Rewiring of the seed metabolome during Tartary buckwheat domestication
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36148785
PubMed Central
PMC9829391
DOI
10.1111/pbi.13932
Knihovny.cz E-zdroje
- Klíčová slova
- buckwheat, domestication, mGWAS, metabolite variation, traditional medicine,
- MeSH
- celogenomová asociační studie MeSH
- domestikace MeSH
- Fagopyrum * genetika metabolismus MeSH
- fylogeneze MeSH
- lidé MeSH
- metabolom genetika MeSH
- regulace genové exprese u rostlin genetika MeSH
- rostlinné proteiny metabolismus MeSH
- semena rostlinná genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
Crop domestication usually leads to the narrowing genetic diversity. However, human selection mainly focuses on visible traits, such as yield and plant morphology, with most metabolic changes being invisible to the naked eye. Buckwheat accumulates abundant bioactive substances, making it a dual-purpose crop with excellent nutritional and medical value. Therefore, examining the wiring of these invisible metabolites during domestication is of major importance. The comprehensive profiling of 200 Tartary buckwheat accessions exhibits 540 metabolites modified as a consequence of human selection. Metabolic genome-wide association study illustrates 384 mGWAS signals for 336 metabolites are under selection. Further analysis showed that an R2R3-MYB transcription factor FtMYB43 positively regulates the synthesis of procyanidin. Glycoside hydrolase gene FtSAGH1 is characterized as responsible for the release of active salicylic acid, the precursor of aspirin and indispensably in plant defence. UDP-glucosyltransferase gene FtUGT74L2 is characterized as involved in the glycosylation of emodin, a major medicinal component specific in Polygonaceae. The lower expression of FtSAGH1 and FtUGT74L2 were associated with the reduction of salicylic acid and soluble EmG owing to domestication. This first large-scale metabolome profiling in Tartary buckwheat will facilitate genetic improvement of medicinal properties and disease resistance in Tartary buckwheat.
Agricultural Institute of Slovenia Ljubljana Slovenia
Center of Plant Systems Biology and Biotechnology Plovdiv Bulgaria
College of Environmental Sciences Sichuan Agricultural University Chengdu China
College of Plant Pathology Gansu Agricultural University Lanzhou China
Crop Research Institute Hunan Academy of Agricultural Sciences Changsha China
Department of Gene Bank Crop Research Institute Praha 6 Czech Republic
EA2106 Biomolécules et Biotechnologies Végétales Université de Tours Tours France
Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
Laboratory of Metabolomics Institute of Microbiology Bulgarian Academy of Sciences Plovdiv Bulgaria
Zobrazit více v PubMed
Alseekh, S. , Scossa, F. , Wen, W. , Luo, J. , Yan, J. , Beleggia, R. , Klee, H.J. et al. (2021) Domestication of crop metabolomes: desired and unintended consequences. Trends Plant Sci. 26, 650–661. PubMed
Beleggia, R. , Rau, D. , Laidò, G. , Platani, C. , Nigro, F. , Fragasso, M. , De Vita, P. et al. (2016) Evolutionary metabolomics reveals domestication‐associated changes in tetraploid wheat kernels. Mol. Biol. Evol. 33, 1740–1753. PubMed PMC
Campbell, C.G. (1976) Buckwheat: Fagopyrum (Polygonaceae). In Evolution of Crop Plants ( Simmonds, N.W. , ed), pp. 235–237. London and New York: Longman.
