The Diversity of Morphological Traits and Seed Metabolomic Composition in Buckwheat Genetic Resources
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
771367.
European Union´s Horizon 2020 research and innovation program
PubMed
40265834
PubMed Central
PMC11945147
DOI
10.3390/plants14060903
PII: plants14060903
Knihovny.cz E-zdroje
- Klíčová slova
- common buckwheat, environment, genetic resources, metabolomic profiling, minor cereal,
- Publikační typ
- časopisecké články MeSH
This study examines the impact of environmental conditions on the growth, yield, and biochemical composition of common buckwheat (Fagopyrum esculentum Moench.) across two locations in Central Europe over three consecutive growing seasons (2019-2021). Significant variations in meteorological conditions, including temperature fluctuations and rainfall, were observed between two locations: Austria (AT) and the Czech Republic (CZ). The study highlights the role of these environmental factors in influencing morphological traits such as plant height, leaf dimensions, and 1000-seed weight (TSW), as well as nutritional and bioactive compound content. Buckwheat plants in Austria generally exhibited higher mean values for plant height and TSW compared to the Czech Republic, with significant variability observed across varieties and years. In terms of nutritional quality, crude protein content ranged between 12.56 and 14.71% dw, with the highest protein levels linked to cooler, low-rainfall conditions. The study also investigated phenolic compounds, particularly rutin, which showed a significant increase in content in 2021, likely due to extreme weather conditions. Varieties such as Sweden-1, Tempest, and Zamira exhibited stable, high rutin levels across all years. Overall, this research highlights the complexity of environmental influences on the agronomic and nutritional traits of buckwheat and provides valuable insights for future breeding programs aimed at improving yield and nutritional value under changing climatic conditions.
Agricultural Institute of Slovenia Hacquetova ulice 17 SI 1000 Ljubljana Slovenia
Saatzucht Gleisdorf GmbH Am Tieberhof 33 8200 Gleisdorf Austria
Zobrazit více v PubMed
Jha R., Zhang K.X., He Y.Q., Mendler-Drienyovszki N., Magyar-Tábori K., Quinet M., Germ M., Kreft I., Meglic V., Ikeda K., et al. Global nutritional challenges and opportunities: Buckwheat, a potential bridge between nutrient deficiency and food security. Trends Food Sci. Technol. 2024;145:104365. doi: 10.1016/j.tifs.2024.104365. DOI
Raguindin P.F., Itodo O.A., Stoyanov J., Dejanovic G.M., Gamba M., Asllanaj E., Minder B., Bussler W., Metzger B., Muka T., et al. A systematic review of phytochemicals in oat and buckwheat. Food Chem. 2021;338:127982. doi: 10.1016/j.foodchem.2020.127982. PubMed DOI
Chrungoo N.K., Chettry U. Buckwheat: A critical approach towards assessment of its potential as a super crop. Indian J. Genet. Pl. Br. 2021;81:1–23. doi: 10.31742/IJGPB.81.1.1. DOI
Chettry U., Chrungoo N.K. Beyond the Cereal Box: Breeding Buckwheat as a Strategic Crop for Human Nutrition. Plant Foods Hum. Nutr. 2021;76:399–409. doi: 10.1007/s11130-021-00930-7. PubMed DOI
Huda M.N., Lu S., Jahan T., Ding M.Q., Jha R., Zhang K.X., Zhang W., Georgiev M.I., Park S.U., Zhou M.L. Treasure from garden: Bioactive compounds of buckwheat. Food Chem. 2021;335:127653. doi: 10.1016/j.foodchem.2020.127653. PubMed DOI PMC
Kreft M. Buckwheat phenolic metabolites in health and disease. Nutr. Res. Rev. 2016;29:30–39. doi: 10.1017/S0954422415000190. PubMed DOI
Rana J.C., Singh M., Chauban R.S., Chahota R.K., Sharma T.R., Yadav R., Achak S. Genetic resources of buckwheat in India. In: Zhou M., Kreft I., Woo S.H., Chrungoo N., Wieslander G., editors. Molecular Breeding and Nutritional Aspects of Buckwheat. Acadenic Press; Cambridge, MA, USA: Elsevier Inc.; London, UK: 2016. pp. 109–135.
Rauf M., Yoon H., Lee S., Hyun D.Y., Lee M.C., Oh S., Choi Y.M. Evaluation of Fagopyrum esculentum Moench germplasm based on agro-morphological traits and the rutin and quercetin content of seeds under spring cultivation. Genet. Resour. Crop Evol. 2020;67:1385–1403. doi: 10.1007/s10722-020-00899-3. DOI
Zhou M., Tang Y., Den X., Ruan C., Kreft I., Tang Y., Wu T. Overview of buckwheat resources in the world. In: Zhou M., Kreft I., Suvorova G., Tang Y., Woo S.H., editors. Buckwheat Germplasm in the World. Academic Press; Cambridge, MA, USA: Elsevier Inc.; London, UK: 2018. p. 355.
