Biophysical Characterization and Anticancer Activities of Photosensitive Phytoanthraquinones Represented by Hypericin and Its Model Compounds
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
KEGA 012UVLF-4/2018
Ministry of Education Slovak Republic
PubMed
33271809
PubMed Central
PMC7731333
DOI
10.3390/molecules25235666
PII: molecules25235666
Knihovny.cz E-zdroje
- Klíčová slova
- DNA, anticancer activity, danthron, emodin, hypericin, interaction, natural photosensitive compounds, quinizarin,
- MeSH
- anthraceny MeSH
- anthrachinony chemie MeSH
- fotochemoterapie MeSH
- fotosenzibilizující látky chemie farmakologie MeSH
- lidé MeSH
- nádory farmakoterapie MeSH
- perylen analogy a deriváty chemie farmakologie MeSH
- protinádorové látky chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- 1,4-dihydroxyanthraquinone MeSH Prohlížeč
- anthraceny MeSH
- anthrachinony MeSH
- fotosenzibilizující látky MeSH
- hypericin MeSH Prohlížeč
- perylen MeSH
- protinádorové látky MeSH
Photosensitive compounds found in herbs have been reported in recent years as having a variety of interesting medicinal and biological activities. In this review, we focus on photosensitizers such as hypericin and its model compounds emodin, quinizarin, and danthron, which have antiviral, antifungal, antineoplastic, and antitumor effects. They can be utilized as potential agents in photodynamic therapy, especially in photodynamic therapy (PDT) for cancer. We aimed to give a comprehensive summary of the physical and chemical properties of these interesting molecules, emphasizing their mechanism of action in relation to their different interactions with biomacromolecules, specifically with DNA.
Zobrazit více v PubMed
Castano A.P., Demidova T.N., Hamblin M.R. Mechanisms in photodynamic therapy: Part one—photosensitizers, photochemistry and cellular localization. Photodiagnosis. Photodyn. Ther. 2004;1:279–293. doi: 10.1016/S1572-1000(05)00007-4. PubMed DOI PMC
Deda D.K., Araki K. Nanotechnology, light and chemical action: An effective combination to kill cancer cells. J. Braz. Chem. Soc. 2015;26:2448–2470. doi: 10.5935/0103-5053.20150316. DOI
Allen T.M., Hansen C.B., Demenzes D.E.L. Pharmacokinetics of long circulating liposomes. Adv. Drug Deliv. Rev. 1995;16:267–284. doi: 10.1016/0169-409X(95)00029-7. DOI
Loomis K., McNeeley K., Bellamkonda R.V. Nanoparticles with targeting triggered release and imaging functionality for cancer application. Soft. Matter. 2011;7:839–856. doi: 10.1039/C0SM00534G. DOI
Reddi E. Role of delivery vehicles for photosensitizers in the photodynamic therapy of tumors. J. Photochem. Photobiol. B. 1997;37:189–195. doi: 10.1016/S1011-1344(96)07404-0. PubMed DOI
Huntošová V., Buzová D., Petrovajová D., Kasak P., Naďová Z., Jancura D., Sureau F., Miškovský P. Development of a new LDL-based transport system for hydrophobic/amphiphilic drug delivery to cancer cells. Int. J. Pharm. 2012;436:463–471. doi: 10.1016/j.ijpharm.2012.07.005. PubMed DOI
Hally C., Delcanale P., Nonell S., Viappiani C., Abbruzzetti S. Photosensitizing proteins for antibacterial photodynamic inactivation. Transl. Biophotonics. 2020:e201900031. doi: 10.1002/tbio.201900031. DOI
Ghorbani J., Rahban D., Aghamiri S., Teymouri A., Bahador A. Photosensitizers in antibacterial photodynamic therapy: An overview. Laser Ther. 2018;27:293–302. doi: 10.5978/islsm.27_18-RA-01. PubMed DOI PMC
Buriankova L., Buzova D., Chorvat D., Sureau F., Brault D., Miskovsky P., Jancura D. Kinetics of hypericin association with low-density lipoproteins. Photochem. Photobiol. 2011;87:56–63. doi: 10.1111/j.1751-1097.2010.00847.x. PubMed DOI
Lenkavska L., Blascakova L., Jurasekova Z., Macajova M., Bilcik B., Cavarga I., Miskovsky P., Huntosova V. Benefits of hypericin transport and delivery by low- and high-density lipoproteins to cancer cells: From in vitro to ex ovo. Photodiagnosis Photodyn. Ther. 2019;25:214–224. doi: 10.1016/j.pdpdt.2018.12.013. PubMed DOI
Konan Y.N., Gurny R., Allemann E. State of the art in the delivery of photosensitizers for photodynamic therapy. J. Photochem. Photobiol. B Biol. 2002;66:89–106. doi: 10.1016/S1011-1344(01)00267-6. PubMed DOI
Firestone R.A. Low-density lipoprotein as a vehicle for targeting antitumor compounds to cancer cells. Bioconjugate Chem. 1994;5:105–113. doi: 10.1021/bc00026a002. PubMed DOI
Versluis A.J., van Geel P.J., Oppellar H., van Berkel T.J., Bijsterbosch M.K. Receptor-mediated uptake of low-density lipoprotein by B16 melanoma cells in vitro and in vivo in mice. Br. J. Cancer. 1996;4:525–532. doi: 10.1038/bjc.1996.396. PubMed DOI PMC
Rensen P.C., de Vrueh R.L., Kuiper J., Bijsterbosch M.K., Biessen E.A., van Berkel T.J. Recombinant lipoproteins: Lipoprotein-like lipid particles for drug targeting. Adv. Drug Deliv. Rev. 2001;47:251–276. doi: 10.1016/S0169-409X(01)00109-0. PubMed DOI
Kader A., Pater. A. Loading anticancer drugs into HDL as well as LDL has little affect on properties of complexes and enhances cytotoxicity to human carcinoma cells. J. Control. Release. 2002;80:29–44. doi: 10.1016/S0168-3659(01)00536-3. PubMed DOI
Zheng G., Chen J., Li H., Glickson J.D. Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents. Proc. Natl. Acad. Sci. USA. 2005;102:17757–17762. doi: 10.1073/pnas.0508677102. PubMed DOI PMC
Song L., Li H., Sunar U., Chen J., Corbin I., Yodh A.G., Zheng G. Naphthalocyanine-reconstituted LDL nanoparticles for in vivo cancer imaging and treatment. Int. J. Nanomed. 2007;2:767–774. PubMed PMC
Dougherty T.J., Gomer C.J., Henderson B.W., Jori G., Kessel D., Korbelik M., Moan J., Peng Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998;90:889–905. doi: 10.1093/jnci/90.12.889. PubMed DOI PMC
Wilson B.C., Patterson M.S. The physics, biophysics and technology of photodynamic therapy. Phys. Med. Biol. 2008;53:R61–R109. doi: 10.1088/0031-9155/53/9/R01. PubMed DOI
Yano S., Hirohara S., Obata M., Hagiya Y., Ogura S., Ikeda A., Kataoka H., Tanaka M., Joh T. Current states and future views in photodynamic therapy. J. Photochem. Photobiol. C Photochem. Rev. 2011;12:46–67. doi: 10.1016/j.jphotochemrev.2011.06.001. DOI
Lim C.K., Heo J., Shin S., Jeong K., Seo Y.H., Jang W.D., Park C.R., Park S.Y., Kim S., Kwon I.C. Nanophotosensitizers toward advanced photodynamic therapy of cancer. Cancer Lett. 2013;334:176–187. doi: 10.1016/j.canlet.2012.09.012. PubMed DOI
Bechet D., Mordon S.R., Guillemin F., Barberi-Heyob M.A. Photodynamic therapy of malignant brain tumours: A complementary approach to conventional therapies. Cancer Treat. Rev. 2014;40:229–241. doi: 10.1016/j.ctrv.2012.07.004. PubMed DOI
Benov L. Photodynamic therapy: Current status and future direction. Med. Princ. Pract. 2015;24:14–28. doi: 10.1159/000362416. PubMed DOI PMC
Miguel-Gomez L., Vano-Galvan S., Perez-Garcia B., Carrillo-Gijon R., Jaen-Olasolo P. Treatment of folliculitis decalvans with photodynamic therapy: Results in 10 patients. J. Am. Acad. Dermatol. 2015;72:1085–1087. doi: 10.1016/j.jaad.2015.02.1120. PubMed DOI