Chen, W. , Gong, L. , Guo, Z. , Wang, W. , Zhang, H. , Liu, X. , Yu, S. et al. (2013) A novel integrated method for large‐scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol. Plant, 6, 1769–1780. PubMed
Chen, W. , Gao, Y. , Xie, W. , Gong, L. , Lu, K. , Wang, W. , Li, Y. et al. (2014) Genome‐wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat. Genet. 46, 714–721. PubMed
Chen, W. , Wang, W. , Peng, M. , Gong, L. , Gao, Y. , Wan, J. , Wang, S. et al. (2016) Comparative and parallel genome‐wide association studies for metabolic and agronomic traits in cereals. Nat. Commun. 7, 12767. PubMed PMC
Chen, J. , Hu, X. , Shi, T. , Yin, H. , Sun, D. , Hao, Y. , Xia, X. et al. (2020a) Metabolite‐based genome‐wide association study enables dissection of the flavonoid decoration pathway of wheat kernels. Plant Biotechnol. J. 18, 1722–1735. PubMed PMC
Chen, J. , Zhu, M. , Liu, R. , Zhang, M. , Lv, Y. , Liu, Y. , Xiao, X. et al. (2020b) BIOMASS YIELD 1 regulates sorghum biomass and grain yield via the shikimate pathway. J. Exp. Bot. 71, 5506–5520. PubMed PMC
Chen, L. , Yang, H. , Fang, Y. , Guo, W. , Chen, H. , Zhang, X. , Dai, W. et al. (2021) Overexpression of GmMYB14 improves high‐density yield and drought tolerance of soybean through regulating plant architecture mediated by the brassinosteroid pathway. Plant Biotechnol. J. 19, 702–716. PubMed PMC
Cid, M.B. , Alfonso, F. and Martín‐Lomas, M. (2004) Synthesis of fagopyritols A1 and B1 from D‐chiro‐inositol. Carbohydr. Res. 339, 2303–2307. PubMed
De Luca, V. , Salim, V. , Atsumi, S.M. and Yu, F. (2012) Mining the biodiversity of plants: a revolution in the making. Science, 336, 1658–1661. PubMed
Dean, J.V. and Delaney, S.P. (2008) Metabolism of salicylic acid in wild‐type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana . Physiol. Plant. 132, 417–425. PubMed
Ding, P. and Ding, Y. (2020) Stories of salicylic acid: a plant defense hormone. Trends Plant Sci. 25, 549–565. PubMed
Dong, X. , Fu, J. , Yin, X. , Cao, S. , Li, X. , Lin, L. and Ni, J. (2016) Emodin: a review of its pharmacology, toxicity and pharmacokinetics. Phytother. Res. 30, 1207–1218. PubMed PMC
Dong, Q. , Zhao, H. , Huang, Y. , Chen, Y. , Wan, M. , Zeng, Z. , Yao, P. et al. (2020) FtMYB18 acts as a negative regulator of anthocyanin/proanthocyanidin biosynthesis in Tartary buckwheat. Plant Mol. Biol. 104, 309–325. PubMed
Fernie, A.R. and Yan, J. (2019) De Novo domestication: an alternative route toward new crops for the future. Mol. Plant, 12, 615–631. PubMed
Fraga, B.M. (2013) Natural sesquiterpenoids. Nat. Prod. Rep. 30, 1226–1264. PubMed
Fuller, D.Q. and Allaby, R. (2009) Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation. Ann. Plant Rev. 38, 238–295.
