Nutritional Evaluation of Quinoa Genetic Resources Growing in the Climatic Conditions of Central Europe

. 2023 Mar 28 ; 12 (7) : . [epub] 20230328

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37048261

Grantová podpora
MZE-RO0423 Ministry of Agriculture
IGA FTA 20223105 Czech University of Life Sciences Prague

Quinoa displays huge genetic variability and adaptability to distinct climatic conditions. Quinoa seeds are a good source of nutrients; however, the overall nutritional composition and nutrient content is influenced by numerous factors. This study focused on the nutritional and morphologic evaluation of various quinoa genotypes grown in the Czech Republic. Significant differences between years were observed for morphological traits (plant height, inflorescence length, weight of thousand seeds). The weather conditions in the year 2018 were favorable for all the morphological traits. The protein content of quinoa accessions ranged between 13.44 and 20.01% and it was positively correlated to mauritianin. Total phenolic content varied greatly from year to year, while the antioxidant activity remained relatively stable. The most abundant phenolic compounds were the flavonoids miquelianin, rutin, and isoquercetin. Isoquercetin, quercetin, and N-feruoloyl octopamine showed the highest stability under variable weather conditions in the analyzed years. A total of six compounds were detected and quantified in quinoa for the first time. Most varieties performed well under Central European conditions and can be considered a good source of nutrients and bioactive compounds. These data can be used as a source of information for plant breeders aiming to improve the quality traits of quinoa.

Zobrazit více v PubMed

Fuentes F.F., Bazile D., Bhargava A., Martinez E.A. Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. J. Agric. Sci. 2012;150:702–716. doi: 10.1017/S0021859612000056. DOI

Bazile D., Jacobsen S.E., Verniau A. The Global Expansion of Quinoa: Trends and Limits. Front. Plant Sci. 2016;7:6. doi: 10.3389/fpls.2016.00622. PubMed DOI PMC

Razzaghi F., Jacobsen S.E., Jensen C.R., Andersen M.N. Ionic and photosynthetic homeostasis in quinoa challenged by salinity and drought—Mechanisms of tolerance. Funct. Plant Biol. 2015;42:136–148. doi: 10.1071/FP14132. PubMed DOI

Alandia G., Rodriguez J.P., Jacobsen S.E., Bazile D., Condori B. Global expansion of quinoa and challenges for the Andean region. Glob. Food Secur.-Agric. Policy. 2020;26:10. doi: 10.1016/j.gfs.2020.100429. DOI

FAO Climate Change and Food Security: Risks and Responses. [(accessed on 15 January 2023)]. Available online: https://www.fao.org/3/i5188e/I5188E.pdf.

Angeli V., Silva P.M., Massuela D.C., Khan M.W., Hamar A., Khajehei F., Graeff-Hönninger S., Piatti C. Quinoa (Chenopodium quinoa Willd.): An Overview of the Potentials of the “Golden Grain” and Socio-Economic and Environmental Aspects of Its Cultivation and Marketization. Foods. 2020;9:216. doi: 10.3390/foods9020216. PubMed DOI PMC

Niro S., D’Agostino A., Fratianni A., Cinquanta L., Panfili G. Gluten-Free Alternative Grains: Nutritional Evaluation and Bioactive Compounds. Foods. 2019;8:208. doi: 10.3390/foods8060208. PubMed DOI PMC

Tang Y., Li X.H., Chen P.X., Zhang B., Liu R.H., Hernandez M., Draves J., Marcone M.F., Tsao R. Assessing the fatty acid, carotenoid, and tocopherol compositions of amaranth and quinoa seeds grown in Ontario and their overall contribution to nutritional quality. J. Agric. Food Chem. 2016;64:1103–1110. doi: 10.1021/acs.jafc.5b05414. PubMed DOI

Maradini Filho A.M., Pirozi M.R., Borges J.T.D., Sant’Ana H.M.P., Chaves J.B.P., Coimbra J. Quinoa: Nutritional, functional, and antinutritional aspects. Crit. Rev. Food Sci. Nutr. 2017;57:1618–1630. doi: 10.1080/10408398.2014.1001811. PubMed DOI