Sharman W.M., Allen C.M., van Lier J.E. Photodynamic therapeutics: Basic principles and clinical applications. Drug Discov. Today. 1999;4:507–517. doi: 10.1016/S1359-6446(99)01412-9. PubMed DOI
Jin Y., Zhang X., Kang H., Du L., Li M. Nanostructures of an amphiphilic zinc phthalocyanine polymer conjugate for photodynamic therapy of psoriasis. Colloids Surf. B. 2015;128:405–409. doi: 10.1016/j.colsurfb.2015.02.038. PubMed DOI
Sharman W.M., van Lier J.E., Allen C.M. Targeted photodynamic theory via receptor mediated delivery systems. Adv. Drug Deliv. Rev. 2004;56:53–76. doi: 10.1016/j.addr.2003.08.015. PubMed DOI
Cruess A.F., Zlateva G., Pleil A.M., Wirostko B. Photodynamic therapy with verteporfin in age-related macular degeneration: A systematic review of efficacy, safety, treatment modifications and pharmacoeconomic properties. Acta Ophthalmol. 2009;87:118–132. doi: 10.1111/j.1755-3768.2008.01218.x. PubMed DOI
Rockson S.G., Lorenz D.P., Cheong W.F., Woodburn K.W. Photoangioplasty: An emerging clinical cardiovascular role for photodynamic therapy. Circulation. 2000;102:591–596. doi: 10.1161/01.CIR.102.5.591. PubMed DOI
Bozzini G., Colin P., Betrouni N., Nevoux P., Ouzzane A., Puech P., Willers A., Mordon S. Photodynamic therapy in urology: What can we do now and where are we heading. Photodiagn. Photodyn. Ther. 2012;9:261–273. doi: 10.1016/j.pdpdt.2012.01.005. PubMed DOI
Panzarini E., Inguscio V., Dini L. Immunogenic cell death: Can it be exploited in photodynamic therapy for cancer. Biomed. Res. Int. 2013;2013:482160. doi: 10.1155/2013/482160. PubMed DOI PMC
Lang G.E., Mennel S., Spital G., Wachtlin J., Jurklies B., Heimann H., Damato B., Meyer C.H. Different indications of photodynamic therapy in ophthalmology. Klin. Monbl. Augenheilkd. 2009;226:725–739. doi: 10.1055/s-0028-1109514. PubMed DOI
Trindade A.C., De Figueiredo J.A.P., Steier L., Weber J.B.B. Photodynamic therapy in endodontics: A literature review. Photomed. Laser Surg. 2015;33:175–182. doi: 10.1089/pho.2014.3776. PubMed DOI
Vohra F., Al-Kheraif A.A., Qadri T., Hassan M.I.A., Ahmedef A., Warnakulasuriya S., Javed F. Efficacy of photodynamic therapy in the management of oral premalignant lesions. A systematic review. Photodiagn. Photodyn. Ther. 2015;12:150–159. doi: 10.1016/j.pdpdt.2014.10.001. PubMed DOI
Karrer S., Kohl E., Feise K., Hiepe-Wegener D., Lischner S., Philipp-Dormston W., Podda M., Prager W., Walker T., Szeimies R.M. Photodynamic therapy for skin rejuvenation: Review and summary of the literature-results of a consensus conference of an expert group for aesthetic photodynamic therapy. J. Dtsch. Dermatol. Ges. 2013;11:137–148. doi: 10.1111/j.1610-0387.2012.08046.x. PubMed DOI
Fuhrmann G., Serio A., Mazo M., Nair R., Stevens M.M. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J. Control. Release. 2015;205:35–44. doi: 10.1016/j.jconrel.2014.11.029. PubMed DOI
Baptista M.S., Wainwright M. Photodynamic antimicrobial chemotherapy (PACT) for the treatment of malaria, leishmaniasis and trypanosomiasis. Braz. J. Med. Res. 2011;44:1–10. doi: 10.1590/S0100-879X2010007500141. PubMed DOI
Goslinski T., Piskorz J. Fluorinated porphyrinoids and their biomedical applications. J. Photochem. Photobiol. C Photochem. Rev. 2011;12:304–321. doi: 10.1016/j.jphotochemrev.2011.09.005. DOI
Hanakova A., Bogdanova K., Tomankova K., Pizova K., Malohlava J., Binder S., Bajgar R., Langova K., Kolar M., Mosinger J., et al. The application of antimicrobial photodynamic therapy on S. aureus and E. coli using porphyrin photosensitizers bound to cyclodextrin. Microbiol. Res. 2014;169:163–170. doi: 10.1016/j.micres.2013.07.005. PubMed DOI
Baltazar L.M., Ray A., Santos D.A., Cisalpino P.S., Friedman A.J., Nosanchuk J.D. Antimicrobial photodynamic therapy: An effective alternative approach to control fungal injections. Front. Microbiol. 2015;6:202. doi: 10.3389/fmicb.2015.00202. PubMed DOI PMC
Bonnett R. Progress with heterocyclic photosensitizers for the photodynamic therapy (PDT) of tomours. J. Heterocyclic Chem. 2002;39:455. doi: 10.1002/jhet.5570390303. DOI
Photolitec, LLC Tumor Specific Imaging Therapy. [(accessed on 10 August 2020)];Photodynamic Therapy. Available online: http://photolitec.org/Tech_PDT.html.
Vatansever F., de Melo W.C.M.A., Avci P., Vecchio D., Sadasivam M., Gupta A., Chandran R., Karimi M., Parizotto N.A., Yin R., et al. Antimicrobial strategies centered around reactive oxygen species—bactericidal antibiotics, photodynamic therapy, and beyond. Microbiol. Rev. 2013;37:955–989. doi: 10.1111/1574-6976.12026. PubMed DOI PMC
Henderson B.W., Dougherty T.J. How does photodynamic therapy work. Photochem. Photobiol. 1992;55:145–157. doi: 10.1111/j.1751-1097.1992.tb04222.x. PubMed DOI
Agostinis P., Berg K., Cengel K.A., Foster T.H., Girotti A.W., Gollnick S.O., Hahn S.M., Hamblin M.R., Juzeniene A., Kessel D., et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011;61:250–281. doi: 10.3322/caac.20114. PubMed DOI PMC
Senapathy G.J., George B.P., Abrahamse H. Exloring the role of phytochemicals as potent natural photosensitizers in photodynamic therapy. Anticancer Agents Med. Chem. 2020;20:1831–1844. doi: 10.2174/1871520620666200703192127. PubMed DOI
Moan J., Berg K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem. Photobiol. 1991;53:549–553. doi: 10.1111/j.1751-1097.1991.tb03669.x. PubMed DOI
Hatz S., Poulsen L., Ogilby P.R. Time-resolved singlet oxygen phosphorescence measurements from photosensitized experiments in single cells: Effects of oxygen diffusion and oxygen concentration. Photochem. Photobiol. 2008;84:1284–1290. doi: 10.1111/j.1751-1097.2008.00359.x. PubMed DOI
Nyst H.J., Tan I.B., Stewart F.A., Balm A.J.M. Is photodynamic therapy a good alternative to surgery and radiotherapy in the treatment of head and neck cancer. Photodiagnosis Photodyn. Ther. 2009;6:3–11. doi: 10.1016/j.pdpdt.2009.03.002. PubMed DOI
Schafer M. High sensitivity of Deinococcus radiodurans to photodynamically-produced singlet oxygen. Int. J. Radiat. Biol. 1998;74:249–253. doi: 10.1080/095530098141636. PubMed DOI
Kochevar I.E., Lambert C.R., Lynch M.C., Tedesco A.C. Comparison of photosensitized plasma membrane damage caused by singlet oxygen and free radicals. Biochim. Biophys. Acta. 1996;1280:223–230. doi: 10.1016/0005-2736(95)00297-9. PubMed DOI
Barr H., Tralau C.J., Boulos P.B., MacRobert A.J., Tilly R., Bown S.G. The contrasting mechanisms of colonic collagen damage between photodynamic therapy and thermal injury. Photochem. Photobiol. 1987;46:795–800. doi: 10.1111/j.1751-1097.1987.tb04850.x. PubMed DOI
Hopper C. Photodynamic therapy. A clinical reality in the treatment of cancer. Lancet. Oncol. 2000;1:212–219. doi: 10.1016/S1470-2045(00)00166-2. PubMed DOI
Allison R.R., Bagnato V.S., Sibata C.H. Future of oncologic photodynamic therapy. Future Oncol. 2010;6:929–940. doi: 10.2217/fon.10.51. PubMed DOI
Foote C. Mechanisms of photo-oxygenation. In: Doiron D.R., Gomer C.J., editors. Porphyrin Localization and Treatment of Tumors. 1st ed. Alan R. Liss; New York, NY, USA: 1984. pp. 3–18.
