Breeding Buckwheat for Nutritional Quality in the Czech Republic
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
771367
Horizon 2020 Framework Programme
PubMed
34206195
PubMed Central
PMC8309114
DOI
10.3390/plants10071262
PII: plants10071262
Knihovny.cz E-zdroje
- Klíčová slova
- Fagopyrum, breeding, common buckwheat, mass spectrometry, morpho-agronomic traits, phenolic compounds, protein,
- Publikační typ
- časopisecké články MeSH
Buckwheat is a nutritionally valuable crop, an alternative to common cereals also usable in gluten-free diets. The selection of buckwheat genotypes suitable for further breeding requires the characterization and evaluation of genetic resources. The main objective of this work was to evaluate selected phenotypic and morphological traits using international buckwheat descriptors, including total phenolic content and antioxidant activity, on a unique set of 136 common buckwheat accessions grown in 2019-2020 under Czech Republic conditions. In addition, UHPLC-ESI- MS/MS was used to analyze a wide spectrum of 20 phenolic compounds in buckwheat seeds, including four flavanols, three phenolic acids, seven flavonols, four flavones, and two flavanones. Significant differences among years and genotypes were observed for morphological traits (plant height and 1000-seed weight) and antioxidant activity, as well as levels of observed chemical compounds. Antioxidant activity, crude protein content, plant height and rutin content were characterized by higher mean values in 2020 than in 2019 and vice versa for total polyphenol content and 1000-seed weight. Crude protein content was the most stable across years, while total polyphenol content and rutin content varied greatly from year to year. The most abundant phenolic compounds were rutin, hyperoside, epicatechin, catechin, vitexin, isovitexin, orientin and isoorientin. Protein content was negatively correlated with plant height, catechin and epicatechin content. On the other hand, AA and TPC were positively correlated with rutin, hyperoside and chlorogenic acid. Five accessions showed high stability of the evaluated traits under changing conditions within both years of observation. These materials can be used in breeding programmes aimed at improving buckwheat genotypes with emphasis on quality traits.
Gene Bank Crop Research Institute Drnovská 507 73 161 06 Prague 6 Czech Republic
Molecular Genetics Crop Research Institute Drnovská 507 73 161 06 Prague 6 Czech Republic
Quality and Plant Products Crop Research Institute Drnovská 507 73 161 06 Prague 6 Czech Republic
Zobrazit více v PubMed
Rodríguez J.P., Rahman H., Thushar S., Singh R.K. Healthy and resilient cereals and pseudo-cereals for marginal agriculture: Molecular advances for improving nutrient bioavailability. Front. Genet. 2020;11:49. doi: 10.3389/fgene.2020.00049. PubMed DOI PMC
Ohsako T., Li C. Classification and systematics of the Fagopyrum species. Breed. Sci. 2020;70:93–100. doi: 10.1270/jsbbs.19028. PubMed DOI PMC
Zhou M., Tang Y., Deng X., Ruan C., Kreft I., Tang Y., Wu T. Overview of buckwheat resources in the world. In: Zhou M., Kreft I., Suvorova G., Tang Y., Woo S.H., editors. Buckwheat Germplasm in the World. Elsevier Inc.; London, UK: 2018. p. 355.
Ohnishi O. Discovery of the wild ancestor of common buckwheat. Fagopyrum. 1990;11:5–10.
Ohnishi O. Foreword. In: Zhou M.K.I., Woo S.H., Chrungoo N., Wieslander G., editors. Molecular Breeding and Nutritional Aspects of Buckwheat. Elsevier Inc.; London, UK: 2016.
Kreft I., Chang K.J., Choi Y.S., Park H.C. Ethnobotany of Buckwheat. Junsol Publishing Co.; Soul, Korea: 2003.
