataricum from Western Himalaya using ISSR markers. Biochem. Genet. 2013;51:750–765. doi: 10.1007/s10528-013-9604-y. PubMed DOI
Bashir E., Mahajan R., Mir R.A., Dar W.A., Zargar S.M. Unravelling the genetic variability and population structure of buckwheat (Fagopyrum spp.): A collection of north western Himalayas. Nucleus. 2021;64:93–101. doi: 10.1007/s13237-020-00319-y. DOI
Kishore G., Gupta S., Pandey A. Assessment of population genetic diversity of Fagopyrum tataricum using SSR molecular marker. Biochem. Syst. Ecol. 2012;43:32–41. doi: 10.1016/j.bse.2012.02.018. DOI
Nazir M., Mahajan R., Hashim M.J., Iqbal J., Alyemeni M.N., Ganai B.A., Zargar S.M. Deciphering allelic variability and population structure in buckwheat: An analogy between the efficiency of ISSR and SSR markers. Saudi J. Biol. Sci. 2021;28:6050–6056. doi: 10.1016/j.sjbs.2021.07.061. PubMed DOI PMC
Sharma D., Nanjundan J., Singh L., Parmar N., Singh K.H., Verma K.S., Thakur A.K. Genetic diversity and population structure analysis in Indian mustard germplasm using phenotypic traits and SSR markers. Plant Mol. Biol. Rep. 2022;40:579–594. doi: 10.1007/s11105-022-01339-5. DOI
Hou S., Ren X., Yang Y., Wang D., Du W., Wang X., Li H., Han Y., Liu L., Sun Z. Genome-wide development of polymorphic microsatellite markers and association analysis of major agronomic traits in core germplasm resources of tartary buckwheat. Front. Plant Sci. 2022;13:357. doi: 10.3389/fpls.2022.819008. PubMed DOI PMC
Mascher M., Schreiber M., Scholz U., Graner A., Reif J.C., Stein N. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nat. Genet. 2019;51:1076–1081. doi: 10.1038/s41588-019-0443-6. PubMed DOI
Song Y., Cheng Z., Dong Y., Liu D., Bai K., Jarvis D., Feng J., Long C. Diversity of Tartary buckwheat (Fagopyrum tataricum) landraces from Liangshan, Southwest China: Evidence from morphology and SSR markers. Agronomy. 2022;12:1022. doi: 10.3390/agronomy12051022. DOI
Bhat S., Nazir M., Zargar S.A., Naik S., Dar W.A., Bhat B.A., Mahajan R., Ganai B.A., Sofi P.A., Zargar S.M. In-depth morphological assessment revealed significant genetic variability in common buckwheat (Fagopyrum esculentum) and tartary buckwheat (Fagopyrum tataricum) germplasm. Plant Genet. Res. 2023;20:417–424. doi: 10.1017/S1479262123000321. DOI
Misra A.K., Roy S., Singh S.K., Rathi R.S., Harish G.D. Morphological diversity of buckwheat (Fagopyrum spp.) landraces from Northeast India. Indian J. Plant Genet. Res. 2019;32:11–17. doi: 10.5958/0976-1926.2019.00002.0. DOI
Naik S., Mahajan R., Sofi P.A., Abidi I., Ali G., Nehvi F.A., Khan I., Bhat S.A., Bhat M.A., Bhat B.A. Characterisation of buckwheat (Fagopyrum spp.) diversity of the northwestern Himalayas. Crop Pasture Sci. 2022 doi: 10.1071/CP22278. DOI
Joshi B.K., Okuno K., Ohsawa R., Bimb H.P. Principal component and cluster analyses of Nepalese Tartary buckwheat diversity. Fagopyrum. 2010;27:55–66.