Craine E.B., Murphy K.M. Seed composition and amino acid profiles for quinoa grown in Washington State. Front. Nutr. 2020;7:126. doi: 10.3389/fnut.2020.00126. PubMed DOI PMC

Fan X., Guo H.M., Teng C., Zhang B., Blecker C., Ren G.X. Anti-Colon Cancer Activity of Novel Peptides Isolated from In Vitro Digestion of Quinoa Protein in Caco-2 Cells. Foods. 2022;11:194. doi: 10.3390/foods11020194. PubMed DOI PMC

Shen Y.B., Zheng L.Y., Peng Y., Zhu X.C., Liu F., Yang X.Q., Li H.M. Physicochemical, Antioxidant and Anticancer Characteristics of Seed Oil from Three Chenopodium quinoa Genotypes. Molecules. 2022;27:2453. doi: 10.3390/molecules27082453. PubMed DOI PMC

Hu Y., Zhang J., Zou L., Fu C., Li P., Zhao G. Chemical characterization, antioxidant, immune-regulating andanticancer activities of a novel bioactive polysaccharide from Chenopodium quinoa seeds. Int. J. Biol. Macromol. 2017;99:622–629. doi: 10.1016/j.ijbiomac.2017.03.019. PubMed DOI

Tan M.H., Zhao Q.S., Zhao B. Physicochemical properties, structural characterization and biological activities of polysaccharides from quinoa (Chenopodium quinoa Willd.) seeds. Int. J. Biol. Macromol. 2021;193:1635–1644. doi: 10.1016/j.ijbiomac.2021.10.226. PubMed DOI

Dong S.X., Yang X.S., Zhao L., Zhang F.X., Hou Z.H., Xue P. Antibacterial activity and mechanism of action saponins from Chenopodium quinoa Willd. husks against foodborne pathogenic bacteria. Ind. Crops Prod. 2020;149:112350. doi: 10.1016/j.indcrop.2020.112350. DOI

Capraro J., De Benedetti S., Di Dio M., Bona E., Abate A., Corsetto P.A., Scarafoni A. Characterization of Chenopodin Isoforms from Quinoa Seeds and Assessment of Their Potential Anti-Inflammatory Activity in Caco-2 Cells. Biomolecules. 2020;10:795. doi: 10.3390/biom10050795. PubMed DOI PMC

Liu M.J., Zhu K.L., Yao Y., Chen Y.H., Guo H.M., Ren G.X., Yang X.S., Li J.C. Antioxidant, anti-inflammatory, and antitumor activities of phenolic compounds from white, red, and black Chenopodium quinoa seed. Cereal Chem. 2020;97:703–713. doi: 10.1002/cche.10286. DOI

De Bock P., Van Bockstaele F., Muylle H., Quataert P., Vermeir P., Eeckhout M., Cnops G. Yield and Nutritional Characterization of Thirteen Quinoa (Chenopodium quinoa Willd.) Varieties Grown in North-West Europe-Part I. Plants. 2021;10:2689. doi: 10.3390/plants10122689. PubMed DOI PMC

Matías J., Rodriguez M.J., Cruz V., Calvo P., Reguera M. Heat stress lowers yields, alters nutrient uptake and changes seed quality in quinoa grown under Mediterranean field conditions. J. Agron. Crop Sci. 2021;207:481–491. doi: 10.1111/jac.12495. DOI

Garcia-Parra M., Roa-Acosta D., Garcia-Londono V., Moreno-Medina B., Bravo-Gomez J. Structural Characterization and Antioxidant Capacity of Quinoa Cultivars Using Techniques of FT-MIR and UHPLC/ESI-Orbitrap MS Spectroscopy. Plants. 2021;10:2159. doi: 10.3390/plants10102159. PubMed DOI PMC

Granado-Rodriguez S., Aparicio N., Matias J., Perez-Romero L.F., Maestro I., Graces I., Pedroche J.J., Haros C.M., Fernandez-Garcia N., del Hierro J.N., et al. Studying the Impact of Different Field Environmental Conditions on Seed Quality of Quinoa: The Case of Three Different Years Changing Seed Nutritional Traits in Southern Europe. Front. Plant Sci. 2021;12:649132. doi: 10.3389/fpls.2021.649132. PubMed DOI PMC

