The Cannabinoid CB1 Antagonist TM38837 With Limited Penetrance to the Brain Shows Reduced Fear-Promoting Effects in Mice

. 2019 ; 10 () : 207. [epub] 20190320

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30949045

Rimonabant was the first selective CB1 antagonist/inverse agonist introduced into clinical practice to treat obesity and metabolic-related disorders. It was withdrawn from market due to the notably increased rates of psychiatric side effects. We have evaluated TM38837, a novel, largely peripherally restricted CB1 antagonist, in terms of fear-promoting consequences of systemic vs. intracerebral injections. Different groups of male C57BL/6 N mice underwent auditory fear conditioning, followed by re-exposure to the tone. Mice were treated per os (p.o.) with TM38837 (10, 30, or 100 mg/kg), rimonabant (10 mg/kg; a brain penetrating CB1 antagonist/inverse agonist which served as a positive control), or vehicle, 2 h prior the tone presentation. Only the high dose of TM38837 (100 mg/kg) induced a significant increase in freezing behavior, similar to that induced by rimonabant (10 mg/kg) (p < 0.001). If injected into the brain both TM38837 (10 or 30 μg/mouse) and rimonabant (1 or 10 μg/mouse) caused a sustained fear response to the tone, which was more pronounced after rimonabant treatment. Taken together, TM38837 was at least one order of magnitude less effective in promoting fear responses than rimonabant. Given the equipotency of the two CB1 antagonists with regard to weight loss and metabolic syndrome-like symptoms in rodent obesity models, our results point to a critical dose range in which TM3887 might be beneficial for indications such as obesity and metabolic disorders with limited risk of fear-promoting effects.

Zobrazit více v PubMed

Bellocchio L., Soria-Gómez E., Quarta C., Metna-Laurent M., Cardinal P., Binder E., et al. (2013). Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade. Proc. Natl. Acad. Sci. USA 110, 4786–4791. 10.1073/pnas.1218573110 PubMed DOI PMC

Chorvat R. J. (2013). Peripherally restricted CB1 receptor blockers. Bioorg. Med. Chem. Lett. 23, 4751–4760. 10.1016/j.bmcl.2013.06.066, PMID: PubMed DOI

Christensen R., Kristensen P. K., Bartels E. M., Bliddal H., Astrup A. (2007). Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370, 1706–1713. 10.1016/S0140-6736(07)61721-8, PMID: PubMed DOI

Christopoulou F. D., Kiortsis D. N. (2011). An overview of the metabolic effects of rimonabant in randomized controlled trials: potential for other cannabinoid 1 receptor blockers in obesity. J. Clin. Pharm. Ther. 36, 10–18. 10.1111/j.1365-2710.2010.01164.x, PMID: PubMed DOI

Cota D., Marsicano G., Tschöp M., Grübler Y., Flachskamm C., Schubert M., et al. . (2003). The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J. Clin. Invest. 112, 423–431. 10.1172/JCI17725, PMID: PubMed DOI PMC

Di Marzo V., Piscitelli F., Mechoulam R. (2011). Cannabinoids and endocannabinoids in metabolic disorders with focus on diabetes. Handb. Exp. Pharmacol. 203, 75–104. 10.1007/978-3-642-17214-4_4 PubMed DOI

Direnberger S., Mues M., Micale V., Wotjak C. T., Dietzel S., Schubert M., et al. (2012). Biocompatibility of a genetically encoded calcium indicator in a transgenic mouse model. Nat. Commun. 3:1031. 10.1038/ncomms2035 PubMed DOI

Gueye A. B., Pryslawsky Y., Trigo J. M., Poulia N., Delis F., Antoniou K., et al. (2016). The CB1 neutral antagonist AM4113 retains the therapeutic efficacy of the inverse agonist rimonabant for nicotine dependence and weight loss with better psychiatric tolerability. Int. J. Neuropsychopharmacol. 19:pyw068. 10.1093/ijnp/pyw068 PubMed DOI PMC