Pipan B., Sinkovic L., Neji M., Janovská D., Zhou M.L., Meglic V. Agro-Morphological and Molecular Characterization Reveal Deep Insights in Promising Genetic Diversity and Marker-Trait Associations in Fagopyrum esculentum and Fagopyrum tataricum. Plants. 2023;12:3321. doi: 10.3390/plants12183321. PubMed DOI PMC
Grahic J., Okic A., Simon S., Djikic M., Gadzo D., Pejic I., Gasi F. Genetic Relationships and Diversity of Common Buckwheat Accessions in Bosnia and Herzegovina. Agronomy. 2022;12:2676. doi: 10.3390/agronomy12112676. DOI
Park J.E., Kang Y., Han G.D., Yildiz M., Kim S.H., Kim C., Chung Y.S. Diversity study of common buckwheat germplasm in the Republic of Korea using GBS. Plant Biotechnol. Rep. 2022;16:799–803. doi: 10.1007/s11816-022-00801-w. DOI
Han G.D., Mansoor S., Kim J., Park J., Heo S., Yu J.K., Kim S.H., Chung Y.S. A study of the morphological and geographical diversity of Korean indigenous buckwheat landraces for breeding. J. King Saud Univ. Sci. 2024;36:103387.
Naik S., Mahajan R., Sofi P.A., Abidi I., Ali G., Nehvi F.A., Khan I., Bhat S.A., Bhat M.A., Bhat B.A. Characterisation of buckwheat (Fagopyrum spp.) diversity of the norhtwestern Himalyas. Crop Pasture Sci. 2023;74:1069–1079. doi: 10.1071/CP22278. DOI
Swarup S., Cargill E.J., Crosby K., Flagel L., Kniskern J., Glenn K.C. Genetic diversity is indispensable for plant breeding to improve crops. Crop Sci. 2021;61:839–852. doi: 10.1002/csc2.20377. DOI
Vieites-Alvarez Y., Reigosa M.J., Sánchez-Moreiras A.M. A decade of advances in the study of buckwheat for organic farming and agroecology (2013–2023) Front. Plant Sci. 2024;15:1354672. doi: 10.3389/fpls.2024.1354672. PubMed DOI PMC
Li H.Y., Lv Q.Y., Liu A., Wang J.R., Sun X.Q., Deng J., Chen Q.F., Wu Q. Comparative metabolomics study of Tartary (Fagopyrum tataricum (L.) Gaertn) and common (Fagopyrum esculentum Moench) buckwheat seeds. Food Chem. 2022;371:131125. doi: 10.1016/j.foodchem.2021.131125. PubMed DOI
Deng J., Dong F., Wu C.X., Zhao J.L., Li H.Y., Huang J., Shi T.X., Meng Z.Y., Cai F., Chen Q.F., et al. Comparative Metabolomics Analysis between Red- and White-Flowered Common Buckwheat Cultivars. Phyton-Int. J. Exp. Bot. 2021;90:859–870. doi: 10.32604/phyton.2021.014625. DOI
Janovska D., Jagr M., Svoboda P., Dvoracek V., Meglic V., Cepkova P.H. Breeding Buckwheat for Nutritional Quality in the Czech Republic. Plants. 2021;10:1262. doi: 10.3390/plants10071262. PubMed DOI PMC
Singh M., Malhotra N., Sharma K. Buckwheat (Fagopyrum sp.) genetic resources: What can they contribute towards nutritional security of changing world? Genet. Resour. Crop Evol. 2020;67:1639–1658. doi: 10.1007/s10722-020-00961-0. DOI
Morishita T., Hara T., Hara T. Important agronomic characteristics of yielding ability in common buckwheat; ecotype and ecological differentiation, preharvest sprouting resistance, shattering resistance, and lodging resistance. Breed. Sci. 2020;70:39–47. doi: 10.1270/jsbbs.19020. PubMed DOI PMC
Ghiselli L., Tallarico R., Mariotti M., Romagnoli S., Baglio A.P., Donnarumma P., Benedettelli S. Agronomic and nutritional characteristics of three buckwheat cultivars under organic farming in three environments of the Garfagnana mountain district. Ital. J. Agron. 2016;11:188–194. doi: 10.4081/ija.2016.729. DOI
Domingos I.F.N., Bilsborrow P.E. The effect of variety and sowing date on the growth, development, yield and quality of common buckwheat (Fagopyrum esculentum Moench) Eur. J. Agron. 2021;126:126264. doi: 10.1016/j.eja.2021.126264. DOI
Nandan A., Koirala P., Tripathi A.D., Vikranta U., Shah K.R., Gupta A.J., Agarwal A., Nirmal N. Nutritional and functional perspectives of pseudocereals. Food Chem. 2024;448:139072. doi: 10.1016/j.foodchem.2024.139072. PubMed DOI
Wisniewska M., Mankowski D.R., Fras A. Variations in chemical composition of common buckwheat (Fagopyrum esculentum Moench) as a result of different environmental conditions. J. Sci. Food Agric. 2024;104:286–294. doi: 10.1002/jsfa.12917. PubMed DOI
Gavrić T., Čadro S., Gadžo D., Mirha D., Bezdrob M., Jovovic Z., Jurkovic J., Hamidovic S. Influence of meteorological parameters on the yield and chemical composition of common buckwheat (Fagopyrum esculentum Moench) J. Agric. For. 2018;64:113–120. doi: 10.17707/AgricultForest.64.4.13. DOI
Novikova L.Y., Seferova I.V., Nekrasov A.Y., Perchuk I.N., Shelenga T.V., Samsonova M.G., Vishnyakova M.A. Impact of weather and climate on seed protein and oil content of soybean in the North Caucasus. Vavilovskii Zh. Genet. Sel. 2018;22:708–715.