Boegheim J.P., Scholte H., Dubbehman T.M., Beems E., Raap A.K., van Steveninck J. Photodynamic effects of hematoporphyrin-derivative on enzyme activities of murine L929 fibroblasts. J. Photochem. Photobiol. B. 1987;1:61–73. doi: 10.1016/1011-1344(87)80006-4. PubMed DOI
Gibson S.L., Hilf R. Interdependence of fluence, drug, dose and oxygen on hematoporphyrin derivate induced photosensitization of tumor mitochondria. Photochem. Photobiol. 1985;42:367–373. doi: 10.1111/j.1751-1097.1985.tb01583.x. PubMed DOI
Dolmans D.E., Fukumura D., Jain R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer. 2003;3:380–387. doi: 10.1038/nrc1071. PubMed DOI
Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumors. J. Photochem. Photobiol. B. 1997;39:1–18. doi: 10.1016/S1011-1344(96)07428-3. PubMed DOI
Canti G., Lattuada D., Morelli S., Nicolin A., Cubeddu R., Taroni P., Valentini G. Efficacy of photodynamic therapy against doxorubicin-resistant murine tumors. Cancer Lett. 1995;93:255–259. doi: 10.1016/0304-3835(95)03818-H. PubMed DOI
Lofgren L.A., Hallgren S., Nilsson E., Westerborn A., Nilsson C., Reizenstein J. photodynamic therapy for recurrent nasopharyngeal cancer. Arch. Otolaryngol. Head Neck Surg. 1995;121:997–1002. doi: 10.1001/archotol.1995.01890090039008. PubMed DOI
Davies M.J. Singlet oxygen-mediated damage to proteins and its consequences. Biochem. Biophys. Res. Commun. 2003;305:761–770. doi: 10.1016/S0006-291X(03)00817-9. PubMed DOI
Bicalho L.S., Longo J.P.F., Pereira L.O., Santos M.F.M.A., Azevedo R.B. Photodynamic therapy, a new approach in the treatment of oral cancer. Rev. Univ. Ind. Santander. Salud. 2010;42:167–174.
Yoo J.O., Lim Y.C., Kim Y.M., Ha K.S. Differential cytotoxic responses to low-and high-dose photodynamic therapy in human gastric and bladder cancer cells. J. Cell Biochem. 2011;112:3061–3071. doi: 10.1002/jcb.23231. PubMed DOI
Moghissi K., Dixon K., Parson R.J. A controlled trial of Nd-YAG laser vs photodynamic therapy for odvanced malignant bronchial obstruction. Laser Med. Sci. 1993;8:269–273. doi: 10.1007/BF02547850. DOI
Kato H., Okunaka T., Shimatani H. Photodynamic therapy for early state bronchogenic carcinoma. J. Clin. Laser Med. Surg. 1996;14:235–238. doi: 10.1089/clm.1996.14.235. PubMed DOI
Manoto S.L., Abrahamse H. Effect of a newly synthesized Zn sulfophthalocyanine derivative on cell morphology, viability, proliferation, and cytotoxicity in a human lung cancer cell line (A549) Lasers Med. Sci. 2011;26:523–530. doi: 10.1007/s10103-011-0887-0. PubMed DOI
Jheon S., Lee J.M., Kim J.K., Kim K.H., Seo S.J. Photodynamic therapy for tracheobronchial cancer. Photodiagnosis Photodyn. Ther. 2011;6:177. doi: 10.1016/j.pdpdt.2011.03.176. DOI
Grant W.E., MacRobert A.J., Bown S.G., Hopper C., Speight P.M. Photodynamic therapy of oral cancer: Photosensitization with systemic aminolaevulinic acid. Lancet. 1993;342:147–148. doi: 10.1016/0140-6736(93)91347-O. PubMed DOI
Barr H., Shepherd N.A., Dix A., Roberts D.J.H., Tan W.C., Krasner N. Eradication of high-grade dysplasia in columnar-lined (Barrett´s) oesophagus by photodynamic therapy with endogenously generated protoporphyrin IX. Lancet. 1996;348:584–585. doi: 10.1016/S0140-6736(96)03054-1. PubMed DOI
Miller J.D., Baron E.D., Scull H., Hsia A., Berlin J.C., McCormick T., Colussi V., Kenney M.E., Cooper K.D., Oleinick N.L. Photodynamic therapy with the phtalocyanin photosensitizer Pc 4: The case experience with preclinical mechanistic and early clinical-tranlational studies. Toxicol. Appl. Pharmacol. 2007;224:290–299. doi: 10.1016/j.taap.2007.01.025. PubMed DOI PMC
Nseyo U.O., DeHaven J., Dougherty T.J., Potter W.R., Merrill D.L., Lundahl S.L., Lamm D.L. Photodynamic therapy (PDT) in the treatment of patients with resistant superficial bladder cancer: A long-term experience. J. Clin. Laser Med. Surg. 1998;16:61–68. doi: 10.1089/clm.1998.16.61. PubMed DOI
Leon S.P., Folkerth R.D., Black P. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer. 1996;77:362–372. doi: 10.1002/(SICI)1097-0142(19960115)77:2<362::AID-CNCR20>3.0.CO;2-Z. PubMed DOI
Zhu T.C., Finlay J.C. The role of photodynamic therapy (PDT) physics. Med. Phys. 2008;35:3127–3136. doi: 10.1118/1.2937440. PubMed DOI PMC
George B.P.A., Abrahamse H. A review on novel breast cancer therapies: Photodynamic therapy and plant derived agent induced cell death mechanisms. Anticancer Agents Med. Chem. 2016;16:793–801. doi: 10.2174/1871520615666151026094028. PubMed DOI
Kostović K., Pastar Z., Ceović R., Mokos Z.B., Buzina D.S., Stanimirović A. Photodynamic therapy in dermatology: Current treatments and implications. Coll. Antropol. 2012;36:1477–1481. PubMed
Kessel D. Photosensitization of viral particles. J. Lab. Clin. Med. 1990;116:428. PubMed
Tardivo J.P., Del Giglio A., Paschoal L.H., Baptista M.S. New photodynamic therapy protocol to treat AIDS-related Kaposi´s sarcoma. Photomed. Laser Surg. 2006;24:528–531. doi: 10.1089/pho.2006.24.528. PubMed DOI
Mĺkvy P. Position and possibilities of photodynamic therapy in oncology. Oncology. 2007;5:299–301.
