Revisiting the versatile buckwheat: reinvigorating genetic gains through integrated breeding and genomics approach
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
small millets
Indian Council of Agricultural Research
underutilized crop breeding
Indian Council of Agricultural Research
31572457
National Natural Science Foundation of China
31871536
National Natural Science Foundation of China
771367
European Union Horizon 2020
PubMed
30623242
DOI
10.1007/s00425-018-03080-4
PII: 10.1007/s00425-018-03080-4
Knihovny.cz E-zdroje
- Klíčová slova
- Buckwheat, Genetic gain, Gluten free, Nutritional security, Underutilized crops,
- MeSH
- Fagopyrum genetika růst a vývoj MeSH
- genom rostlinný genetika MeSH
- genomika MeSH
- nutriční hodnota MeSH
- pěstování plodin MeSH
- šlechtění rostlin * metody MeSH
- zemědělské plodiny genetika růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Emerging insights in buckwheat molecular genetics allow the integration of genomics driven breeding to revive this ancient crop of immense nutraceutical potential from Asia. Out of several thousand known edible plant species, only four crops-rice, wheat, maize and potato provide the largest proportion of daily nutrition to billions of people. While these crops are the primary supplier of carbohydrates, they lack essential amino acids and minerals for a balanced nutrition. The overdependence on only few crops makes the future cropping systems vulnerable to the predicted climate change. Diversifying food resources through incorporation of orphan or minor crops in modern cropping systems is one potential strategy to improve the nutritional security and mitigate the hostile weather patterns. One such crop is buckwheat, which can contribute to the agricultural sustainability as it grows in a wide range of environments, requires relatively low inputs and possess balanced amino acid and micronutrient profiles. Additionally, gluten-free nature of protein and nutraceutical properties of secondary metabolites make the crop a healthy alternative of wheat-based diet in developed countries. Despite enormous potential, efforts for the genetic improvement of buckwheat are considerably lagged behind the conventional cereal crops. With the draft genome sequences in hand, there is a great scope to speed up the progress of genetic improvement of buckwheat. This article outlines the state of the art in buckwheat research and provides concrete perspectives how modern breeding approaches can be implemented to accelerate the genetic gain. Our suggestions are transferable to many minor and underutilized crops to address the issue of limited genetic gain and low productivity.
Agricultural Institute of Slovenia Hacquetova ulica Ljubljana Slovenia
Department of Gene Bank Crop Research Institute Drnovská Prague Czech Republic
Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
Zobrazit více v PubMed
Biosci Biotechnol Biochem. 1999 Oct;63(10):1837-9 PubMed
Am J Bot. 2000 Apr;87(4):573-82 PubMed
Biosci Biotechnol Biochem. 2000 Apr;64(4):845-7 PubMed
J Agric Food Chem. 2001 Jan;49(1):490-6 PubMed
Crit Rev Food Sci Nutr. 2001 Sep;41(6):451-64 PubMed
J Exp Bot. 2002 Aug;53(375):1801-4 PubMed
Theor Appl Genet. 2002 Aug;105(2-3):306-312 PubMed
Nahrung. 2003 Apr;47(2):114-6 PubMed
J Agric Food Chem. 2003 Oct 22;51(22):6452-5 PubMed
Genome. 2004 Apr;47(2):345-51 PubMed
Genome. 2004 Jun;47(3):469-74 PubMed
J Exp Bot. 2004 Jul;55(402):1509-17 PubMed
Nutrition. 2006 Feb;22(2):166-73 PubMed
Trends Biotechnol. 2009 Sep;27(9):522-30 PubMed
Theor Appl Genet. 2009 Nov;119(7):1247-54 PubMed
Hereditas. 2010 Feb;147(1):27-33 PubMed
J Agric Food Chem. 2010 Dec 8;58(23):12431-9 PubMed
Phytochemistry. 2011 Jul;72(10):963-74 PubMed
BMC Genomics. 2011 Jan 13;12:30 PubMed
Nutrients. 2010 Jan;2(1):16-34 PubMed
J Food Sci. 2011 Aug;76(6):S401-7 PubMed
Molecules. 2012 Aug 13;17(8):9668-82 PubMed
Breed Sci. 2011 Dec;61(4):394-404 PubMed
Biotechnol Adv. 2013 Dec;31(8):1120-34 PubMed
Breed Sci. 2012 Dec;62(4):303-9 PubMed
J Agric Food Chem. 2013 Sep 4;61(35):8277-86 PubMed
Nutrients. 2013 Apr 22;5(4):1417-35 PubMed
PLoS One. 2013 Jun 14;8(6):e65349 PubMed
Plant Methods. 2013 Jul 22;9:29 PubMed
Food Chem. 2013 Dec 15;141(4):3803-12 PubMed
Pharm Biol. 2014 Feb;52(2):221-7 PubMed
Theor Appl Genet. 2014 Jun;127(6):1263-91 PubMed
Trends Plant Sci. 2014 Sep;19(9):592-601 PubMed
Biotechnol Adv. 2015 Jan-Feb;33(1):41-52 PubMed
Breed Sci. 2014 Dec;64(4):291-9 PubMed
Theor Appl Genet. 2016 Jun;129(6):1231-45 PubMed
DNA Res. 2016 Jun;23(3):215-24 PubMed
Mol Plant. 2016 Jul 6;9(7):961-74 PubMed
Theor Appl Genet. 2016 Aug;129(8):1595-605 PubMed
Curr Genomics. 2016 Jun;17(3):193-206 PubMed
Front Plant Sci. 2016 Jun 29;7:934 PubMed
PLoS One. 2016 Oct 26;11(10):e0164494 PubMed
Front Plant Sci. 2017 Jun 28;8:1141 PubMed
Sci Rep. 2017 Jul 26;7(1):6514 PubMed
Int J Mol Sci. 2017 Aug 27;18(9):null PubMed
Mol Plant. 2017 Sep 12;10(9):1224-1237 PubMed
Sci Rep. 2017 Sep 18;7(1):11792 PubMed
Genes (Basel). 2017 Oct 03;8(10):null PubMed
Front Plant Sci. 2018 Mar 21;9:276 PubMed
Genes Genet Syst. 1996 Aug;71(4):211-8 PubMed