Sytar O. Phenolic acids in the inflorescences of different varieties of buckwheat and their antioxidant activity. J. King Saud Univ. Sci. 2015;27:136–142. doi: 10.1016/j.jksus.2014.07.001. DOI
Singh M., Malhotra N., Sharma K. Buckwheat (Fagopyrum sp.) genetic resources: What can they contribute towards nutritional security of changing world? Genet. Resour. Crop. Evol. 2020;67:1639–1658. doi: 10.1007/s10722-020-00961-0. DOI
Krkošková B., Mrázová Z. Prophylactic components of buckwheat. Food Res. Int. 2005;38:561–568. doi: 10.1016/j.foodres.2004.11.009. DOI
Podolska G., Gujska E., Klepacka J., Aleksandrowicz E. Bioactive compounds in different buckwheat species. Plants. 2021;10:961. doi: 10.3390/plants10050961. PubMed DOI PMC
Skrabanja V., Kreft I., Golob T., Modic M., Ikeda S., Ikeda K., Kreft S., Bonafaccia G., Knapp M., Kosmelj K. Nutrient content in buckwheat milling fractions. Cereal Chem. J. 2004;81:172–176. doi: 10.1094/CCHEM.2004.81.2.172. DOI
Eggum B.O., Kreft I., Javornik B. Chemical composition and protein quality of buckwheat (Fagopyrum esculen-tum MOENCH) Plant Foods Hum. Nutr. 1980;30:175–179. doi: 10.1007/BF01094020. DOI
Kasar C., Thanushree M.P., Gupta S., Inamdar A.A. Milled fractions of common buckwheat (Fagopyrum escu-lentum) from the Himalayan regions: Grain characteristics, functional properties and nutrient composition. J. Food Sci. Tech. Mys. 2020;11 doi: 10.1007/s13197-020-04848-x. PubMed DOI PMC
Domingos I.F., Bilsborrow P.E. The effect of variety and sowing date on the growth, development, yield and quality of common buckwheat (Fagopyrum esculentum Moench) Eur. J. Agron. 2021;126:126264. doi: 10.1016/j.eja.2021.126264. DOI
Kalinova J.P., Vrchotova N., Triska J. Phenolics levels in different parts of common buckwheat (Fagopyrwn esculentum) achenes. J. Cereal Sci. 2019;85:243–248. doi: 10.1016/j.jcs.2018.12.012. DOI
Rauf M., Yoon H., Lee S., Hyun D.Y., Lee M.C., Oh S., Choi Y.M. Evaluation of Fagopyrum esculentum Moench germplasm based on agro-morphological traits and the rutin and quercetin content of seeds under spring culti-vation. Genet. Resour. Crop Evol. 2020;67:1385–1403. doi: 10.1007/s10722-020-00899-3. DOI
Ghiselli L., Tallarico R., Mariotti M., Romagnoli S., Baglio A.P., Donnarumma P., Benedettelli S. Agronomic and nutritional characteristics of three buckwheat cultivars under organic farming in three environments of the Gar-fagnana mountain district. Ital. J. Agron. 2016;11:188–194. doi: 10.4081/ija.2016.729. DOI
Tang Y., Ding M.O., Tang Y.X., Wu Y.M., Shao J.R., Zhou M.L. Germplasm resources of buckwheat in China. In: Zhou M., Kreft I., Woo S.H., Chrungoo N., Wieslander G., editors. Molecular Breeding and Nutritional Aspects of Buckwheat. Elsevier Inc.; London, UK: 2016. pp. 13–20.
Bai C., Feng M., Hao X., Zhong Q., Tong L., Wang Z. Rutin, quercetin, and free amino acid analysis in buckwheat (Fagopyrum) seeds from different locations. Genet. Mol. Res. 2015;14:19040–19048. doi: 10.4238/2015.December.29.11. PubMed DOI
Li J., Yang P., Yang Q.H., Gong X.W., Ma H.C., Dang K., Chen G.H., Gao X.L., Feng B.L. Analysis of fla-vonoid metabolites in buckwheat leaves using UPLC-ESI-MS/MS. Molecules. 2019;24:13. PubMed PMC
Kiprovski B., Mikulic-Petkovsek M., Slatnar A., Veberic R., Stampar F., Malencic D., Latkovic D. Comparison of phenolic profiles and antioxidant properties of European Fagopyrum esculentum cultivars. Food Chem. 2015;185:41–47. doi: 10.1016/j.foodchem.2015.03.137. PubMed DOI
Huda N., Lu S., Jahan T., Ding M., Jha R., Zhang K., Zhang W., Georgiev M.I., Park S.U., Zhou M. Treasure from garden: Bioactive compounds of buckwheat. Food Chem. 2021;335:127653. doi: 10.1016/j.foodchem.2020.127653. PubMed DOI PMC
Martinez-Villaluenga C., Penas E., Hernandez-Ledesma B. Pseudocereal grains: Nutritional value, health ben-efits and current applications for the development of gluten-free foods. Food Chem. Toxicol. 2020;137:26. doi: 10.1016/j.fct.2020.111178. PubMed DOI