Castano A.P., Demidova T.N., Hamblin M.R. Mechanisms in photodynamic therapy: Part three—Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis Photodyn. Ther. 2005;2:91–106. doi: 10.1016/S1572-1000(05)00060-8. PubMed DOI PMC
Muniyandi K., George B., Parimelazhagan T., Abrahamse H. Role of photoactive phytocompounds in photodynamic therapy of cancer. Molecules. 2020;25:4102. doi: 10.3390/molecules25184102. PubMed DOI PMC
Doherty R.E., Sazanovich I.V., McKenzie L.K., Stasheuski A.S., Coyle R., Baggaley E., Bottomley S., Weinstein J.A., Bryant H.E. Photodynamic killing of cancer cells by a platinum(II) complex with cyclometallating ligand. Sci. Rep. 2016;6:22668. doi: 10.1038/srep22668. PubMed DOI PMC
Pouton C.W., Wagstaff K.M., Roth D.M., Moseley G.W., Jans D.A. Targeted delivery to the nucleus. Adv. Drug Deliv. Rev. 2007;59:698–717. doi: 10.1016/j.addr.2007.06.010. PubMed DOI
Sobolev A.S. Novel modular transporters delivering anticancer drugs and foreign DNA to the nuclei of target cancer cells. J. Buon. 2009;14(Suppl. 1):S33–S42. PubMed PMC
de Melo W.C.M.A., Lee A.N., Perussi J.R., Hamblin M.R. Electroporation enhances antimicrobial photodynamic therapy mediated by the hydrophobic photosensitizer, hypericin. Photodiagnosis Photodyn. Ther. 2013;10:647–650. doi: 10.1016/j.pdpdt.2013.08.001. PubMed DOI PMC
Alves D.S., Pérez-Fons L., Estepa A., Micol V. Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin. Biochem. Pharmacol. 2004;68:549–561. doi: 10.1016/j.bcp.2004.04.012. PubMed DOI
Du K., Xia Q., Heng H., Feng F. Temozolomide-doxorubicin conjugate as a double intercalating agent and delivery by apoferritin for glioblastoma chemotherapy. ACS Mater. Interfaces. 2020;12:34599–34609. doi: 10.1021/acsami.0c08531. PubMed DOI
Mandelli F., Vignetti M., Suciu S., Stasi R., Petti M.C., Meloni G., Muus P., Marmont F., Marie J.P., Labar B., et al. Daunorubicin versus mitoxantrone versus idarubicin as induction and consolidation chemotherapy for adults with acute myeloid leukemia: The EORTC and GIMEMA groups study AML-10. J. Clin. Oncol. 2009;27:5397–5403. doi: 10.1200/JCO.2008.20.6490. PubMed DOI PMC
Wójcik K., Zarebski M., Cossarizza A., Dobrucki J.W. Daunomycin, an antitumor DNA intercalator, influences histone-DNA interactions. Cancer Biol. Ther. 2013;14:823–832. doi: 10.4161/cbt.25328. PubMed DOI PMC
Hu X., Cao Y., Yin X., Zhu L., Chen Y., Wang W., Hu J. Design and synthesis of various quinizarin derivatives as potential anticancer agents in acute T lymphoblastic leukemia. Bioorganic Med. Chem. 2019;27:1362–1369. doi: 10.1016/j.bmc.2019.02.041. PubMed DOI
Chen H., Zhao C., He R., Zhou M., Liu Y., Guo X., Wang M., Zhu F., Qin R., Li X. Danthron suppresses autophagy and sensitizers pancreatic cancer cells to doxorubicin. Toxicol. In Vitro. 2019;54:345–353. doi: 10.1016/j.tiv.2018.10.019. PubMed DOI
Wang Y., Yang M., Qian J., Xu W., Wang J., Hou G., Ji L., Suo A. Sequentially self-assembled polysaccharide-based nanocomplexes for combined chemotherapy and photodynamic therapy of breast cancer. Carbohydr. Polym. 2019;203:203–213. doi: 10.1016/j.carbpol.2018.09.035. PubMed DOI
Lee H., Han J., Shin H., Han H., Na K., Kim H. Combination of chemotherapy and photodynamic therapy for cancer treatment with sonoporation effects. J. Control. Release. 2018;283:190–199. doi: 10.1016/j.jconrel.2018.06.008. PubMed DOI
He C., Liu D., Lin W. self-assembled core-shell nanoparticles for combined chemotherapy and photodynamic therapy of resistant head and neck cancers. ACS Nano. 2015;9:991–1003. doi: 10.1021/nn506963h. PubMed DOI
Gleason H.A., Cronquist A. Manual of Vascular Plants of Northeastern United States and Adjacent Canada. 2nd ed. New York Botanical Garden; Bronx, New York, NY, USA: 1991. p. 910.
Rahman A. Bioactive natural products (Part C) In: Rahman A., editor. Studies in Natural Products Chemistry. 1st ed. Volume 22. Elsevier; Amsterdam, The Netherlands: 2000. p. 647.
Miškovský P. Hypericin—A new antiviral and antitumor photosensitizer: Mechanism of action and interaction with biological macromolecules. Curr. Drug Targets. 2002;3:55–84. doi: 10.2174/1389450023348091. PubMed DOI
Thornett A. Use of hypericin as antidepressant. Valid measure of antidepressant efficacy in primary care is needed. Brit. Med. J. 2000;320:1141. PubMed PMC
Butterweck V., Winterhoff H., Herkenham M. St John´s wort, hypericin, and imipramine: A comparative analysis of mRNA levels in brain areas involved in HPA axis control following short-term and long-term administration in normal and stressed rats. Mol. Psychiatry. 2001;6:547–564. doi: 10.1038/sj.mp.4000937. PubMed DOI
Eberman R., Alth G., Kreitner M., Kubin A. Natural products derived from plants as potential drugs for the photodynamic destruction of tumor cells. J. Photochem. Photobiol. B. 1996;36:95–97. doi: 10.1016/S1011-1344(96)07353-8. PubMed DOI
Pengelly A. The Constituents of Medical Plants: An Introduction to the Chemistry and Therapeutics of Herbal Medicine. 2nd ed. CABI Publishing; Cambridge, UK: 2004. pp. 20–50.