Haller J., Bakos N., Szirmay M., Ledent C., Freund T. F. (2002). The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety. Eur. J. Neurosci. 16, 1395–1398. 10.1046/j.1460-9568.2002.02192.x, PMID: PubMed DOI

Höfelmann D., di Benedetto B., Azad S. C., Micale V., Wotjak C. T., Rammes G. (2013). Lack of interaction of endocannabinoids and 5-HT(3) neurotransmission in associative fear circuits of the amygdala: evidence from electrophysiological and behavioural experiments. Brain Res. 1527, 47–56. 10.1016/j.brainres.2013.06.011, PMID: PubMed DOI

Jacob W., Yassouridis A., Marsicano G., Monory K., Lutz B., Wotjak C. T. (2009). Endocannabinoids render exploratory behaviour largely independent of the test aversiveness: role of glutamatergic transmission. Genes Brain Behav. 8, 685–698. 10.1111/j.1601-183X.2009.00512.x, PMID: PubMed DOI

Jacob W., Marsch R., Marsicano G., Lutz B., Wotjak C. T. (2012). Cannabinoid CB1 receptor deficiency increases contextual fear memory under highly aversive conditions and long-term potentiation in vivo. Neurobiol. Learn. Mem. 98, 47–55. 10.1016/j.nlm.2012.04.008, PMID: PubMed DOI

Janero D. R., Lindsley L., Vemuri V. K., Makriyannis A. (2011). Cannabinoid 1 G protein-coupled receptor (periphero-)neutral antagonists: emerging therapeutics for treating obesity-driven metabolic disease and reducing cardiovascular risk. Expert Opin. Drug Discovery 6, 995–1025. 10.1517/17460441.2011.608063, PMID: PubMed DOI

Kamprath K., Wotjak C. T. (2004). Nonassociative learning processes determine expression and extinction of conditioned fear in mice. Learn. Mem. 11, 770–786. 10.1101/lm.86104, PMID: PubMed DOI PMC

Kamprath K., Marsicano G., Tang J., Monory K., Bisogno T., Di Marzo V., et al. . (2006). Cannabinoid CB1 receptor mediates fear extinction via habituation-like processes. J. Neurosci. 26, 6677–6686. 10.1523/JNEUROSCI.0153-06.2006, PMID: PubMed DOI PMC

Kamprath K., Plendl W., Marsicano G., Deussing J. M., Wurst W., Lutz B., et al. . (2009). Endocannabinoids mediate acute fear adaptation via glutamatergic neurons independently of corticotropin-releasing hormone signaling. Genes Brain Behav. 8, 203–211. 10.1111/j.1601-183X.2008.00463.x, PMID: PubMed DOI

Kirilly E., Gonda X., Bagdy G. (2012). CB1 receptor antagonists: new discoveries leading to new perspectives. Acta Physiol. 205, 41–60. 10.1111/j.1748-1716.2011.02402.x, PMID: PubMed DOI

Klumpers L. E., Fridberg M., de Kam M. L., Little P. B., Jensen N. O., Kleinloog H. D., et al. . (2013). Peripheral selectivity of the novel cannabinoid receptor antagonist TM38837 in healthy subjects. Br. J. Clin. Pharmacol. 76, 846–857. 10.1111/bcp.12141, PMID: PubMed DOI PMC

Le Foll B., Gorelick D. A., Goldberg S. R. (2009). The future of endocannabinoid-oriented clinical research after CB1 antagonists. Psychopharmacology 205, 171–174. 10.1007/s00213-009-1506-7, PMID: PubMed DOI PMC

Llorente-Berzal A., Terzian A. L., di Marzo V., Micale V., Viveros M. P., Wotjak C. T. (2015). 2-AG promotes the expression of conditioned fear via cannabinoid receptor type 1 on GABAergic neurons. Psychopharmacology 232, 2811–2825. 10.1007/s00213-015-3917-y, PMID: PubMed DOI

Marsicano G., Wotjak C. T., Azad S. C., Bisogno T., Rammes G., Cascio M. G., et al. . (2002). The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534. 10.1038/nature00839, PMID: PubMed DOI