Raguindin P.F., Itodo O.A., Stoyanov J., Dejanovic G.M., Gamba M., Asllanaj E., Minder B., Bussler W., Metzger B., Muka T., et al. A systematic review of phytochemicals in oat and buckwheat. Food Chem. 2021;338:127982. doi: 10.1016/j.foodchem.2020.127982. PubMed DOI
Kreft I., Zhou M., Golob A., Germ M., Likar M., Dziedzic K., Luthar Z. Breeding buckwheat for nutritional quality. Breed. Sci. 2020;70:67–73. doi: 10.1270/jsbbs.19016. PubMed DOI PMC
Linington S., Hawkes J.G., Maxted N., Ford-Lloyd B.V. The ex situ conservation of plant genetic resources. Kew Bull. 2002;57:506. doi: 10.2307/4111140. DOI
Gotor E., Alercia A., Rao V.R., Watts J., Caracciolo F. The scientific information activity of Bioversity International: The descriptor lists. Genet. Resour. Crop Evol. 2008;55:757–772. doi: 10.1007/s10722-008-9342-x. DOI
Rana J.C., Singh M., Chauban R.S., Chahota R.K., Sharma T.R., Yadav R., Achak S. Genetic resources of buckwheat in India. In: Zhou M., Kreft I., Woo S.H., Chrungoo N., Wieslander G., editors. Molecular Breeding and Nutritional Aspects of Buckwheat. Elsevier Inc.; London, UK: 2016. pp. 109–135.
Siracusa L., Gresta F., Sperlinga E., Ruberto G. Effect of sowing time and soil water content on grain yield and phenolic profile of four buckwheat (Fagopyrum esculentum Moench.) varieties in a Mediterranean environment. J. Food Compos. Anal. 2017;62:1–7. doi: 10.1016/j.jfca.2017.04.005. DOI
IPGRI Descriptors for Buckwheat (Fagopyrum spp.) [(accessed on 21 January 2021)]; Available online: https://www.bioversityinternational.org/e-library/publications/detail/descriptors-for-buckwheat-fagopyrum-spp/
Govindaraj M., Vetriventhan M., Srinivasan M. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genet. Res. Int. 2015;2015:1–14. doi: 10.1155/2015/431487. PubMed DOI PMC
Michalová A. In Study of relationships between yield and quality characters of common buckwheat (Fagopyrum esculen-tum Moench) Advance in Buckwheat Research; Proceedings of the VII International Symposium on Buckwheat; Winnipeg, BA, Canada. 12–14 August 1998; pp. 188–196.
Hlásná Čepková P., Janovská D., Stehno Z. Assessment of genetic diversity of selected tartary and common buckwheat accessions. Span. J. Agric. Res. 2009;7:844–854. doi: 10.5424/sjar/2009074-1098. DOI
Morishita T., Hara T., Hara T. Important agronomic characteristics of yielding ability in common buckwheat; ecotype and ecological differentiation, preharvest sprouting resistance, shattering resistance, and lodging resistance. Breed. Sci. 2020;70:39–47. doi: 10.1270/jsbbs.19020. PubMed DOI PMC
Fang X., Li Y., Nie J., Wang C., Huang K., Zhang Y., Zhang Y., She H., Liu X., Ruan R., et al. Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.) Field Crop. Res. 2018;219:160–168. doi: 10.1016/j.fcr.2018.02.001. DOI
Morishita T., Tetsuka T. Year-to-year variation and variental difference of agronomic characters of common buckwheat in the kyushu area. Jpn. J. Crop. Sci. 2001;70:379–386. doi: 10.1626/jcs.70.379. DOI
Saturni L.F.G., Bacchetti T. The gluten-free diet: Safety and nutritional quality. Nutrients. 2010;2:16–34. doi: 10.3390/nu2010016. PubMed DOI PMC
Alvarez-Jubete L., Arendt E.K., Gallagher E. Nutritive value of pseudocereals and their increasing use as func-tional gluten-free ingredients. Trends Food Sci. Technol. 2010;21:106–113. doi: 10.1016/j.tifs.2009.10.014. DOI
Janovská D., Hlásná Čepková P. Nutritional aspects of buckwheat in the Czech Republic. In: Zhou M., Kreft I., Woo S.H., Chrungoo N., Wieslander G., editors. Molecular Breeding and Nutritional Aspects of Buckwheat. Elsevier Inc.; London, UK: 2016. pp. 177–192.
Bonafaccia G., Fabjan N. In Nutritional comparison of tartary buckwheat with common buckwheat and minor cereals. Zb. Bioteh. Fak. Univ. Ljubl. Kmet. 2003;81:349–355.