Miroššay A., Mirossay L., Tóthová J., Miškovský P., Onderková H., Mojžiš J. Potentiation of hypericin and hypocrellin-induced phototoxicity by omeprazole. Phytomedicine. 1999;6:311–317. doi: 10.1016/S0944-7113(99)80051-8. PubMed DOI
Cavarga I., Brezani P., Fedorocko P., Miskovsky P., Bobrov N., Longauer F., Rybarova S., Mirossay L., Stubna J. Photoinduced antitumor effect of hypericin can be enhanced by fractionated dosing. Photomedicine. 2005;12:680–683. doi: 10.1016/j.phymed.2004.02.011. PubMed DOI
Plenagl N., Duse L., Seitz B.S., Goergen N., Pinnapireddy S.R., Jedelska J., Brűβler J., Bakowsky U. Photodynamic therapy—hypericin tetraether liposome conjugates and their antitumor and antiangiogenic activity. J. Drug Deliv. 2019;26:23–33. doi: 10.1080/10717544.2018.1531954. PubMed DOI PMC
Bianchini P., Cozzolino M., Oneto M., Pesce L., Pennacchietti F., Tognolini M., Giorgio C., Nonell S., Cavanna L., Delcanale P., et al. Hypericin-apomyoglobin an enhanced photosensitizer complex for the treatment of tumor cells. Biomacromolecules. 2019;20:2024–2033. doi: 10.1021/acs.biomac.9b00222. PubMed DOI
Fiebich B.L., Lieb A.H. Inhibition of substance P induced cytokine synthesis by St John´s Wort extracts. Pharmacopsychiatry. 2001;34:526–528. doi: 10.1055/s-2001-15462. PubMed DOI
Samadi S., Khadivzadeh T., Emami A., Moosavi N.S., Tafaghodi M., Behnam H.R. The effect of Hypericum perforatum on the wound healing and scar of cesarean. J. Altern. Complement. Med. 2010;16:113–117. doi: 10.1089/acm.2009.0317. PubMed DOI
Hajhashemi M., Ghanbari Z., Movahedi M., Rafieian M., Keivani A., Haghollahi F. The effect of Achillea millefolium and Hypericum perforatum ointments on episiotomy wound healing in primiparous women. J. Matern. Fetal Neonatal Med. 2018;31:63–69. doi: 10.1080/14767058.2016.1275549. PubMed DOI
García I., Ballesta S., Gilaberte Y., Rezusta A., Pascual Á. Antimicrobial photodynamic activity of hypericin against methicillin-susceptible and resistant Staphylococcus aureus biofilms. Future Microbiol. 2015;10:347–356. doi: 10.2217/fmb.14.114. PubMed DOI
Engelhardt V., Krammer B., Plaetzer K. Antibacterial photodynamic therapy using water-soluble formulations of hypericin or mTHPC is effective in inactivation of Staphylococcus aureus. Photochem. Photobiol. Sci. 2010;9:365–369. doi: 10.1039/b9pp00144a. PubMed DOI
Yow C., Tang H.M., Chu E.S., Huang Z. Hypericin-mediated photodynamic antimicrobial effect on clinically isolated pathogens. Photochem. Photobiol. 2012;88:626–632. doi: 10.1111/j.1751-1097.2012.01085.x. PubMed DOI
Rodríguez-Amigo B., Delcanale P., Rotger G., Juárez-Jiménez J., Abbruzzetti S., Summer A., Agut M., Luque F.J., Nonell S., Viappiani C. The complex of hypericin with β-lactoglobulin has antimicrobial activity with perspective applications in dairy industry. J. Dairy Sci. 2015;98:89–94. doi: 10.3168/jds.2014-8691. PubMed DOI
Delcanale P., Rodríguez-Amigo B., Juárez-Jiménez J., Luque F.J., Abbruzzetti S., Agut M., Nonell S., Viappiani C. Tuning the local solvent composition at a drug carrier surface: Effect of dimethyl sulfoxide/water mixture on the photofunctional properties of hyperici-β-lactoglobulin. Mat. Chem. B. 2017;5:1633–1641. doi: 10.1039/C7TB00081B. PubMed DOI
Pezzuoli D., Cozzolino M., Montali C., Brancaleon L., Bianchini P., Zantedeschi M., Bonardi S., Viappiani C., Abbruzzetti S. Serum albumins are efficient delivery systems for the photosensitizer hypericin in photosensitization-based treatments against Staphylococcus aureus. Food Control. 2018;94:254–262. doi: 10.1016/j.foodcont.2018.07.027. DOI
Lopez-Bazzocchi I., Hudson J.B., Towers G.H. Antiviral activity of photoactive plant pigment hypericin. Photochem. Photobiol. 1991;54:95–98. doi: 10.1111/j.1751-1097.1991.tb01990.x. PubMed DOI
Hudson J.B., Lopez-Bazzocchi I., Towers G.H. Antiviral activities of hypericin. Antivir. Res. 1991;15:101–112. doi: 10.1016/0166-3542(91)90028-P. PubMed DOI
Moraleda G., Wu T.T., Jilbert A.R., Aldrich C.E., Condreay L.D., Larsen S.H., Tang J.C., Colacino J.M., Mason W.S. Inhibition of duck hepatitis B virus replication by hypericin. Antivir. Res. 1993;20:235–247. doi: 10.1016/0166-3542(93)90023-C. PubMed DOI
Guedes R.C., Eriksson L.A. Effects of halogen substitution on the photochemical properties of hypericin. J. Photochem. Photobiol. A Chem. 2006;178:41–49. doi: 10.1016/j.jphotochem.2005.06.018. DOI
Meruelo D., Lavie G., Lavie D. Therapeutic agents with dramatic antiretroviral activity and little toxicity at effective doses: Aromatic polycyclic diones hypericin and pseudohypericin. Proc. Natl. Acad. Sci. USA. 1988;85:5230–5234. doi: 10.1073/pnas.85.14.5230. PubMed DOI PMC
Hudson J.B., Imperial V., Haugland R.P., Diwu Z. Antiviral activities of photoactive perylenequinones. Photochem. Photobiol. 1997;65:352–354. doi: 10.1111/j.1751-1097.1997.tb08570.x. PubMed DOI
Xu Y., Lu C. Raman spectroscopy study on structure of human immunodeficiency virus (HIV) and hypericin-induced photosensitive damage of HIV. Sci. China Ser. C. 2005;48:117–132. PubMed
Gulick R.M., McAuliffe V., Holden-Wiltse J., Crumpacker C., Liebes L., Stein D.S., Meehan P., Hussey S., Forcht J., Valentine F.T. Phase I studies of hypericin, the active compound in St. John´s Wort, as an antiretroviral agent in HIV-infected adults: AIDS clinical trials group protocols 150 and 258. Ann. Intern. Med. 1999;130:510–514. doi: 10.7326/0003-4819-130-6-199903160-00015. PubMed DOI
Kerb R., Reum T., Brockmöller J., Bauer S., Roots I. No clinically relevant photosensitization after single-dose and steady state in treatment with hypericum extract in man. Eur. J. Clin. Pharmacol. 1995;49:A156.