Park J.E., Kang Y., Han G.D., Yildiz M., Kim S.H., Kim C., Chung Y.S. Diversity study of common buckwheat germplasm in the Republic of Korea using GBS. Plant Biotechnol. Rep. 2022;16:799–803. doi: 10.1007/s11816-022-00801-w. DOI
Song J.Y., Lee G.A., Yoon M.S., Ma K.H., Choi Y.M., Lee J.R., Jung Y.J., Park H.J., Kim C.K., Lee M.C. Analysis of Genetic Diversity and Population Structure of Buckwheat (Fagopyrum esculentum Moench.) Landraces of Korea Using SSR Markers. In: Zhou M., Kreft I., Suvorova G., Tang Y., Woo S.H., editors. Buckwheat Germplasm in the World. Academic Press; Cambridge, MA, USA: Elsevier; Amsterdam, The Netherland: 2018. pp. 315–331.
Janovská D., Jágr M., Svoboda P., Dvořáček V., Meglič V., Hlásná Čepková P. Breeding buckwheat for nutritional quality in the Czech Republic. Plants. 2021;10:1262. doi: 10.3390/plants10071262. PubMed DOI PMC
Gupta N., Sharma S.K., Rana J.C., Chauhan R.S. AFLP fingerprinting of tartary buckwheat accessions (Fagopyrum tataricum) displaying rutin content variation. Fitoterapia. 2012;83:1131–1137. doi: 10.1016/j.fitote.2012.04.015. PubMed DOI
Hou S., Sun Z., Linghu B., Xu D., Wu B., Zhang B., Wang X., Han Y., Zhang L., Qiao Z. Genetic diversity of buckwheat cultivars (Fagopyrum tartaricum Gaertn.) assessed with SSR markers developed from genome survey sequences. Plant Mol. Biol. Rep. 2016;34:233–241. doi: 10.1007/s11105-015-0907-5. DOI
Nay M.M., Byrne S.L., Pérez E.A., Walter A., Studer B. Genetic characterization of buckwheat accessions through genome-wide allele-frequency fingerprints. Folia Biol. Geol. 2020;61:17–23. doi: 10.3986/fbg0063. DOI
Joshi B.K. Correlation, regression and path coefficient analyses for some yield components in common and Tartary buckwheat in Nepal. Fagopyrum. 2005;22:77–82.
Dar F.A., Tahir I., Rehman R.U. Morphological characterization reveals high intraspecies diversity in Fagopyrum esculentum Moench and Fagopyrum sagittatum Gilib from north-western Himalayan regions. Agric. Res. 2022;11:398–409. doi: 10.1007/s40003-021-00581-9. DOI
Kapoor C., Avasthe R.K., Chettri P.K., Gopi R., Kalita H., Rana J.C. Multivariate analysis to evaluate common and tartary buckwheat germplasm in Sikkim. Indian J. Plant Genet. Res. 2018;31:134–141. doi: 10.5958/0976-1926.2018.00016.5. DOI
Tetsuka T., Uchino A. Variation in seed shape and husk color in Japanese native cultivars of common buckwheat (Fagopyrum esculentum Moench) Plant Prod. Sci. 2005;8:60–64. doi: 10.1626/pps.8.60. DOI
Janovska D., Stehno Z., Cepkova P. Advances in Buckwheat Research, Proceedings of the 10th International Symposium on Buckwheat, Yangling, China, 14–18 August 2007. Northwest A&F University Press; Yangling, China: 2007. Evaluation of Common Buckwheat Genetic Resources in Czech Gene Bank; pp. 31–40.
Stehno Z., Janovska D., Wang Z. Advances in Buckwheat Research, Proceedings of the 10th International Symposium on Buckwheat, Yangling, China, 14–18 August 2007. Northwest A&F University Press; Yangling, China: 2007. Comparison of Selected Traits of Common and Tartary Buckwheat Originated from China and Czech Republic under Conditions of the Czech Republic; pp. 252–256.
Chrungoo N.K., Dohtdong L., Chettry U. Genome Plasticity in Buckwheat. In: Rajpal V.R., Rao S.R., Raina S.N., editors. Gene Pool Diversity and Crop Improvement Sustainable Development and Biodiversity. Springer International Publishing; Cham, Switzerland: 2016. pp. 227–239. DOI
Facho Z.H., Farhatullah I.H.K., Khan N.U., Ali S. Morphological characterization and estimation of genotype × environment interaction of indigenous buckwheat germplasm collected from Gilgit Baltistan Pakistan. [(accessed on 26 May 2023)];Pak. J. Bot. 2016 48:2391–2398. Available online: https://www.researchgate.net/publication/315708780_Morphological_characterization_and_estimation_of_genotype_environment_interaction_of_indigenous_buckwheat_germplasm_collected_from_Gilgit_Baltistan_Pakistan.