Gao, L. , Gonda, I. , Sun, H. , Ma, Q. , Bao, K. , Tieman, D.M. , Burzynski‐Chang, E.A. et al. (2019) The tomato pan‐genome uncovers new genes and a rare allele regulating fruit flavor. Nat. Genet. 51, 1044–1051. PubMed
Giovannoni, J. (2018) Tomato multiomics reveals consequences of crop domestication and improvement. Cell, 172, 6–8. PubMed
Horbowicz, M. , Brenac, P. and Obendorf, R.L. (1998) Fagopyritol B1, O‐alpha‐D‐galactopyranosyl‐(1→2)‐D‐chiro‐inositol, a galactosyl cyclitol in maturing buckwheat seeds associated with desiccation tolerance. Planta, 205, 1–11. PubMed
Huang, Y. , Wu, Q. , Wang, S. , Shi, J. , Dong, Q. , Yao, P. , Shi, G. et al. (2019) FtMYB8 from Tartary buckwheat inhibits both anthocyanin/proanthocyanidin accumulation and marginal trichome initiation. BMC Plant Biol. 19, 263. PubMed PMC
Hunt, H.V. , Shang, X. and Jones, M.K. (2018) Buckwheat: a crop from outside the major Chinese domestication centres? A review of the archaeobotanical, palynological and genetic evidence. Veg. Hist. Archaeobot. 27, 493–506. PubMed PMC
Jing, R. , Li, H.Q. , Hu, C.L. , Jiang, Y.P. , Qin, L.P. and Zheng, C.J. (2016) Phytochemical and pharmacological profiles of three Fagopyrum Buckwheats. Int. J. Mol. Sci., 17, 589. PubMed PMC
Joshi, D.C. , Zhang, K. , Wang, C. , Chandora, R. , Khurshid, M. , Li, J. , He, M. et al. (2020) Strategic enhancement of genetic gain for nutraceutical development in buckwheat: a genomics‐driven perspective. Biotechnol. Adv. 39, 107479. PubMed
Kang, H.M. , Sul, J.H. , Service, S.K. , Zaitlen, N.A. , Kong, S.Y. , Freimer, N.B. , Sabatti, C. et al. (2010) Variance component model to account for sample structure in genome‐wide association studies. Nat. Genet. 42, 348–354. PubMed PMC
Karasov, T.L. , Chae, E. , Herman, J.J. and Bergelson, J. (2017) Mechanisms to mitigate the trade‐off between growth and defense. Plant Cell, 29, 666–680. PubMed PMC
Kouzai, Y. , Kimura, M. , Watanabe, M. , Kusunoki, K. , Osaka, D. , Suzuki, T. , Matsui, H. et al. (2018) Salicylic acid‐dependent immunity contributes to resistance against Rhizoctonia solani, a necrotrophic fungal agent of sheath blight, in rice and Brachypodium distachyon . New Phytol. 217, 771–783. PubMed PMC
Kreft, I. , Zhou, M. , Golob, A. , Germ, M. , Likar, M. , Dziedzic, K. and Luthar, Z. (2020) Breeding buckwheat for nutritional quality. Breed. Sci. 70, 67–73. PubMed PMC
Ku, Y.S. , Contador, C.A. , Ng, M.S. , Yu, J. , Chung, G. and Lam, H.M. (2020) The effects of domestication on secondary metabolite composition in Legumes . Front. Genet. 11, 581357. PubMed PMC
Kumari, A. and Chaudhary, H.K. (2020) Nutraceutical crop buckwheat: a concealed wealth in the lap of Himalayas. Crit. Rev. Biotechnol. 40, 539–554. PubMed
Lee, D.K. , Chung, P.J. , Jeong, J.S. , Jang, G. , Bang, S.W. , Jung, H. , Kim, Y.S. et al. (2017) The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol. J. 15, 754–764. PubMed PMC
Li, M.X. , Yeung, J.M. , Cherny, S.S. and Sham, P.C. (2012) Evaluating the effective numbers of independent tests and significant p‐value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum. Genet. 131, 747–756. PubMed PMC
Li, J. , Zhang, K. , Meng, Y. , Li, Q. , Ding, M. and Zhou, M. (2019a) FtMYB16 interacts with Ftimportin‐α1 to regulate rutin biosynthesis in Tartary buckwheat. Plant Biotechnol. J. 17, 1479–1481. PubMed PMC
Li, N. , Lin, B. , Wang, H. , Li, X. , Yang, F. , Ding, X. , Yan, J. et al. (2019b) Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nat. Genet. 51, 1540–1548. PubMed
Li, Q. , Gao, J. , Pang, X. , Chen, A. and Wang, Y. (2020a) Molecular mechanisms of action of emodin: as an anti‐cardiovascular disease drug. Front. Pharmacol. 11, 559607. PubMed PMC
Li, S. , Zhang, K. , Khurshid, M. , Fan, Y. , Xu, B. and Zhou, M. (2020b) First report of Rhizoctonia solani AG‐4 HGI causing stem canker on Fagopyrum tataricum (Tartary buckwheat) in China. Plant Dis. 104, 3263. PubMed
Lippert, C. , Listgarten, J. , Liu, Y. , Kadie, C.M. , Davidson, R.I. and Heckerman, D. (2011) FaST linear mixed models for genome‐wide association studies. Nat. Methods, 8, 833–835. PubMed