Diwu Z. Novel therapeutic and diagnostic applications of hypocrellins and hypericins. Photochem. Photobiol. 1995;61:529–539. doi: 10.1111/j.1751-1097.1995.tb09903.x. PubMed DOI
Wynn J.L., Cotton T.M. Spectroscopic properties of hypericin in solution and at surfaces. J. Phys. Chem. 1995;99:4317–4323. doi: 10.1021/j100012a063. DOI
Yamazaki T., Ohta N., Yamazaki I., Song P.S. Excited-state properties of hypericin: Electronic spectra and fluorescence decay kinetics. J. Phys. Chem. 1993;97:7870–7875. doi: 10.1021/j100132a013. DOI
Keša P., Antalík M. Determination of pKa constants of hypericin in aqueous solution of the anti-allergic hydrotropic drug Cromolyn disodium salt. Chem. Phys. Lett. 2017;676:112–117. doi: 10.1016/j.cplett.2017.03.059. DOI
Redepenning J., Tao N. Measurement of formal potentials for hypericin in dimethylsulfoxide. Photobiol. 1993;58:532–535. doi: 10.1111/j.1751-1097.1993.tb04927.x. PubMed DOI
Thomas C., Pardini R.S. Oxygen dependence of hypericin-induced phototoxicity to EMT6 mouse mammary carcinoma cells. Photochem. Photobiol. 1992;55:831–837. doi: 10.1111/j.1751-1097.1992.tb08531.x. PubMed DOI
Ehrenberg B., Anderson J.L., Foote C.S. Kinetics and yield of singlet oxygen photosensitized by hypericin inorganic and biological media. Photochem. Photobiol. 1998;68:135–140. doi: 10.1111/j.1751-1097.1998.tb02479.x. PubMed DOI
Roslaniec M., Weitman H., Freeman D., Mazur Y., Ehrenberg B. Liposome binding constant and singlet oxygen quantum yields of hypericin, tetrahydroxyhelianthrone and their derivatives: Studies in organic solutions and in liposomes. J. Photochem. Photobiol. B Biol. 2000;57:149–158. doi: 10.1016/S1011-1344(00)00090-7. PubMed DOI
Gbur P., Dedič R., Jancura D., Miškovský P., Hala J. Time-resolved luminescence and singlet oxygen formation under illumination of hypericin in acetone. J. Lumin. 2008;128:765–767. doi: 10.1016/j.jlumin.2007.11.073. PubMed DOI
Fehr M.J., Carpenter S.L., Petrich J.W. The role of oxygen in the photoinduced antiviral activity of hypericin. Bioorg. Med. Chem. Lett. 1994;4:1339–1344. doi: 10.1016/S0960-894X(01)80357-7. DOI
Carpenter S., Fehr J.M., Kraus G.A., Petrich J.W. Chemiluminescent activation of the antiviral activity of hypericin: A molecular flashlight. Proc. Natl. Acad. Sci. USA. 1994;91:12273–12277. doi: 10.1073/pnas.91.25.12273. PubMed DOI PMC
Verebová V., Belej D., Joniová J., Jurašeková Z., Miškovský P., Kožár T., Horváth D., Staničová J., Huntošová V. Deeper insights into the drug defense of glioma cells against hydrophobic molecules. Int. J. Pharm. 2016;503:56–67. doi: 10.1016/j.ijpharm.2016.02.042. PubMed DOI
de Witte P., Agostinis P., Van Lint J., Merlevede W., Vandenheede J.R. Inhibition of epidermal growth factor receptor tyrosine kinase activity by hypericin. Biochem. Pharmacol. 1993;46:1929–1936. doi: 10.1016/0006-2952(93)90633-8. PubMed DOI
Agostinis P., Vantieghem A., Merlevede W., de Witte P. Hypericin in cancer treatment: More light on the way. Int. J. Biochem. Cell Biol. 2002;34:221–241. doi: 10.1016/S1357-2725(01)00126-1. PubMed DOI
Buytaert E., Callewaert G., Hendrickx N., Scorrano L., Hartmann D., Missiaen L., Vandenheede J.R., Heirman I., Grooten J., Agostinis P. Role of endoplasmic reticulum depletion and multidomain proapoptic BAX and BAK proteins in shaping cell death after hypericin-mediated photodynamic therapy. Faseb. J. 2006;20:756–758. doi: 10.1096/fj.05-4305fje. PubMed DOI
Ferrario A., von Tiehl K., Wong S., Luna M., Gomer C.J. Cyclooxygenase-2 inhibitor treatment enhances photodynamic therapy-mediated tumor response. Cancer Res. 2002;62:3956–3961. PubMed
Delcanale P., Pennacchietti F., Maestrini G., Rodríguez-Amigo B., Bianchini P., Diaspro A., Iagatti A., Patrizi B., Foggi P., Agut M., et al. Subdiffraction localization of a nanostructured photosensitizer in bacterial cells. Sci. Rep. 2015;5:15564. doi: 10.1038/srep15564. PubMed DOI PMC
Miškovský P., Sureau F., Chinsky L., Turpin P.Y. Subcellular distribution of hypericin in human cancer cells. Photochem. Photobiol. 1995;62:546–549. doi: 10.1111/j.1751-1097.1995.tb02382.x. PubMed DOI
Miškovský P., Chinsky L., Wheeler G.V., Turpin P.Y. Hypericin site specific interactions within polynucleotides used as DNA model compounds. J. Biomol. Struct. Dyn. 1995;13:547–552. doi: 10.1080/07391102.1995.10508865. PubMed DOI
Sánchez-Cortés S., Miškovský P., Jancura D., Bertoluzza A. Specific interactions of antiretroviraly active drug hypericin with DNA as studied by surface-enhanced resonance Raman spectroscopy. J. Phys. Chem. 1996;100:1938–1944. doi: 10.1021/jp951980q. DOI
Das K., Smirnov A.V., Wen J., Miškovský P., Petrich J.W. Photophysics of hypericin and hypocrellin A in complex with subcellular components: Interactions with human serum albumin. Photochem. Photobiol. 1999;69:633–645. doi: 10.1111/j.1751-1097.1999.tb03339.x. PubMed DOI
Senthil V., Jones L.R., Senthil K., Grossweiner L.J. Hypericin photosensitization in aqueous model system. Photochem. Photobiol. 1994;59:40–47. doi: 10.1111/j.1751-1097.1994.tb04999.x. PubMed DOI
Mijatovic S., Maksimovic-Ivanic D., Radovic J., Milijkovic D., Kaludjerovic G.N., Sabo T.J., Trajkovic V. Aloe emodin decreases the ERK-dependent anticancer activity of cisplatin. Cell Mol. Life Sci. 2005;62:1275–1282. doi: 10.1007/s00018-005-5041-3. PubMed DOI PMC
Ma T., Qi Q.H., Yang W.X., Xu J., Dong Z.L. Contractile effects and antracellular Ca2+ signaling induced by emodin in circular smooth muscle cells of rat colon. World J. Gastroenterol. 2003;9:1804–1807. doi: 10.3748/wjg.v9.i8.1804. PubMed DOI PMC
Janeczko M., Masčyk M., Kubiński K., Golczyk H. Emodin, a natural inhibitor of protein kinase CK2, suppresses growth, hyphal development, and biofilm formation of Candida Albicans. Yeast. 2017;34:253–265. doi: 10.1002/yea.3230. PubMed DOI
Huang H.C., Lee C.R., Lee Chao P.D., Chen C.C., Chu S.H. Vasorelaxant effects of emodin, an antraquinone from a Chinese herb. Eur. J. Pharmacol. 1991;205:289–294. PubMed
Su Y.T., Chang H.L., Shyue S.K., Hsu S.L. Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Biochem. Pharmacol. 2005;70:229–241. doi: 10.1016/j.bcp.2005.04.026. PubMed DOI
Chukwujelwu J.C., Coombes P.H., Mulholland D.A., van Staden J. Emodin, an antibacterial anthraquinone from the roots of Cassia occidentalis. S. Afr. J. Bot. 2006;72:295–297. doi: 10.1016/j.sajb.2005.08.003. DOI