Hunt H.V., Shang X., Jones M.K. Buckwheat: A crop from outside the major Chinese domestication centres? A review of the archaeobotanical, palynological and genetic evidence. Veg. Hist. Archaeobot. 2018;27:493–506. doi: 10.1007/s00334-017-0649-4. PubMed DOI PMC
Joshi B.K., Baniya B.K. A diversity in qualitative traits of Nepalese cultivated buckwheat species. Fagopyrum. 2006;23:23–27.
Oomah B.D., Campbell C.G., Mazza G. Effects of cultivar and environment on phenolic acids in buckwheat. Euphytica. 1996;90:73–77. doi: 10.1007/BF00025162. DOI
Saunders Bulan M., Wu J., Emshwiller E., Berres M.E., Posner J.L., Peng D., Wang X., Li J., Stoltenberg D.E., Zhang Y. Social and environmental influences on tartary buckwheat (Fagopyrum tataricum Gaertn.) varietal diversity in Yunnan, China. Genet. Resour. Crop Evol. 2017;64:113–125. doi: 10.1007/s10722-015-0337-0. DOI
Cobos M.J., Rubio J., Fernández-Romero M.D., Garza R., Moreno M.T., Millán T., Gil J. Genetic analysis of seed size, yield and days to flowering in a chickpea recombinant inbred line population derived from a Kabuli × Desi cross. Ann. Appl. Biol. 2007;151:33–42. doi: 10.1111/j.1744-7348.2007.00152.x. DOI
Matsui K., Yasui Y. Genetic and genomic research for the development of an efficient breeding system in heterostylous self-incompatible common buckwheat (Fagopyrum esculentum) Theor. Appl. Genet. 2020;133:1641–1653. doi: 10.1007/s00122-020-03572-6. PubMed DOI
Senthilkumaran R., Bisht I.S., Bhat K.V., Rana J.C. Diversity in buckwheat (Fagopyrum spp.) landrace populations from north-western Indian Himalayas. Genet. Resour. Crop Evol. 2008;55:287–302. doi: 10.1007/s10722-007-9234-5. DOI
Shukla A., Srivastava N., Suneja P., Yadav S.K., Hussain Z., Rana J.C., Yadav S. Genetic diversity analysis in Buckwheat germplasm for nutritional traits. Indian J. Exp. Biol. 2018;56:827–837.
Guijarro-Real C., Prohens J., Rodríguez-Burruezo A., Fita A. Potential of wall rocket (Diplotaxis erucoides) as a new crop: Influence of the growing conditions on the visual quality of the final product. Sci. Hort. 2019;258:108778. doi: 10.1016/j.scienta.2019.108778. DOI
Jeon J., Kim J.K., Wu Q., Park S.U. Effects of cold stress on transcripts and metabolites in tartary buckwheat (Fagopyrum tataricum) Environ. Exp. Bot. 2018;155:488–496. doi: 10.1016/j.envexpbot.2018.07.027. DOI
Ma Z., He S., Wang X., Sun J., Zhang Y., Zhang G., Wu L., Li Z., Liu Z., Sun G. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat. Genet. 2018;50:803–813. doi: 10.1038/s41588-018-0119-7. PubMed DOI
Debnath N.R., Rasul M.G., Sarker M.M.H., Rahman M.H., Paul A.K. Genetic divergence in buckwheat (Fagopyrum esculentum Moench.) Int. J. Sustain. Crop Prod. 2008;3:60–68.