Ikeda K. Buckwheat composition, chemistry, and processing. Adv. Food Nutr. Res. 2002;44:395–434. PubMed
Gorinstein S., Drzewiecki J., Delgado-Licon E., Pawelzik E., Ayala A.L.M., Medina O.J., Haruenkit R., Trakhtenberg S. Relationship between dicotyledone-amaranth, quinoa, fagopyrum, soybean and monocots-sorghum and rice based on protein analyses and their use as substitution of each other. Eur. Food Res. Technol. 2005;221:69–77. doi: 10.1007/s00217-005-1208-2. DOI
Luthar Z., Germ M., Likar M., Golob A., Vogel-Mikuš K., Pongrac P., Kušar A., Pravst I., Kreft I. Breeding buckwheat for increased levels of rutin, quercetin and other bioactive compounds with potential antiviral effects. Plants. 2020;9:1638. doi: 10.3390/plants9121638. PubMed DOI PMC
Suzuki T., Noda T., Morishita T., Ishiguro K., Otsuka S., Brunori A. Present status and future perspectives of breeding for buckwheat quality. Breed. Sci. 2020;70:48–66. doi: 10.1270/jsbbs.19018. PubMed DOI PMC
Zhao G., Peng L.-X., Wang S., Hu Y.-B., Zou L. HPLC Fingerprint—Antioxidant properties study of buckwheat. J. Integr. Agric. 2012;11:1111–1118. doi: 10.1016/S2095-3119(12)60104-X. DOI
Lee L.-S., Choi E.-J., Kim C.-H., Sung J.-M., Kim Y.-B., Seo D.-H., Choi H.-W., Choi Y.-S., Kum J.-S., Park J.-D. Contribution of flavonoids to the antioxidant properties of common and tartary buckwheat. J. Cereal Sci. 2016;68:181–186. doi: 10.1016/j.jcs.2015.07.005. DOI
Klykov A.G., Moiseenko L.M., Barsukova Y.N. Biological resources and selection value of species of Fagopy-rum Mill. Genus in the Far East of Russia. In: Zhou M., Kreft I., Woo S.H., Chrungoo N., Wieslander G., editors. Molecular Breeding and Nutritional Aspects of Buckwheat. Elsevier Inc.; London, UK: 2016. pp. 51–60.
Verardo V., Arraez-Roman D., Segura-Carretero A., Marconi E., Fernandez-Gutierrez A., Caboni M.F. Identi-fication of buckwheat phenolic compounds by reverse phase high performance liquid chromatography-electrospray ionization-time of flight-mass spectrometry (RP-HPLC-ESI-TOF-MS) J. Cereal Sci. 2010;52:170–176. doi: 10.1016/j.jcs.2010.04.009. DOI
Choi Y.-M., Yoon H., Lee S., Hyun D.Y., Lee M.-C., Oh S., Rauf M. Characterization of agro-morphological traits of tartary buckwheat germplasm under spring cultivation and analysis of health-related primary bioactive components in seeds by HPLC Method. J. Plant Biol. 2021;64:87–98. doi: 10.1007/s12374-020-09286-y. DOI
Kreft M. Buckwheat phenolic metabolites in health and disease. Nutr. Res. Rev. 2016;29:30–39. doi: 10.1017/S0954422415000190. PubMed DOI
Kalinova J., Vrchotova N. The influence of organic and conventional crop management, variety and year on the yield and flavonoid level in common buckwheat groats. Food Chem. 2011;127:602–608. doi: 10.1016/j.foodchem.2011.01.050. PubMed DOI
Vollmannová A., Musilová J., Lidiková J., Árvay J., Šnirc M., Tóth T., Bojňanská T., Čičová I., Kreft I., Germ M. Concentrations of phenolic acids are differently genetically determined in leaves, flowers, and grain of common buckwheat (Fagopyrum esculentum Moench) Plants. 2021;10:1142. doi: 10.3390/plants10061142. PubMed DOI PMC
Borovaya S.A., Klykov A.G. Some aspects of flavonoid biosynthesis and accumulation in buckwheat plants. Plant Biotechnol. Rep. 2020;14:213–225. doi: 10.1007/s11816-020-00614-9. DOI
Hung P.V., Trinh L.D.D., Thuy N.T.X., Morita N. Changes in nutritional composition, enzyme activities and bioactive compounds of germinated buckwheat (Fagopyrum esculantum Moench) under unchanged air and humidity conditions. Int. J. Food Sci. Technol. 2020;9 doi: 10.1111/ijfs.14883. DOI