Srinivas G., Babykutty S., Sathiadevan P.P., Srinivas P. Molecular mechanism of emodin action: Transition from laxative ingredient to an antitumor agent. Med. Res. Rev. 2007;27:591–608. doi: 10.1002/med.20095. PubMed DOI
Fernand V.E., Dinh D.T., Washington S.J., Fakayode S.O., Loss J.N., van Ravenswaay R.O., Warner I.M. Determination of pharmacologically active compounds in root extracts of Cassia Alata L. by use of high performance liquid chromatography. Talanta. 2008;74:896–902. doi: 10.1016/j.talanta.2007.07.033. PubMed DOI PMC
Hennebelle T., Weniger B., Joseph H., Sahpaz S., Bailleul F. Senna alata. Fitoterapia. 2009;80:385–393. doi: 10.1016/j.fitote.2009.05.008. PubMed DOI
Andersen D.O., Weber N.D., Wood S.G., Hughes B.G., Murray B.K., North J.A. In vitro virucidal activity of selected anthraquinones and anthraquinone derivatives. Antiviral Res. 1991;16:185–196. doi: 10.1016/0166-3542(91)90024-L. PubMed DOI
Kusari S., Lamshöft M., Zühlke S., Spiteller M. An endophytic fungus from hypericum perforatum that produces hypericin. J. Nat. Prod. 2008;71:159–162. doi: 10.1021/np070669k. PubMed DOI
Karioti A., Bilia A.R. Hypericins as potential leads for new therapeutics. Int. J. Mol. Sci. 2010;11:562–594. doi: 10.3390/ijms11020562. PubMed DOI PMC
Bogdanska A., Chmurzyński L., Ossowski T., Liwo A., Jeziorek D. Protolytic equilibria of dihydroxyanthraquinones in non-aqueous solutions. Anal. Chim. Acta. 1999;402:339–343. doi: 10.1016/S0003-2670(99)00546-2. DOI
Mueller S.O., Lutz W.K., Stopper H. Factors affecting the genotoxic potency ranking of natural anthraquinones in mammalian cell culture systems. Mutat. Res. 1998;414:125–129. doi: 10.1016/S1383-5718(98)00047-3. PubMed DOI
Li J., Yang W., Hu W., Wang J., Jin Z., Wang X., Xu W. Effects of emodin on the activity of K channel in guinea pig taenia coli smooth muscle cells. Acta Pharm. Sin. 1998;33:321–325. PubMed
Ma T., Qi Q.H., Xu J., Dong Z.L., Yang W.X. Signal pathways involved in emodin-induced contraction of smooth muscle cells from rat colon. World J. Gastroenterol. 2004;10:1476–1479. doi: 10.3748/wjg.v10.i10.1476. PubMed DOI PMC
Chen D., Xiong Y., Wang L., Lv B., Lin Y. Characteristics of emodin on modulating the contractility of jejunal smooth muscle. Can. J. Physiol. Pharmacol. 2012;90:455–462. doi: 10.1139/y2012-004. PubMed DOI
Vargas F., Fraile G., Velásquez M., Correia H., Fonseca G., Marin M., Marcano E., Sánchez Y. Studies on the photostability and phototoxicity of aloe-emodin, emodin and rhein. Pharmazie. 2002;57:399–404. PubMed
Oshida K., Hirakata M., Maeda A., Miyoshi T., Miyamoto Y. Toxicological effect of emodin in mouse testicular gene expression profile. J. Appl. Toxicol. 2011;31:790–800. doi: 10.1002/jat.1637. PubMed DOI
Xu X., Toselli A., Russell L.D., Seldin D.C. Globozospermia in mice lacking the casein kinase II α´catalytic subunit. Nat. Genet. 1999;23:118–121. doi: 10.1038/12729. PubMed DOI
Escalier D., Silvius D., Xu X. Spermatogenesis of mice lacking CK2alpha´failure of germ cell survival and characteristic modifications of the spermatid nucleus. Mol. Reprod. Dev. 2003;66:190–201. doi: 10.1002/mrd.10346. PubMed DOI
Wang L., Lin L., Ye B. Electrochemical studies of the interaction of the anticancer herbal drug emodin with DNA. J. Pharm. Biomed. Anal. 2006;42:625–629. doi: 10.1016/j.jpba.2006.05.017. PubMed DOI
Bi S., Zhang H., Qiao C., Sun Y., Liu C. Studies of interaction of emodin and DNA in the presence of ethidium bromide by spectroscopic method. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2008;69:123–129. doi: 10.1016/j.saa.2007.03.017. PubMed DOI
Saito S.T., Silva G., Pungartnik C., Brendel M. Study of DNA-emodin interaction by FTIR and UV-Vis spectroscopy. J. Photochem. Photobiol. B: Biol. 2012;111:59–63. doi: 10.1016/j.jphotobiol.2012.03.012. PubMed DOI
Li Y., Luan Y., Qi X., Li M., Gong L., Xue X., Wu X., Wu Y., Chen M., Xing G., et al. Emodin triggers DNA double-strand breaks by stabilizing topoisomerase II-DNA cleavage complexes and by inhibiting ATP hydrolysis of topoisomerase II. Toxicol. Sci. 2010;118:435–443. doi: 10.1093/toxsci/kfq282. PubMed DOI
Fabriciova G., Sanchez-Cortes S., Garcia-Ramos J.V., Miskovsky P. Surface-enhanced Raman spectroscopy study of the interaction of the antitumoral drug emodin with serum albumin. Biopolymers. 2004;74:125–130. doi: 10.1002/bip.20058. PubMed DOI
Bi S.Y., Song D.O., Kan Y.H., Xu D., Tian Y., Zhou X., Zhang H.Q. Spectroscopic characterization of effective components anthraquinones in Chinese medicinal herbs binding with serum albumins. Spectrochim. Acta A: Biomol. Spectrosc. 2005;62:203–212. doi: 10.1016/j.saa.2004.12.049. PubMed DOI
Koistinen K.M., Soininen P., Venalainen T.A., Hayrinen J., Laatikainen R., Perakyla M., Tervahauta A.I., Karenlampi S.O. Birch PR-10c interacts with several biologically important ligands. Phytochemistry. 2005;66:2524–2533. doi: 10.1016/j.phytochem.2005.09.007. PubMed DOI
Sevilla P., Rivas J.M., García-Blanco F., García-Ramos J.V., Sánchez-Cortés S. Identification of the antitumoral drug emodin binding sites in bovine serum albumin by spectroscopic methods. BBA-Proteins Proteom. 2007;1774:1359–1369. doi: 10.1016/j.bbapap.2007.07.022. PubMed DOI
Pecere T., Gazzola M.V., Mucignat C., Parolin C., Dalla V.F., Cavaggioni A., Basso G., Diaspro A., Salvato B., Carli M., et al. Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors. Cancer Res. 2000;60:2800–2804. PubMed
Chun-Guan W., Jun-Qing Y., Bei-Zhong L., Dan-Ting J., Chong W., Liang Z., Dan Z., Yan W. Anti-tumor activity of emodin against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo. Eur. J. Pharmacol. 2010;627:33–41. doi: 10.1016/j.ejphar.2009.10.035. PubMed DOI
Kuo T.C., Yang J.S., Lin M.W., Hsu S.C., Lin J.J., Lin H.J., Hsia T.C., Liao L., Yang M.D., Fan M.J., et al. Emodin has cytotoxic and pretoctive effect in rat c6 glioma cells: Roles of Mdr1a and nuclear factor κB in cell survival. J. Pharmacol. Exp. Ther. 2009;330:736–744. doi: 10.1124/jpet.109.153007. PubMed DOI
Ko J.C., Su Y.J., Lin S.T., Jhan J.Y., Ciou S.C., Cheng C.M., Lin Y.W. Suppression of ERCC1 and Rad51 expression through ER1/2 inactivation is essential in emodin-mediated cytotoxicity in human non-small cell lung cancer cells. Biochem. Pharmacol. 2010;79:655–664. doi: 10.1016/j.bcp.2009.09.024. PubMed DOI
Chemicalland21 Quinizarin. [(accessed on 7 September 2020)]; Available online: http://www.chemicalland21.com/specialtychem/finechem/QUINIZARIN.htm.