Li J., Feng S., Qu Y., Gong X., Luo Y., Yang Q., Zhang Y., Dang K., Gao X., Feng B. Identifying the primary meteorological factors affecting the growth and development of Tartary buckwheat and a comprehensive landrace evaluation using a multi-environment phenotypic investigation. J. Sci. Food Agric. 2021;101:6104–6116. doi: 10.1002/jsfa.11267. PubMed DOI
Ambreen H., Kumar S., Kumar A., Agarwal M., Jagannath A., Goel S. Association mapping for important agronomic traits in safflower (Carthamus tinctorius L.) core collection using microsatellite markers. Front. Plant Sci. 2018;9:402. doi: 10.3389/fpls.2018.00402. PubMed DOI PMC
Soren K.R., Konda A.K., Gangwar P., Tiwari V.A., Shanmugavadivel P.S., Parihar A.K., Dixit G.P., Singh N.P. Development of SSR markers and association studies of markers with phenology and yield-related traits in grass pea (Lathyrus sativus) Crop Pasture Sci. 2020;71:768–775. doi: 10.1071/CP19557. DOI
Iwata H., Imon K., Tsumura Y., Ohsawa R. Genetic diversity among Japanese indigenous common buckwheat (Fagopyrum esculentum) cultivars as determined from amplified fragment length polymorphism and simple sequence repeat markers and quantitative agronomic traits. Genome. 2005;48:367–377. doi: 10.1139/g04-121. PubMed DOI
Konishi T., Iwata H., Yashiro K., Tsumura Y., Ohsawa R., Yasui Y., Ohnishi O. Development and characterization of microsatellite markers for common buckwheat. Breed. Sci. 2006;56:277–285. doi: 10.1270/jsbbs.56.277. DOI
Ma K.H., Kim N.S., Lee G.A., Lee S.Y., Lee J.K., Yi J.Y., Park Y.J., Kim T.S., Gwag J.G., Kwon S.J. Development of SSR markers for studies of diversity in the genus Fagopyrum. Theor. Appl. Genet. 2009;119:1247–1254. doi: 10.1007/s00122-009-1129-8. PubMed DOI
Shi T., Li R., Chen Q., Li Y., Pan F., Chen Q. De novo sequencing of seed transcriptome and development of genic-SSR markers in common buckwheat (Fagopyrum esculentum) Mol. Breed. 2017;37:147. doi: 10.1007/s11032-017-0743-4. DOI
Fang X., Huang K., Nie J., Zhang Yuanli Zhang Yuke Li Y., Wang W., Xu X., Ruan R., Yuan X. Genome-wide mining, characterization, and development of microsatellite markers in Tartary buckwheat (Fagopyrum tataricum Garetn.) Euphytica. 2019;215:183. doi: 10.1007/s10681-019-2502-6. DOI
Gao F., Zhang Z., Wu B. Construction and application of SSR molecular markers system for genetic diversity analysis of Chinese tartary buckwheat germplasm resources. Sci. Agric. Sin. 2012;45:1042–1053.
Grahić J., Okić A., Šimon S., Djikić M., Gadžo D., Pejić I., Gaši F. Genetic relationships and diversity of common buckwheat accessions in Bosnia and Herzegovina. Agronomy. 2022;12:2676. doi: 10.3390/agronomy12112676. DOI
Rout A., Chrungoo N.K. Genetic variation and species relationships in Himalayan buckwheats as revealed by SDS PAGE of endosperm proteins extracted from single seeds and RAPD based DNA fingerprints. Genet. Resour. Crop Evol. 2007;54:767–777. doi: 10.1007/s10722-006-9166-5. DOI
Facho Z.H., Farhatullah A., Ali S. Species divergence and diversity in buckwheat landraces collected from the western Himalayan region of Pakistan. Pak. J. Bot. 2019;51:2215–2224. doi: 10.30848/PJB2019-6(27). DOI
Barcaccia G., Volpato M., Gentili R., Abeli T., Galla G., Orsenigo S., Citterio S., Sgorbati S., Rossi G. Genetic identity of common buckwheat (Fagopyrum esculentum Moench) landraces locally cultivated in the Alps. Genet. Resour. Crop Evol. 2016;63:639–651. doi: 10.1007/s10722-015-0273-z. DOI
Khazaei H., Fedoruk M., Caron C.T., Vandenberg A., Bett K.E. Single nucleotide polymorphism markers associated with seed quality characteristics of cultivated lentil. J. Plant Genome. 2018;11:170051. doi: 10.3835/plantgenome2017.06.0051. PubMed DOI
Shi T.X., Li R.Y., Zheng R., Chen Q.F., Li H.Y., Huang J., Zhu L.W., Liang C.G. Mapping QTLs for 1000-grain weight and genes controlling hull type using SNP marker in Tartary buckwheat (Fagopyrum tataricum) BMC Genom. 2021;22:142. doi: 10.1186/s12864-021-07449-w. PubMed DOI PMC
IPGRI Descriptors for Buckwheat (Fagopyrum spp.) 1994. [(accessed on 16 May 2021)]. pp. 1–48. Available online: https://cgspace.cgiar.org/handle/10568/72849.