Janovska D., Jagr M., Svoboda P., Dvoracek V., Meglic V., Cepkova P.H. Breeding Buckwheat for Nutritional Quality in the Czech Republic. Plants. 2021;10:1262. doi: 10.3390/plants10071262. PubMed DOI PMC

Živočišné a Rostlinné Tuky a Oleje—Stanovení Vlhkosti a Těkavých Látek. Ing. Jiří Hrazdil-Technické Normy; Brno, Czechia: 2001. (In Czech)

Obiloviny a Luštěniny—Stanovení Obsahu Dusíku a Výpočet Obsahu Dusíkatých Látek—Kjeldahlova Metoda. Technické Normy ČSN; Hradec Králové, Czech Republic: 2014. p. 24. (In Czech)

Holasova M., Fiedlerova V., Smrcinova H., Orsak M., Lachman J., Vavreinova S. Buckwheat—The source of antioxidant activity in functional foods. Food Res. Int. 2002;35:207–211. doi: 10.1016/S0963-9969(01)00185-5. DOI

Sensoy I., Rosen R.T., Ho C.T., Karwe M.V. Effect of processing on buckwheat phenolics and antioxidant activity. Food Chem. 2006;99:388–393. doi: 10.1016/j.foodchem.2005.08.007. DOI

Cepkova P.H., Dostalikova L., Viehmannova I., Jagr M., Janovska D. Diversity of quinoa genetic resources for sustainable production: A survey on nutritive characteristics as influenced by environmental conditions. Front. Sustain. Food Syst. 2022;6:960159. doi: 10.3389/fsufs.2022.960159. DOI

Garcia-Parra M.A., Roa-Acosta D.F., Bravo-Gomez J.E., Hernandez-Criado J.C., Villada-Castillo H.S. Effects of Altitudinal Gradient on Physicochemical and Rheological Potential of Quinoa Cultivars. Front. Sustain. Food Syst. 2022;6:862238. doi: 10.3389/fsufs.2022.862238. DOI

Toubali S., Ait-El-Mokhtar M., Boutasknit A., Anli M., Ait-Rahou Y., Benaffari W., Ben-Ahmed H., Mitsui T., Baslam M., Meddich A. Root Reinforcement Improved Performance, Productivity, and Grain Bioactive Quality of Field-Droughted Quinoa (Chenopodium quinoa) Front. Plant Sci. 2022;13:860484. doi: 10.3389/fpls.2022.860484. PubMed DOI PMC

Xie H., Wang Q.C., Zhang P., Zhang X.S., Huang T.Z., Guo Y.R., Liu J.N., Li L., Li H.X., Qin P. Transcriptomic and Metabolomic Analysis of the Response of Quinoa Seedlings to Low Temperatures. Biomolecules. 2022;12:977. doi: 10.3390/biom12070977. PubMed DOI PMC

Bioversity International. FAO . Descriptors for Quinoa (Chenopodium quinoa Willd.) and Wild Relatives. Bioversity International; Rome, Italy: FAO; Rome, Italy: Fundación PROINPA; Quillacollo, Bolivia: Instituto Nacional de Innovación Agropecuaria y Forestal; La Paz, Bolivia: International Fund for Agricultural Development; Rome, Italy: 2013. pp. 1–47.

Maliro M.F.A., Guwela V.F., Nyaika J., Murphy K.M. Preliminary Studies of the Performance of Quinoa (Chenopodium quinoa Willd.) Genotypes under Irrigated and Rainfed Conditions of Central Malawi. Front. Plant Sci. 2017;8:227. doi: 10.3389/fpls.2017.00227. PubMed DOI PMC

Thiam E., Allaoui A., Benlhabib O. Quinoa Productivity and Stability Evaluation through Varietal and Environmental Interaction. Plants. 2021;10:714. doi: 10.3390/plants10040714. PubMed DOI PMC

Tabatabaei I., Alseekh S., Shahid M., Leniak E., Wagner M., Mahmoudi H., Thushar S., Fernie A.R., Murphy K.M., Schmockel S.M., et al. The diversity of quinoa morphological traits and seed metabolic composition. Sci. Data. 2022;9:323. doi: 10.1038/s41597-022-01399-y. PubMed DOI PMC