Metna-Laurent M., Soria-Gómez E., Verrier D., Conforzi M., Jégo P., Lafenêtre P., et al. . (2012). Bimodal control of fear-coping strategies by CB₁ cannabinoid receptors. J. Neurosci. 32, 7109–7118. 10.1523/JNEUROSCI.1054-12.2012, PMID: PubMed DOI PMC

Meye F. J., Trezza V., Vanderschuren L. J., Ramakers G. M., Adan R. A. (2013). Neutral antagonism at the cannabinoid 1 receptor: a safer treatment for obesity. Mol. Psychiatry 18, 1294–1301. 10.1038/mp.2012.145, PMID: PubMed DOI

Micale V., Di Marzo V., Sulcova A., Wotjak C. T., Drago F. (2013). Endocannabinoid system and mood disorders: priming a target for new therapies. Pharmacol. Ther. 138, 18–37. 10.1016/j.pharmthera.2012.12.002, PMID: PubMed DOI

Micale V., Tabiová K., Kučerová J., Drago F. (2015). “Role of the endocannabinoid system in depression: from preclinical to clinical evidence” in Cannabinoid modulation of emotion, memory, and motivation. eds. Campolongo P., Fattore L. (New York: Springer; ), 97–129.

Micale V., Stepan J., Jurik A., Pamplona F. A., Marsch R., Drago F., et al. . (2017). Extinction of avoidance behavior by safety learning depends on endocannabinoid signaling in the hippocampus. J. Psychiatr. Res. 90, 46–59. 10.1016/j.jpsychires.2017.02.002, PMID: PubMed DOI

Moreira F. A., Crippa J. A. (2009). The psychiatric side-effects of rimonabant. Rev. Bras. Psiquiatr. 31, 145–153. 10.1590/S1516-44462009000200012, PMID: PubMed DOI

Noerregaard P. K., Fridberg M., Elling C. E. (2010). “TM38837–a novel second generation peripheral selective CB1 receptor antagonist with efficacy and potency in rodent obesity models equal to brain-penetrant CB1 antagonist rimonabant” in 20th Annual Symposium of the International Cannabinoid Research Society 2010. p 39.

Plendl W., Wotjak C. T. (2010). Dissociation of within- and between-session extinction of conditioned fear. J. Neurosci. 30, 4990–4998. 10.1523/JNEUROSCI.6038-09.2010, PMID: PubMed DOI PMC

Rey A. A., Purrio M., Viveros M. P., Lutz B. (2012). Biphasic effects of cannabinoids in anxiety responses: CB1 and GABAB receptors in the balance of GABAergic and glutamatergic neurotransmission. Neuropsychopharmacology 37, 2624–2634. 10.1038/npp.2012.123, PMID: PubMed DOI PMC

Riebe C. J., Pamplona F. A., Kamprath K., Wotjak C. T. (2012). Fear relief-toward a new conceptual frame work and what endocannabinoids gotta do with it. Neuroscience 204, 159–185. 10.1016/j.neuroscience.2011.11.057, PMID: PubMed DOI

Rinaldi-Carmona M., Barth F., Héaulme M., Shire D., Calandra B., Congy C., et al. . (1994). SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett. 350, 240–244. 10.1016/0014-5793(94)00773-X, PMID: PubMed DOI

Rinaldi-Carmona M., Pialot F., Congy C., Redon E., Barth F., Bachy A., et al. . (1996). Characterization and distribution of binding sites for [3H]-SR 141716A, a selective brain (CB1) cannabinoid receptor antagonist, in rodent brain. Life Sci. 58, 1239–1247. 10.1016/0024-3205(96)00085-9, PMID: PubMed DOI

Sharma M. K., Machhi J., Murumkar P., Yadav M. R. (2018). New role of phenothiazine derivatives as peripherally acting CB1 receptor antagonizing anti-obesity agents. Sci. Rep. 8:1650. 10.1038/s41598-018-20078-w PubMed DOI PMC

Shrestha N., Cuffe J. S. M., Hutchinson D. S., Headrick J. P., Perkins A. V., McAinch A. J., et al. . (2018). Peripheral modulation of the endocannabinoid system in metabolic disease. Drug Discov. Today 23, 592–604. 10.1016/j.drudis.2018.01.029, PMID: PubMed DOI