Quinti L., Allen N.S., Edge M., Murphy B.P., Perotti A. A study of the strongly fluorescent species formed by the interaction of the dye 1,4-dihydroxyanthraquinone (quinizarin) with A(III) J. Photochem. Photobiol. A Chem. 2003;155:79–91. doi: 10.1016/S1010-6030(02)00360-X. DOI
Yohida M. Chemistry and hair dyes application of dihydroxy derivates of anthraquinone and naphtoquinone. Prog. Org. Coat. 1997;31:63–72. doi: 10.1016/S0300-9440(97)00019-2. DOI
Brinkworth R.I., Fairle D.P. Hydroxyquinones are competitive nonpeptide inhibitors of HIV-1 proteinase. Biochim. Biophys. Acta. 1995;1253:5–8. doi: 10.1016/0167-4838(95)00183-U. PubMed DOI
Brown J.P. A review of the genetic effects of naturally occurring flavonoids, anthraquinones and related compounds. Mutat. Res. 1980;75:243–277. doi: 10.1016/0165-1110(80)90029-9. PubMed DOI
Longo V., Amato G., Salvetti A., Gervasi P.G. Heterogenous effect of anthraquinones on drug-metabolizing enzymes in the liver and small intestine of rat. Chem. Biol. Interact. 2000;126:63–77. doi: 10.1016/S0009-2797(00)00154-X. PubMed DOI
Carter T.P., Gillispie G.D., Connoll M.A. Intramolecular hydrogen bonding in substituted anthraquinones by laser-induced fluorescence. 1. 1,4-dihydroxyanthraquinone (quinizarin) J. Phys. Chem. 1982;86:192–196. doi: 10.1021/j100391a012. DOI
Smulevich G., Angeloni L., Giovannardi S., Marzocchi M.P. Resonance Raman and polarized light infrared spectra of 1,4-dihydroxyanthraquinone, vibrational studies of the ground and excited electronic states. Chem. Phys. 1982;65:313–322. doi: 10.1016/0301-0104(82)85207-5. DOI
Nigam G., Deppisch B. Redetermination of the structure of 1,4-dihydroxyanthraquinone (C14H8O4) Z. Kristallogr. 1980;151:185–191. doi: 10.1524/zkri.1980.151.3-4.185. DOI
Fabriciová G., Garcia-Ramos J.V., Miškovský P., Sanchez-Cortes S. Absorption and acidic behavior of anthraquinone drugs quinizarin and danthron on Ag nanoparticles studied by Raman spectroscopy. Vib. Spectrosc. 2004;34:273–281. doi: 10.1016/j.vibspec.2004.01.001. DOI
Bondy G.S., Armstrong C.L., Dawson B.A., Héroux-Metcalf C., Neville G.A., Rogers C.G. Toxicity of structurally related anthraquinones and anthrones to mammalian-cell in vitro. Toxicol. In Vitro. 1994;8:329–335. doi: 10.1016/0887-2333(94)90153-8. PubMed DOI
Verebová V., Adamčík J., Danko P., Podhradský D., Miškovský P., Staničová J. Anthraquinones quinizarine and danthron unwind negatively supercoiled DNA and lengthen linear DNA. Biochem. Biophys. Res. Commun. 2014;444:50–55. doi: 10.1016/j.bbrc.2014.01.007. PubMed DOI
IARC . Pharmaceutical Drugs. International Agency for Research on Cancer; Lyon, France: 1990. Dantron (chrysazin; 1,8-dihydroxyanthraquinone) pp. 265–275. PubMed
Mueller S.O., Stopper H., Dekant W. biotransformation of the anthraquinones emodin and chrysophanol by cytochrome P450 enzymes. Bioactivation to genotoxic metabolites. Drug Metab. Dispos. 1998;26:540–546. PubMed
Müller S.O., Eckert I., Lutz W.K., Stopper H. Genotoxicity of the laxative drug components emodin, aloe-emodin and danthron in mammalian cells: Topoisomerase II mediated. Mutat. Res. Genet. Toxicol. 1996;371:165–173. doi: 10.1016/S0165-1218(96)90105-6. PubMed DOI
Downes C.S., Mullinger A.M., Johnson R.T. Inhibitors of DNA topoisomerase II prevent chromatid separation in mammalians cells but do not prevent exit from mitosis. Proc. Natl. Acad. Sci. USA. 1991;88:8895–8899. doi: 10.1073/pnas.88.20.8895. PubMed DOI PMC
Wang J.R., Caron P.R., Kim R.A. The role of DNA topoisomerases in recombination and genomic stability: A double-edged sword. Cell. 1990;62:403–406. doi: 10.1016/0092-8674(90)90002-V. PubMed DOI
Neimeikaité-Čéniené A., Sergediené E., Nivinskas H., Čénas N. Cytotoxicity of natural hydroxyanthraquinones: Role of oxidative stress. Z. Naturforsch. C. 2002;57:822–827. doi: 10.1515/znc-2002-9-1012. PubMed DOI
Lieberman D.F., Fink R.C., Schaefer F.L., Mulcahy R.J., Stark A. Mutagenicity of anthraquinone and hydroxylated anthraquinones in the Ames/Salmonella microsome system. Appl. Environ. Microbiol. 1982;43:1354–1359. doi: 10.1128/AEM.43.6.1354-1359.1982. PubMed DOI PMC
Ferreiro M.L., Rodriguez-Otero J. Ab inition study of the intramolecular proton transfer in dihydroxyanthraquinones. J. Mol. Struct. 2001;542:63–77. doi: 10.1016/S0166-1280(00)00811-3. DOI
Ansari S.S., Khan R.H., Naqvi S. Probing the intermolecular interactions into serum albumin and anthraquinone systems: A spectroscopic and docking approach. J. Biomol. Struct. Dyn. 2018;36:3362–3375. doi: 10.1080/07391102.2017.1388284. PubMed DOI
Jutkova A., Chorvat D., Miskovsky P., Jancura D., Datta S. Encapsulation of anticancer drug curcumin and co-loading with photosensitizer hypericin into lipoproteins investigated by fluorescence resonance energy transfer. Int. J. Pharm. 2019;564:369–378. doi: 10.1016/j.ijpharm.2019.04.062. PubMed DOI
Kozsup M., Dömötör O., Nagy S., Farkas E., Enyedy E.A., Buglyó P. Synthesis, characterization and albumin binding capabilities of quinizarin containing ternary cobalt(III) complexes. J. Inorg. Biochem. 2020;204:110963. doi: 10.1016/j.jinorgbio.2019.110963. PubMed DOI
Crlikova H., Kostrhunova H., Pracharova J., Kozsup M., Nagy S., Buglyó P., Brabec V., Kasparkova J. Antiproliferative, DNA binding, and cleavage properties of dinuclear Co(III) complexes containing the bioactive quinizarin ligand. J. Biol. Inorg. Chem. 2020;25:339–350. doi: 10.1007/s00775-020-01765-4. PubMed DOI
Kočišová E., Chinsky L., Miškovský P. Sequence specific interaction of the photoactive drug hypericin depends on the structural arrangement and the stability of the structure containing its specific 5´AG3´target: A resonance Raman spectroscopy study. J. Biomol. Struct. Dyn. 1999;17:51–59. doi: 10.1080/07391102.1999.10508340. PubMed DOI
Staničová J., Verebová V., Strejčková A. Potential anticancer agent hypericin and its model compound emodin: Interaction with DNA. Čes. Slov. Farm. 2016;65:28–31. PubMed
Gottesman M.M., Fojo T., Bates S.E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer. 2002;2:48–58. doi: 10.1038/nrc706. PubMed DOI
Aller S.G., Yu J., Ward A., Weng Y., Chittaboina S., Zhou R.P., Harrell P.M., Trinh Y.T., Zhang Q.H., Urbatsch I.L., et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science. 2009;323:1718–1722. doi: 10.1126/science.1168750. PubMed DOI PMC
Regina A., Demeule M., Laplante A., Jodoin J., Dagenais C., Berthelet F., Moghrabi A., Beliveau R. Multidrug resistance in brain tumors: Roles of the blood-brain barrier. Cancer Metastasis Rev. 2001;20:13–25. doi: 10.1023/A:1013104423154. PubMed DOI
Szaflarski W., Sujka-Kordowska P., Januchowski R., Wojtowicz K., Andrzejewska M., Nowicki M., Zabel M. Nuclear localization of P-glycoprotein is responsible for protection of the nucleus from doxorubicin in the resistant LoVo cell line. Biomed. Pharmacother. 2013;67:497–502. doi: 10.1016/j.biopha.2013.03.011. PubMed DOI
Weyergang A., Berstad M.E., Bull-Hansen B., Olsen C.E., Selbo P.K., Berg K. Photochemical activation of drug for the treatment of therapy-resistant cancers. Photochem. Photobiol. Sci. 2015;14:1465–1475. doi: 10.1039/C5PP00029G. PubMed DOI