Manjarres-Hernandez E.H., Arias-Moreno D.M., Morillo-Coronado A.C., Ojeda-Perez Z.Z., Cardenas-Chaparro A. Phenotypic Characterization of Quinoa (Chenopodium quinoa Willd.) for the Selection of Promising Materials for Breeding Programs. Plants. 2021;10:1339. doi: 10.3390/plants10071339. PubMed DOI PMC

Dumschott K., Wuyts N., Alfaro C., Castillo D., Fiorani F., Zurita-Silva A. Morphological and Physiological Traits Associated with Yield under Reduced Irrigation in Chilean Coastal Lowland Quinoa. Plants. 2022;11:323. doi: 10.3390/plants11030323. PubMed DOI PMC

Benlhabib O., Boujartani N., Maughan P.J., Jacobsen S.E., Jellen E.N. Elevated Genetic Diversity in an F2:6 Population of Quinoa (Chenopodium quinoa) Developed through an Inter-ecotype Cross. Front. Plant Sci. 2016;7:1222. doi: 10.3389/fpls.2016.01222. PubMed DOI PMC

Wang N., Wang F.X., Shock C.C., Meng C.B., Huang Z.J., Gao L., Zhao J.Y. Evaluating quinoa stem lodging susceptibility by a mathematical model and the finite element method under different agronomic practices. Field Crops Res. 2021;271:108241. doi: 10.1016/j.fcr.2021.108241. DOI

Shah S.S., Shi L.X., Li Z.J., Ren G.X., Zhou B.W., Qin P.Y. Yield, Agronomic and Forage Quality Traits of Different Quinoa (Chenopodium quinoa Willd.) Genotypes in Northeast China. Agronomy. 2020;10:1908. doi: 10.3390/agronomy10121908. DOI

Saddiq M.S., Wang X.K., Iqbal S., Hafeez M.B., Khan S., Raza A., Iqbal J., Maqbool M.M., Fiaz S., Qazi M.A., et al. Effect of Water Stress on Grain Yield and Physiological Characters of Quinoa Genotypes. Agronomy. 2021;11:1934. doi: 10.3390/agronomy11101934. DOI

Prager A., Munz S., Nkebiwe P.M., Mast B., Graeff-Honninger S. Yield and Quality Characteristics of Different Quinoa (Chenopodium quinoa Willd.) Cultivars Grown under Field Conditions in Southwestern Germany. Agronomy. 2018;8:197. doi: 10.3390/agronomy8100197. DOI

Curti R.N., de la Vega A.J., Andrade A.J., Bramardi S.J., Bertero H.D. Multi-environmental evaluation for grain yield and its physiological determinants of quinoa genotypes across Northwest Argentina. Field Crops Res. 2014;166:46–57. doi: 10.1016/j.fcr.2014.06.011. DOI

Ahmadi S.H., Solgi S., Sepaskhah A.R. Quinoa: A super or pseudo-super crop? Evidences from evapotranspiration, root growth, crop coefficients, and water productivity in a hot and semi-arid area under three planting densities. Agric. Water Manag. 2019;225:105784. doi: 10.1016/j.agwat.2019.105784. DOI

Pinto A.A., Fischer S., Wilckens R., Bustamante L., Berti M.T. Production Efficiency and Total Protein Yield in Quinoa Grown under Water Stress. Agriculture. 2021;11:1089. doi: 10.3390/agriculture11111089. DOI

Herzog M., Striker G.G., Colmer T.D., Pedersen O. Mechanisms of waterlogging tolerance in wheat—A review of root and shoot physiology. Plant Cell Environ. 2016;39:1068–1086. doi: 10.1111/pce.12676. PubMed DOI

Arduini I., Baldanzi M., Pampana S. Reduced Growth and Nitrogen Uptake during Waterlogging at Tillering Permanently Affect Yield Components in Late Sown Oats. Front. Plant Sci. 2019;10:1087. doi: 10.3389/fpls.2019.01087. PubMed DOI PMC