Tomczak A., Zielinska-Dawidziak M., Piasecka-Kwiatkowska D., Lampart-Szczapa E. Blue lupine seeds protein content and amino acids composition. PSE. 2018;64:147–155. doi: 10.17221/690/2017-PSE. DOI
Zielińska-Dawidziak M., Nawracała J., Piasecka-Kwiatkowska D., Król E., Staniek H., Krejpcio Z. The impact of the year of soybean (Glycine max L. Merrill) harvest on the accumulation of iron from FeSO4 solutions. Fragm. Agron. 2012;29:183–193.
Sinkovic L., Meglic V., Pipan B. Grain characteristics of eleven buckwheat varieties (Fagopyrum spp.) grown under Central European climatic conditions. J. Elem. 2024;29:419–431. doi: 10.5601/jelem.2023.28.4.3243. DOI
Terpinc P., Cigic B., Polak T., Hribar J., Pozrl T. LC-MS analysis of phenolic compounds and antioxidant activity of buckwheat at different stages of malting. Food Chem. 2016;210:9–17. doi: 10.1016/j.foodchem.2016.04.030. PubMed DOI
Giménez-Bastida J.A., Zielinski H., Piskula M., Zielinska D., Szawara-Nowak D. Buckwheat bioactive compounds, their derived phenolic metabolites and their health benefits. Mol. Nutr. Food Res. 2017;61:1–10. doi: 10.1002/mnfr.201600475. PubMed DOI PMC
Marchev A.S., Vasileva L.V., Amirova K.M., Savova M.S., Balcheva-Sivenova Z.P., Georgiev M.I. Metabolomics and health: From nutritional crops and plant-based pharmaceuticals to profling of human biofuids. CMLS. 2021;78:6487–6503. doi: 10.1007/s00018-021-03918-3. PubMed DOI PMC
Isah T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 2019;52:39. doi: 10.1186/s40659-019-0246-3. PubMed DOI PMC
Mashilo J., Odindo A.O., Shimelis H.A., Musenge P., Tesfay S.Z., Magwaza L.S. Drought tolerance of selected bottle gourd Lagenaria siceraria (Molina) Standl. landraces assessed by leaf gas exchange and photosynthetic efficiency. Plant Physiol. Biochem. 2017;120:75–87. doi: 10.1016/j.plaphy.2017.09.022. PubMed DOI
Ramakrishna A., Ravishankar G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011;6:1720–1731. PubMed PMC
Borovaya S.A., Klykov A.G. Some aspects of flavonoid biosynthesis and accumulation in buckwheat plants. Plant Biotechnol. Rep. 2020;14:213–225. doi: 10.1007/s11816-020-00614-9. DOI
Shen N., Wang T.F., Gan Q., Liu S., Wang L., Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. doi: 10.1016/j.foodchem.2022.132531. PubMed DOI
Kalinova J.P., Vrchotova N., Triska J. Phenolics levels in different parts of common buckwheat (Fagopyrwn esculentum) achenes. J. Cereal Sci. 2019;85:243–248. doi: 10.1016/j.jcs.2018.12.012. DOI
Kiprovski B., Mikulic-Petkovsek M., Slatnar A., Veberic R., Stampar F., Malencic D., Latkovic D. Comparison of phenolic profiles and antioxidant properties of European Fagopyrum esculentum cultivars. Food Chem. 2015;185:41–47. doi: 10.1016/j.foodchem.2015.03.137. PubMed DOI
Podolska G., Gujska E., Klepacka J., Aleksandrowicz E. Bioactive Compounds in Different Buckwheat Species. Plants. 2021;10:961. doi: 10.3390/plants10050961. PubMed DOI PMC
Qin P.Y., Wang Q., Shan F., Hou Z.H., Ren G.X. Nutritional composition and flavonoids content of flour from different buckwheat cultivars. IJFST. 2010;45:951–958. doi: 10.1111/j.1365-2621.2010.02231.x. DOI
Suzuki T., Noda T., Morishita T., Ishiguro K., Otsuka S., Brunori A. Present status and future perspectives of breeding for buckwheat quality. Breed. Sci. 2020;70:48–66. doi: 10.1270/jsbbs.19018. PubMed DOI PMC