Silvestri C., Ligresti A., Di Marzo V. (2011). Peripheral effects of the endocannabinoid system in energy homeostasis: adipose tissue, liver and skeletal muscle. Rev. Endocr. Metab. Disord. 12, 153–162. 10.1007/s11154-011-9167-3, PMID: PubMed DOI

Sink K. S., McLaughlin P. J., Wood J. A., Brown C., Fan P., Vemuri V. K., et al. . (2008). The novel cannabinoid CB1 receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology 33, 946–955. 10.1038/sj.npp.1301476, PMID: PubMed DOI PMC

Sink K. S., Segovia K. N., Collins L. E., Markus E. J., Vemuri V. K., Makriyannis A., et al. (2010a). The CB1 inverse agonist AM251, but not the CB1 antagonist AM4113, enhances retention of contextual fear conditioning in rats. Pharmacol. Biochem. Behav. 95, 479–484. 10.1016/j.pbb.2010.03.011 PubMed DOI PMC

Sink K. S., Segovia K. N., Sink J., Randall P. A., Collins L. E., Correa M., et al. (2010b). Potential anxiogenic effects of cannabinoid CB1 receptor antagonists/inverse agonists in rats: comparisons between AM4113, AM251, and the benzodiazepine inverse agonist FG-7142. Eur. Neuropsychopharmacol. 20, 112–122. 10.1016/j.euroneuro.2009.11.002 PubMed DOI PMC

Takano A., Gulyás B., Varnäs K., Little P. B., Noerregaard P. K., Jensen N. O., et al. . (2014). Low brain CB1 receptor occupancy by a second generation CB1 receptor antagonist TM38837 in comparison with rimonabant in nonhuman primates: a PET study. Synapse 68, 89–97. 10.1002/syn.21721, PMID: PubMed DOI

Tam J., Cinar R., Liu J., Godlewski G., Wesley D., Jourdan T., et al. . (2012). Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance. Cell Metab. 16, 167–179. 10.1016/j.cmet.2012.07.002, PMID: PubMed DOI PMC

Tam J., Hinden L., Drori A., Udi S., Azar S., Baraghithy S. (2018). The therapeutic potential of targeting the peripheral endocannabinoid/CB1 receptor system. Eur. J. Intern. Med. 49, 23–29. 10.1016/j.ejim.2018.01.009, PMID: PubMed DOI

Terzian A. L., Drago F., Wotjak C. T., Micale V. (2011). The dopamine and cannabinoid interaction in the modulation of emotions and cognition: assessing the role of cannabinoid CB1 receptor in neurons expressing dopamine D1 receptors. Front. Behav. Neurosci. 5:49. 10.3389/fnbeh.2011.00049, PMID: PubMed DOI PMC

Terzian A. L., Micale V., Wotjak C. T. (2014). Cannabinoid receptor type 1 receptors on GABAergic vs. glutamatergic neurons differentially gate sex-dependent social interest in mice. Eur. J. Neurosci. 40, 2293–2298. 10.1111/ejn.12561, PMID: PubMed DOI

Van Gaal L. F., Rissanen A. M., Scheen A. J., Ziegler O., Rössner S. (2005). Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365, 1389–1397. 10.1016/S0140-6736(05)66374-X, PMID: PubMed DOI

Ward S. J., Raffa R. B. (2011). Rimonabant redux and strategies to improve the future outlook of CB1 receptor neutral-antagonist/inverse-agonist therapies. Obesity 19, 1325–1334. 10.1038/oby.2011.69, PMID: PubMed DOI

Yen Y. C., Mauch C. P., Dahlhoff M., Micale V., Bunck M., Sartori S. B., et al. . (2012). Increased levels of conditioned fear and avoidance behavior coincide with changes in phosphorylation of the protein kinase B (AKT) within the amygdala in a mouse model of extremes in trait anxiety. Neurobiol. Learn. Mem. 98, 56–65. 10.1016/j.nlm.2012.04.009, PMID: PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...