Granado-Rodriguez S., Vilarino-Rodriguez S., Maestro-Gaitan I., Matias J., Rodriguez M.J., Calvo P., Cruz V., Bolanos L., Reguera M. Genotype-Dependent Variation of Nutritional Quality-Related Traits in Quinoa Seeds. Plants. 2021;10:2128. doi: 10.3390/plants10102128. PubMed DOI PMC

Sobota A., Swieca M., Gesinski K., Wirkijowska A., Bochnak J. Yellow-coated quinoa (Chenopodium quinoa Willd)—Physicochemical, nutritional, and antioxidant properties. J. Sci. Food Agric. 2020;100:2035–2042. doi: 10.1002/jsfa.10222. PubMed DOI

USDA Agricultural Research Service. [(accessed on 30 July 2022)]; FoodData Central. Available online: https://fdc.nal.usda.gov/

Schmidt D., Verruma-Bernardi M.R., Forti V.A., Borges M. Quinoa and Amaranth as Functional Foods: A Review. Food Rev. Int. 2021;37:1–20. doi: 10.1080/87559129.2021.1950175. DOI

Wang N., Wang F.X., Shock C.C., Meng C.B., Qiao L.F. Effects of Management Practices on Quinoa Growth, Seed Yield, and Quality. Agronomy. 2020;10:445. doi: 10.3390/agronomy10030445. DOI

Olgun M., Metin Kumlay A., Cemal Adiguzel M., Caglar A. The effect of waterlogging in wheat (T. aestivum L.) Acta Agric. Scand. Sect. B–Soil Plant Sci. 2008;58:193–198.

Stoychev V., Simova-Stoilova L., Vaseva I., Kostadinova A., Nenkova R., Feller U., Demirevska K. Protein changes and proteolytic degradation in red and white clover plants subjected to waterlogging. Acta Physiol. Plant. 2013;35:1925–1932. doi: 10.1007/s11738-013-1231-z. DOI

Wollmer A.C., Pitann B., Muhling K.H. Grain storage protein concentration and composition of winter wheat (Triticum aestivurn L.) as affected by waterlogging events during stem elongation or ear emergence. J. Cereal Sci. 2018;83:9–15. doi: 10.1016/j.jcs.2018.07.007. DOI

Hussain M.A., Naeem A., Sulieman S., Pitann B., Muhling K.H. Sulfur uptake and distribution, grain yield, and quality of hybrid and inbred winter wheat (Triticum aestivum L.) varieties under early and late waterlogging. J. Plant Nutr. Soil Sci. 2022;185:622–631. doi: 10.1002/jpln.202200149. DOI

Pellegrini M., Lucas-Gonzales R., Ricci A., Fontecha J., Fernandez-Lopez J., Perez-Alvarez J.A., Viuda-Martos M. Chemical, fatty acid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa (Chenopodium quinoa Willd) seeds. Ind. Crops Prod. 2018;111:38–46. doi: 10.1016/j.indcrop.2017.10.006. DOI

Mhada M., Metougui M.L., El Hazzam K., El Kacimi K., Yasri A. Variations of Saponins, Minerals and Total Phenolic Compounds Due to Processing and Cooking of Quinoa (Chenopodium quinoa Willd.) Seeds. Foods. 2020;9:660. doi: 10.3390/foods9050660. PubMed DOI PMC

Buitrago D., Buitrago-Villanueva I., Barbosa-Cornelio R., Coy-Barrera E. Comparative Examination of Antioxidant Capacity and Fingerprinting of Unfractionated Extracts from Different Plant Parts of Quinoa (Chenopodium quinoa) Grown under Greenhouse Conditions. Antioxidants. 2019;8:238. doi: 10.3390/antiox8080238. PubMed DOI PMC

Feng X.Y., Yu Q.Q., Li B., Kan J.Q. Comparative analysis of carotenoids and metabolite characteristics in discolored red pepper and normal red pepper based on non-targeted metabolomics. LWT-Food Sci. Technol. 2022;153:11. doi: 10.1016/j.lwt.2021.112398. DOI

Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B.S. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules. 2019;24:2452. doi: 10.3390/molecules24132452. PubMed DOI PMC