Ma, Y. , Liu, M. , Stiller, J. and Liu, C. (2019) A pan‐transcriptome analysis shows that disease resistance genes have undergone more selection pressure during barley domestication. BMC Genomics, 20, 12. PubMed PMC
Martín‐García, B. , Pasini, F. , Verardo, V. , Gómez‐Caravaca, A.M. , Marconi, E. and Caboni, M.F. (2019) Distribution of free and bound phenolic compounds in buckwheat milling fractions. Foods, 8, 670. PubMed PMC
Maruri‐López, I. , Aviles‐Baltazar, N.Y. , Buchala, A. and Serrano, M. (2019) Intra and extracellular journey of the phytohormone salicylic acid. Front. Plant Sci. 10, 423. PubMed PMC
Nuccio, M.L. , Wu, J. , Mowers, R. , Zhou, H.P. , Meghji, M. , Primavesi, L.F. , Paul, M.J. et al. (2015) Expression of trehalose‐6‐phosphate phosphatase in maize ears improves yield in well‐watered and drought conditions. Nat. Biotechnol. 33, 862–869. PubMed
Ohnishi, O. (1998) Search for the wild ancestor of buckwheat III. The wild ancestor of cultivated common buckwheat, and of Tartary buckwheat. Econ. Bot. 52, 123–133.
Oladzad, A. , Zitnick‐Anderson, K. , Jain, S. , Simons, K. , Osorno, J.M. , McClean, P.E. and Pasche, J.S. (2019) Genotypes and genomic regions associated with Rhizoctonia solani resistance in common bean. Front. Plant Sci. 10, 956. PubMed PMC
Park, D.S. , Sayler, R.J. , Hong, Y.G. , Nam, M.H. and Yang, Y. (2008) A method for inoculation and evaluation of rice sheath blight disease. Plant Dis. 92, 25–29. PubMed
Peng, L.X. , Wang, J.B. , Hu, L.X. , Zhao, J.L. , Xiang, D.B. , Zou, L. and Zhao, G. (2013) Rapid and simple method for the determination of emodin in Tartary buckwheat (Fagopyrum tataricum) by high‐performance liquid chromatography coupled to a diode array detector. J. Agric. Food Chem. 61, 854–857. PubMed
Saito, K. and Matsuda, F. (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu. Rev. Plant Biol. 61, 463–489. PubMed
Shang, Y. , Ma, Y. , Zhou, Y. , Zhang, H. , Duan, L. , Chen, H. , Zeng, J. et al. (2014) Biosynthesis, regulation, and domestication of bitterness in cucumber. Science, 346, 1084–1088. PubMed
Sharma, S. , Ali, A. , Ali, J. , Sahni, J.K. and Baboota, S. (2013) Rutin: therapeutic potential and recent advances in drug delivery. Expert Opin. Investig. Drugs, 22, 1063–1079. PubMed
Shi, T. , Zhu, A. , Jia, J. , Hu, X. , Chen, J. , Liu, W. , Ren, X. et al. (2020) Metabolomics analysis and metabolite‐agronomic trait associations using kernels of wheat (Triticum aestivum) recombinant inbred lines. Plant J. 103, 279–292. PubMed PMC
Singh, S. , Phillips, G.N., Jr. and Thorson, J.S. (2012) The structural biology of enzymes involved in natural product glycosylation. Nat. Prod. Rep. 29, 1201–1237. PubMed PMC
Thachuk, C. , Crossa, J. , Franco, J. , Dreisigacker, S. , Warburton, M. and Davenport, G.F. (2009) Core hunter: an algorithm for sampling genetic resources based on multiple genetic measures. BMC Bioinformatics, 10, 243. PubMed PMC
Tian, L. , Shi, S. , Nasir, F. , Chang, C. , Li, W. , Tran, L.P. and Tian, C. (2018) Comparative analysis of the root transcriptomes of cultivated and wild rice varieties in response to Magnaporthe oryzae infection revealed both common and species‐specific pathogen responses. Rice, 11, 26. PubMed PMC
Tsuji, K. and Ohnishi, O. (2001) Phylogenetic relationships among wild and cultivated Tartary buckwheat(Fagopyrum tataricum Gaert) populations revealed by AFLP analyses. Genes Genet. Syst. 76, 47–52. PubMed
Vlot, A.C. , Dempsey, D.A. and Klessig, D.F. (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47, 177–206. PubMed
Wang, L. , Lu, W. , Ran, L. , Dou, L. , Yao, S. , Hu, J. , Fan, D. et al. (2019) R2R3‐MYB transcription factor MYB6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in Populus tomentosa . Plant J. 99, 733–751. PubMed
Weisskopf, A. and Fuller, D.Q. (2014) Buckwheat: origins and development. In Encyclopedia of Global Archaeology ( Smith, C. , ed), pp. 1025–1028. New York, NY: Springer New York.