Sedej I., Sakac M., Mandic A., Misan A., Tumbas V., Canadanovic-Brunet J. Buckwheat (Fagopyrum esculentum Moench) Grain and Fractions: Antioxidant Compounds and Activities. J. Food Sci. 2012;77:C954–C959. doi: 10.1111/j.1750-3841.2012.02867.x. PubMed DOI
Kalinova J., Vrchotova N. The influence of organic and conventional crop management, variety and year on the yield and flavonoid level in common buckwheat groats. Food Chem. 2011;127:602–608. doi: 10.1016/j.foodchem.2011.01.050. PubMed DOI
Altikardes E., Güzel N. Impact of germination pre-treatments on buckwheat and Quinoa: Mitigation of anti-nutrient content and enhancement of antioxidant properties. Food Chem.-X. 2024;21:101182. doi: 10.1016/j.fochx.2024.101182. PubMed DOI PMC
Zhang X., Yang M., Liu Z., Huang Y., Zhang L., Yang F., Gong J.Q., Huo D.A. Metabolomics and related genes analysis revealed the distinct mechanism of drought resistance in novel buckwheat and cultivated species. Plant Growth Regul. 2024;104:695–711. doi: 10.1007/s10725-024-01189-z. DOI
Shomali A., Das S., Arif N., Sarraf M., Zahra N., Yadav V., Aliniaeifard S., Chauhan D.K., Hasanuzzaman M. Diverse Physiological Roles of Flavonoids in Plant Environmental Stress Responses and Tolerance. Plants. 2022;11:3158. doi: 10.3390/plants11223158. PubMed DOI PMC
Drazic S., Glamoclija D., Ristic M., Dolijanovic Z., Drazic M., Pavlovic S., Jaramaz M., Jaramaz D. Effect of environment of the rutin content in leaves of Fagopyrum esculentum Moench. PSE. 2016;62:261–265.
Guo X.D., Ma Y.J., Parry J., Gao J.M., Yu L.L., Wang M. Phenolics Content and Antioxidant Activity of Tartary Buckwheat from Different Locations. Molecules. 2011;16:9850–9867. doi: 10.3390/molecules16129850. PubMed DOI PMC
Siracusa L., Gresta F., Sperlinga E., Ruberto G. Effect of sowing time and soil water content on grain yield and phenolic profile of four buckwheat (Fagopyrum esculentum Moench.) varieties in a Mediterranean environment. J. Food Compos. Anal. 2017;62:1–7. doi: 10.1016/j.jfca.2017.04.005. DOI
Wang K.Y., Zhang H.H., Yuan L., Li X.L., Cai Y.Q. Potential Implications of Hyperoside on Oxidative Stress-Induced Human Diseases: A Comprehensive Review. J. Inflamm. Res. 2023;16:4503–4526. doi: 10.2147/JIR.S418222. PubMed DOI PMC
Dziedzic K., Gorecka D., Szwengiel A., Sulewska H., Kreft I., Gujska E., Walkowiak J. The Content of Dietary Fibre and Polyphenols in Morphological Parts of Buckwheat (Fagopyrum tataricum) Plant Foods Hum Nutr. 2018;73:82–88. doi: 10.1007/s11130-018-0659-0. PubMed DOI PMC
Zhu F. Proanthocyanidins in cereals and pseudocereals. Crit. Rev. Food Sci. Nutr. 2018;59:1–13. doi: 10.1080/10408398.2017.1418284. PubMed DOI
IPGRI . Descriptors for Buckwheat (Fagopyrum spp.) International Plant Genetic Resources Institute (IPGRI); Rome, Italy: 1994.
Holasova M., Fiedlerova V., Smrcinova H., Orsak M., Lachman J., Vavreinova S. Buckwheat—The source of antioxidant activity in functional foods. Food Res. Int. 2002;35:207–211. doi: 10.1016/S0963-9969(01)00185-5. DOI
Sensoy I., Rosen R.T., Ho C.T., Karwe M.V. Effect of processing on buckwheat phenolics and antioxidant activity. Food Chem. 2006;99:388–393. doi: 10.1016/j.foodchem.2005.08.007. DOI