Samec D., Karalija E., Sola I., Bok V.V., Salopek-Sondi B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants. 2021;10:118. doi: 10.3390/plants10010118. PubMed DOI PMC

Reguera M., Conesa C.M., Gil-Gomez A., Haros C.M., Perez-Casa M.A., Briones-Labarca V., Bolanosi L., Bonilla I., Alvarez R., Pinto K., et al. The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ. 2018;6:e4442. doi: 10.7717/peerj.4442. PubMed DOI PMC

Antognoni F., Potente G., Biondi S., Mandrioli R., Marincich L., Ruiz K.B. Free and Conjugated Phenolic Profiles and Antioxidant Activity in Quinoa Seeds and Their Relationship with Genotype and Environment. Plants. 2021;10:1046. doi: 10.3390/plants10061046. PubMed DOI PMC

Tang Y., Li X.H., Zhang B., Chen P.X., Liu R.H., Tsao R. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem. 2015;166:380–388. doi: 10.1016/j.foodchem.2014.06.018. PubMed DOI

Nowak V., Du J., Charrondiere U.R. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.) Food Chem. 2016;193:47–54. doi: 10.1016/j.foodchem.2015.02.111. PubMed DOI

Tang Y., Zhang B., Li X.H., Chen P.X., Zhang H., Liu R.H., Tsao R. Bound Phenolics of Quinoa Seeds Released by Acid, Alkaline, and Enzymatic Treatments and Their Antioxidant and alpha-Glucosidase and Pancreatic Lipase Inhibitory Effects. J. Agric. Food Chem. 2016;64:1712–1719. doi: 10.1021/acs.jafc.5b05761. PubMed DOI

Shkondrov A.M., Krasteva I.N. High Resolution LC-MS/MS Screening for secondary Metabolites in Bulgarian Species of Genus Astragalus L. Química Nova. 2021;44:683–688. doi: 10.21577/0100-4042.20170730. DOI

Vasilev H., Smejkal K., Gronover C.S., Choi Y.H., Prufer D., Jankovska D., Ionkova I. Flavonol glycosides from aerial parts of Astragalus thracicus Griseb. Phytochem. Lett. 2021;41:119–122. doi: 10.1016/j.phytol.2020.11.012. DOI

Dini I., Tenore G.C., Dini A. Nutritional and antinutritional composition of Kancolla seeds: An interesting and underexploited andine food plant. Food Chem. 2005;92:125–132. doi: 10.1016/j.foodchem.2004.07.008. DOI

Gomez-Caravaca A.M., Iafelice G., Lavini A., Pulvento C., Caboni M.F., Marconi E. Phenolic Compounds and Saponins in Quinoa Samples (Chenopodium quinoa Willd.) Grown under Different Saline and Nonsaline Irrigation Regimens. J. Agric. Food Chem. 2012;60:4620–4627. doi: 10.1021/jf3002125. PubMed DOI

de Araujo M.F., Vieira I.J.C., Sant’Anna C.M.R., da Silva D.R., Maia A.I.V., Braz-Filho R., Vieira-da-Motta O., Mathias L. New triterpene glycoside and other chemical constituents from the leaves of Swartzia apetala Raddi var. glabra. Nat. Prod. Res. 2013;27:1888–1895. doi: 10.1080/14786419.2013.782493. PubMed DOI

Kicel A., Wolbis M. Study on the phenolic constituents of the flowers and leaves of Trifolium repens L. Nat. Prod. Res. 2012;26:2050–2054. doi: 10.1080/14786419.2011.637217. PubMed DOI

Popovic Z., Matic R., Bajic-Ljubicic J., Tesevic V., Bojovic S. Geographic variability of selected phenolic compounds in fresh berries of two Cornus species. Trees-Struct. Funct. 2018;32:203–214. doi: 10.1007/s00468-017-1624-5. DOI

Richane A., Rim B., Wided M., Riadh K., Khaoula A., Nizar M., Hanen B. Variability of phenolic compounds and antioxidant activities of ten Ceratonia siliqua L. provenances. Biochem. Syst. Ecol. 2022;104:104486. doi: 10.1016/j.bse.2022.104486. DOI