He M., Min J.-W., Kong W.-L., He X.-H., Li J.-X., Peng B.-W. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia. 2016;115:74–85. doi: 10.1016/j.fitote.2016.09.011. PubMed DOI
Quettier-Deleu C., Gressier B., Vasseur J., Dine T., Brunet C., Luyckx M., Cazin M., Cazin J.-C., Bailleul F., Trotin F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol. 2000;72:35–42. doi: 10.1016/S0378-8741(00)00196-3. PubMed DOI
Morishita T., Shimizu A., Yamaguchi H., Degi K. Development of common buckwheat cultivars with high antioxidative activity—‘Gamma no irodori’, ‘Cobalt no chikara’ and ‘Ruchiking’. Breed. Sci. 2019;69:514–520. doi: 10.1270/jsbbs.18140. PubMed DOI PMC
Zhu H., Liu S., Yao L., Wang L., Li C. Free and bound phenolics of buckwheat varieties: HPLC characterization, antioxidant activity, and inhibitory potency towards α-glucosidase with molecular docking analysis. Antioxidants. 2019;8:606. doi: 10.3390/antiox8120606. PubMed DOI PMC
Janovska D., Štočková L., Stehno Z. Evaluation of buckwheat sprouts as microgreens. Acta Agric. Slov. 2010;95:157–162. doi: 10.2478/v10014-010-0012-2. DOI
Guven H., Arici A., Simsek O. Flavonoids in our foods: A short review. J. Basic Clin. Health Sci. 2019;3:96–106. doi: 10.30621/jbachs.2019.555. DOI
Dziadek K., Kopeć A., Piątkowska E., Leszczyńska T., Pisulewska E., Witkowicz R., Bystrowska B., Francik R. Identification of polyphenolic compounds and determination of antioxidant activity in extracts and infusions of buckwheat leaves. Eur. Food Res. Technol. 2017;244:333–343. doi: 10.1007/s00217-017-2959-2. DOI
Barreca D., Gattuso G., Bellocco E.S., Calderaro A., Trombetta D., Smeriglio A., Laganà G., Daglia M., Meneghini S., Nabavi S.M. Flavanones: Citrus phytochemical with health-promoting properties. BioFactors. 2017;43:495–506. doi: 10.1002/biof.1363. PubMed DOI
Qin P., Wang Q., Shan F., Hou Z., Ren G. Nutritional composition and flavonoids content of flour from different buckwheat cultivars. Int. J. Food Sci. Technol. 2010;45:951–958. doi: 10.1111/j.1365-2621.2010.02231.x. DOI
Jia Q.Q., Zhang S.D., Zhang H.Y., Yang X.J., Cui X.L., Su Z.H., Hu P. A Comparative Study on Polyphe-nolic Composition of Berries from the Tibetan Plateau by UPLC-Q-Orbitrap MS System. Chem. Biodivers. 2020;17:12. doi: 10.1002/cbdv.202000033. PubMed DOI
Czech State Norm (CSN) EN ISO 712 (461014). Obiloviny a Výrobky z Obilovin, Stanovení Vlhkosti—Referenční Metoda. Úřad pro Technickou Normalizaci, Metrologii a Státní Zkušebnictví, vytiskl NORMSERVIS, s.r.o.; Praha, Czech Republic: 2010. [(accessed on 21 May 2020)]. Available online: http://www.technicke-normy-csn.cz/461014-csn-en-iso-712_4_85543.html. (In Czech)
Czech State Norm (CSN) 5983-1 (467035), C.S.N.C.—Krmiva—Stanovení Obsahu Dusíku a Výpočet Obsahu Hrubého Proteinu—Část 1: Kjeldahlova Metoda. Český normalizační Institute, vytiskl XEROX, s.r.o.; Praha, Czech Republic: 2005. [(accessed on 21 May 2020)]. Available online: https://www.iso.org/standard/52374.html. (In Czech)
Holasova M., Fiedlerova V., Smrcinova H., Orsak M., Lachman J., Vavreinova S. Buckwheat—The source of antioxidant activity in functional foods. Food Res. Int. 2002;35:207–211. doi: 10.1016/S0963-9969(01)00185-5. DOI
Şensoy Í., Rosen R.T., Ho C.-T., Karwe M.V. Effect of processing on buckwheat phenolics and antioxidant activity. Food Chem. 2006;99:388–393. doi: 10.1016/j.foodchem.2005.08.007. DOI