Wen, W. , Li, D. , Li, X. , Gao, Y. , Li, W. , Li, H. , Liu, J. et al. (2014) Metabolome‐based genome‐wide association study of maize kernel leads to novel biochemical insights. Nat. Commun. 5, 3438. PubMed PMC
Xie, K. , Chen, R. , Li, J. , Wang, R. , Chen, D. , Dou, X. and Dai, J. (2014) Exploring the catalytic promiscuity of a new glycosyltransferase from Carthamus tinctorius . Org. Lett. 16, 4874–4877. PubMed
Yao, J. , Huot, B. , Foune, C. , Doddapaneni, H. and Enyedi, A. (2007) Expression of a beta‐glucosidase gene results in increased accumulation of salicylic acid in transgenic Nicotiana tabacum cv. Xanthi‐nc NN genotype. Plant Cell Rep. 26, 291–301. PubMed
Yin, Q. , Han, X. , Han, Z. , Chen, Q. , Shi, Y. , Gao, H. , Zhang, T. et al. (2020) Genome‐wide analyses reveals a glucosyltransferase involved in rutin and emodin glucoside biosynthesis in Tartary buckwheat. Food Chem. 318, 126478. PubMed
Zeng, X. , Yuan, H. , Dong, X. , Peng, M. , Jing, X. , Xu, Q. , Tang, T. et al. (2020) Genome‐wide dissection of co‐selected UV‐B responsive pathways in the UV‐B adaptation of qingke. Mol. Plant 13, 112–127. PubMed
Zhang, Y. and Li, X. (2019) Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Curr. Opin. Plant Biol. 50, 29–36. PubMed
Zhang, X. , Henriques, R. , Lin, S.S. , Niu, Q.W. and Chua, N.H. (2006) Agrobacterium‐mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1, 641–646. PubMed
Zhang, K. , He, M. , Fan, Y. , Zhao, H. , Gao, B. , Yang, K. , Li, F. et al. (2021) Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genome Biol. 22, 23. PubMed PMC
Zhou, M.L. , Zhu, X.M. , Shao, J.R. , Wu, Y.M. and Tang, Y.X. (2012) An protocol for genetic transformation of Catharanthus roseus by Agrobacterium rhizogenes A4. Appl. Biochem. Biotechnol. 166, 1674–1684. PubMed
Zhu, F. (2016) Chemical composition and health effects of Tartary buckwheat. Food Chem. 203, 231–245. PubMed
Zhu, G. , Wang, S. , Huang, Z. , Zhang, S. , Liao, Q. , Zhang, C. , Lin, T. et al. (2018) Rewiring of the fruit metabolome in tomato breeding. Cell, 172, 249–261.e212. PubMed
Zrenner, R. , Genzel, F. , Verwaaijen, B. , Wibberg, D. and Grosch, R. (2020) Necrotrophic lifestyle of Rhizoctonia solani AG3‐PT during interaction with its host plant potato as revealed by transcriptome analysis. Sci. Rep. 10, 12574. PubMed PMC