Ismail H., Maksimovic J.D., Maksimovic V., Shabala L., Zivanovic B.D., Tian Y., Jacobsen S.E., Shabala S. Rutin, a flavonoid with antioxidant activity, improves plant salinity tolerance by regulating K+ retention and Na+ exclusion from leaf mesophyll in quinoa and broad beans. Funct. Plant Biol. 2016;43:75–86. doi: 10.1071/FP15312. PubMed DOI

Ma D.Y., Sun D.X., Wang C.Y., Li Y.G., Guo T.C. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol. Biochem. 2014;80:60–66. doi: 10.1016/j.plaphy.2014.03.024. PubMed DOI

Galieni A., Di Mattia C., De Gregorio M., Speca S., Mastrocola D., Pisante M., Stagnari F. Effects of nutrient deficiency and abiotic environmental stresses on yield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.) Sci. Hortic. 2015;187:93–101. doi: 10.1016/j.scienta.2015.02.036. DOI

Hodaei M., Rahimmalek M., Arzani A., Talebi M. The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L. Ind. Crops Prod. 2018;120:295–304. doi: 10.1016/j.indcrop.2018.04.073. DOI

Jiang F., Ren Y.J., Du C.W., Nie G., Liang J.B., Yu X.Z., Du S.K. Effect of pearling on the physicochemical properties and antioxidant capacity of quinoa (Chenopodium quinoa Willd.) flour. J. Cereal Sci. 2021;102:103330. doi: 10.1016/j.jcs.2021.103330. DOI

Stikic R.I., Milincic D.D., Kostic A.Z., Jovanovic Z.B., Gasic U.M., Tesic Z.L., Djordjevic N.Z., Savic S.K., Czekus B.G., Pesic M.B. Polyphenolic profiles, antioxidant, and in vitro anticancer activities of the seeds of Puno and Titicaca quinoa cultivars. Cereal Chem. 2020;97:626–633. doi: 10.1002/cche.10278. DOI

Rossi L., Borghi M., Francini A., Lin X.L., Xie D.Y., Sebastiani L. Salt stress induces differential regulation of the phenylpropanoid pathway in Olea europaea cultivars Frantoio (salt-tolerant) and Leccino (salt-sensitive) J. Plant Physiol. 2016;204:8–15. doi: 10.1016/j.jplph.2016.07.014. PubMed DOI

Zafari S., Sharifi M., Chashmi N.A., Mur L.A.J. Modulation of Pb-induced stress in Prosopis shoots through an interconnected network of signaling molecules, phenolic compounds and amino acids. Plant Physiol. Biochem. 2016;99:11–20. doi: 10.1016/j.plaphy.2015.12.004. PubMed DOI

Xu Y.Q., Charles M.T., Luo Z.S., Mimee B., Veronneau P.Y., Rolland D., Roussel D. Preharvest Ultraviolet C Irradiation Increased the Level of Polyphenol Accumulation and Flavonoid Pathway Gene Expression in Strawberry Fruit. J. Agric. Food Chem. 2017;65:9970–9979. doi: 10.1021/acs.jafc.7b04252. PubMed DOI

Kim J.H., Duan S., Lim Y.J., Eom S.H. Changes in Quercetin Derivatives and Antioxidant Activity in Marigold Petals (Tagetes patula L.) Induced by Ultraviolet-B Irradiation and Methyl Jasmonate. Plants. 2022;11:2947. doi: 10.3390/plants11212947. PubMed DOI PMC

Ancillotti C., Bogani P., Biricolti S., Calistri E., Checchini L., Ciofi L., Gonnelli C., Del Bubba M. Changes in polyphenol and sugar concentrations in wild type and genetically modified Nicotiana langsdorffii Weinmann in response to water and heat stress. Plant Physiol. Biochem. 2015;97:52–61. doi: 10.1016/j.plaphy.2015.09.012. PubMed DOI

Wang J.Y., Yuan B., Huang B.R. Differential Heat-Induced Changes in Phenolic Acids Associated with Genotypic Variations in Heat Tolerance for Hard Fescue. Crop Sci. 2019;59:667–674. doi: 10.2135/cropsci2018.01.0063. DOI