UPOV Buckwheat Fagopyrum Esculentum Moench. Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability. 2012. [(accessed on 16 May 2021)]. pp. 1–27. Available online: https://www.upov.int/edocs/tgdocs/en/tg278.pdf.
Pipan B., Zupančič M., Blatnik E., Dolničar P., Meglič V. Comparison of six genomic DNA extraction methods for molecular downstream applications of apple tree (Malus × domestica) Cogent Food Agric. 2018;4:1540094. doi: 10.1080/23311932.2018.1540094. DOI
Pipan B., Meglič V. Diversification and genetic structure of the western-to-eastern progression of European Phaseolus vulgaris L. germplasm. BMC Plant Biol. 2019;19:442. doi: 10.1186/s12870-019-2051-0. PubMed DOI PMC
Grosjean P., Ibanez F., Etienne M., Grosjean M.P. Package ‘Pastecs’. 2018. [(accessed on 17 March 2023)]. Available online: http://masterdistfiles.gentoo.org/pub/cran/web/packages/pastecs/pastecs.pdf.
Guevara M.R., Hartmann D., Mendoza M. Diverse: An R package to analyze diversity in complex systems. [(accessed on 17 March 2023)];R J. 2016 8:60. doi: 10.32614/RJ-2016-033. Available online: https://svn.r-project.org/Rjournal/html/archive/2016-2/guevara-hartmann-mendoza.pdf. DOI
Shannon C.E., Weaver W. A Mathematical Model of Communication. University of Illinois Press; Urbana, IL, USA: 1949. pp. 11–20.
Taiyun W., Viliam S. R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84) Statistician. 2017;56:e24.
Kassambara A., Mundt F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses; R Package Version 1.0.3. 2020. [(accessed on 17 March 2023)]. Available online: https://CRAN.R-project.org/package=factoextra.
Liu K., Muse S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics. 2005;21:2128–2129. doi: 10.1093/bioinformatics/bti282. PubMed DOI
Goudet J. HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes. 2005;5:184–186. doi: 10.1111/j.1471-8286.2004.00828.x. DOI
Kamvar Z.N., Tabima J.F., Grünwald N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2014;2:e281. doi: 10.7717/peerj.281. PubMed DOI PMC
Dray S., Siberchicot M.A. Package ‘ade4’. Université de Lyon; Lyon, France: 2017. [(accessed on 16 March 2023)]. Available online: http://cran.nexr.com/web/packages/ade4/ade4.pdf.
Peakall R.O.D., Smouse P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 2006;6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x. PubMed DOI PMC
Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. doi: 10.1093/genetics/155.2.945. PubMed DOI PMC
Earl D.A., Von Holdt B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012;4:359–361. doi: 10.1007/s12686-011-9548-7. DOI
Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x. PubMed DOI
Bradbury P.J., Zhang Z., Kroon D.E., Casstevens T.M., Ramdoss Y., Buckler E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–2635. doi: 10.1093/bioinformatics/btm308. PubMed DOI
Kim K.W., Chung H.K., Cho G.T., Ma K.H., Chandrabalan D., Gwag J.G., Kim T.S., Cho E.G., Park Y.J. PowerCore: A program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics. 2007;23:2155–2162. doi: 10.1093/bioinformatics/btm313. PubMed DOI