Mohammadi H., Rahimpour B., Pirasteh-Anosheh H., Race M. Salicylic Acid Manipulates Ion Accumulation and Distribution in Favor of Salinity Tolerance in Chenopodium quinoa. Int. J. Environ. Res. Public Health. 2022;19:1576. doi: 10.3390/ijerph19031576. PubMed DOI PMC

Mariotti L., Reyes T.H., Ramos-Diaz J.M., Jouppila K., Guglielminetti L. Hormonal Regulation in Different Varieties of Chenopodium quinoa Willd. Exposed to Short Acute UV-B Irradiation. Plants. 2021;10:858. doi: 10.3390/plants10050858. PubMed DOI PMC

Pasko P., Sajewicz M., Gorinstein S., Zachwieja Z. Analysis of Selected Phenolic Acids and Flavonoids in Amaranthus cruentus and Chenopodium quinoa Seeds and Sprouts by HPLC. Acta Chromatogr. 2008;20:661–672. doi: 10.1556/AChrom.20.2008.4.11. DOI

Gomez-Caravaca A.M., Iafelice G., Verardo V., Marconi E., Caboni M.F. Influence of pearling process on phenolic and saponin content in quinoa (Chenopodium quinoa Willd.) Food Chem. 2014;157:174–178. doi: 10.1016/j.foodchem.2014.02.023. PubMed DOI

Ma A.M., Qi X.Q. Mining plant metabolomes: Methods applications, and perspectives. Plant Commun. 2021;2:100238. doi: 10.1016/j.xplc.2021.100238. PubMed DOI PMC

Bai Z.T., Wu Z.R., Xi L.L., Li X., Chen P., Wang F.Q., Meng W.B., Zhou W.C., Wu X.A., Yao X.J., et al. Inhibition of invasion by N-trans-feruloyloctopamine via AKT, p38MAPK O crossMark and EMT related signals in hepatocellular carcinoma cells. Bioorg. Med. Chem. Lett. 2017;27:989–993. doi: 10.1016/j.bmcl.2016.12.073. PubMed DOI

Lim E.J., Kang H.J., Jung H.J., Kim K., Lim C.J., Park E.H. Anti-inflammatory, Anti-Angiogenic and Anti-Nociceptive Activities of 4-Hydroxybenzaldehyde. Biomol. Ther. 2008;16:231–236. doi: 10.4062/biomolther.2008.16.3.231. DOI

Park S., Kim D.S., Kang S. Gastrodia elata Blume water extracts improve insulin resistance by decreasing body fat in diet-induced obese rats: Vanillin and 4-hydroxybenzaldehyde are the bioactive candidates. Eur. J. Nutr. 2011;50:107–118. doi: 10.1007/s00394-010-0120-0. PubMed DOI

Xi K.Y., Xiong S.J., Li G., Guo C.Q., Zhou J., Ma J.W., Yin J.L., Liu Y.Q., Zhu Y.X. Antifungal Activity of Ginger Rhizome Extract against Fusarium solani. Horticulturae. 2022;8:983. doi: 10.3390/horticulturae8110983. DOI

Janeczko M., Maslyk M., Kubinski K., Golczyk H. Emodin, a natural inhibitor of protein kinase CK2, suppresses growth, hyphal development, and biofilm formation of Candida albicans. Yeast. 2017;34:253–265. doi: 10.1002/yea.3230. PubMed DOI

Verebova V., Benes J., Stanicova J. Biophysical Characterization and Anticancer Activities of Photosensitive Phytoanthraquinones Represented by Hypericin and Its Model Compounds. Molecules. 2020;25:5666. doi: 10.3390/molecules25235666. PubMed DOI PMC

Hsu S.C., Chung J.G. Anticancer potential of emodin. Biomedicine. 2012;2:108–116. doi: 10.1016/j.biomed.2012.03.003. PubMed DOI PMC

Fiorito S., Preziuso F., Epifano F., Scotti L., Bucciarelli T., Taddeo V.A., Genovese S. Novel biologically active principles from spinach, goji and quinoa. Food Chem. 2019;276:262–265. doi: 10.1016/j.foodchem.2018.10.018. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...