The Cannabinoid CB1 Antagonist TM38837 With Limited Penetrance to the Brain Shows Reduced Fear-Promoting Effects in Mice
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30949045
PubMed Central
PMC6435594
DOI
10.3389/fphar.2019.00207
Knihovny.cz E-zdroje
- Klíčová slova
- TM38837, cannabinoid CB1 receptor, fear conditioning, peripheral CB1 receptor antagonist, rimonabant,
- Publikační typ
- časopisecké články MeSH
Rimonabant was the first selective CB1 antagonist/inverse agonist introduced into clinical practice to treat obesity and metabolic-related disorders. It was withdrawn from market due to the notably increased rates of psychiatric side effects. We have evaluated TM38837, a novel, largely peripherally restricted CB1 antagonist, in terms of fear-promoting consequences of systemic vs. intracerebral injections. Different groups of male C57BL/6 N mice underwent auditory fear conditioning, followed by re-exposure to the tone. Mice were treated per os (p.o.) with TM38837 (10, 30, or 100 mg/kg), rimonabant (10 mg/kg; a brain penetrating CB1 antagonist/inverse agonist which served as a positive control), or vehicle, 2 h prior the tone presentation. Only the high dose of TM38837 (100 mg/kg) induced a significant increase in freezing behavior, similar to that induced by rimonabant (10 mg/kg) (p < 0.001). If injected into the brain both TM38837 (10 or 30 μg/mouse) and rimonabant (1 or 10 μg/mouse) caused a sustained fear response to the tone, which was more pronounced after rimonabant treatment. Taken together, TM38837 was at least one order of magnitude less effective in promoting fear responses than rimonabant. Given the equipotency of the two CB1 antagonists with regard to weight loss and metabolic syndrome-like symptoms in rodent obesity models, our results point to a critical dose range in which TM3887 might be beneficial for indications such as obesity and metabolic disorders with limited risk of fear-promoting effects.
National Institute Mental Health Klecany Czechia
Research Group Neuronal Plasticity Max Planck Institute of Psychiatry Munich Germany
Zobrazit více v PubMed
Bellocchio L., Soria-Gómez E., Quarta C., Metna-Laurent M., Cardinal P., Binder E., et al. (2013). Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade. Proc. Natl. Acad. Sci. USA 110, 4786–4791. 10.1073/pnas.1218573110 PubMed DOI PMC
Chorvat R. J. (2013). Peripherally restricted CB1 receptor blockers. Bioorg. Med. Chem. Lett. 23, 4751–4760. 10.1016/j.bmcl.2013.06.066, PMID: PubMed DOI
Christensen R., Kristensen P. K., Bartels E. M., Bliddal H., Astrup A. (2007). Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370, 1706–1713. 10.1016/S0140-6736(07)61721-8, PMID: PubMed DOI
Christopoulou F. D., Kiortsis D. N. (2011). An overview of the metabolic effects of rimonabant in randomized controlled trials: potential for other cannabinoid 1 receptor blockers in obesity. J. Clin. Pharm. Ther. 36, 10–18. 10.1111/j.1365-2710.2010.01164.x, PMID: PubMed DOI
Cota D., Marsicano G., Tschöp M., Grübler Y., Flachskamm C., Schubert M., et al. . (2003). The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J. Clin. Invest. 112, 423–431. 10.1172/JCI17725, PMID: PubMed DOI PMC
Di Marzo V., Piscitelli F., Mechoulam R. (2011). Cannabinoids and endocannabinoids in metabolic disorders with focus on diabetes. Handb. Exp. Pharmacol. 203, 75–104. 10.1007/978-3-642-17214-4_4 PubMed DOI
Direnberger S., Mues M., Micale V., Wotjak C. T., Dietzel S., Schubert M., et al. (2012). Biocompatibility of a genetically encoded calcium indicator in a transgenic mouse model. Nat. Commun. 3:1031. 10.1038/ncomms2035 PubMed DOI
Gueye A. B., Pryslawsky Y., Trigo J. M., Poulia N., Delis F., Antoniou K., et al. (2016). The CB1 neutral antagonist AM4113 retains the therapeutic efficacy of the inverse agonist rimonabant for nicotine dependence and weight loss with better psychiatric tolerability. Int. J. Neuropsychopharmacol. 19:pyw068. 10.1093/ijnp/pyw068 PubMed DOI PMC
Haller J., Bakos N., Szirmay M., Ledent C., Freund T. F. (2002). The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety. Eur. J. Neurosci. 16, 1395–1398. 10.1046/j.1460-9568.2002.02192.x, PMID: PubMed DOI
Höfelmann D., di Benedetto B., Azad S. C., Micale V., Wotjak C. T., Rammes G. (2013). Lack of interaction of endocannabinoids and 5-HT(3) neurotransmission in associative fear circuits of the amygdala: evidence from electrophysiological and behavioural experiments. Brain Res. 1527, 47–56. 10.1016/j.brainres.2013.06.011, PMID: PubMed DOI
Jacob W., Yassouridis A., Marsicano G., Monory K., Lutz B., Wotjak C. T. (2009). Endocannabinoids render exploratory behaviour largely independent of the test aversiveness: role of glutamatergic transmission. Genes Brain Behav. 8, 685–698. 10.1111/j.1601-183X.2009.00512.x, PMID: PubMed DOI
Jacob W., Marsch R., Marsicano G., Lutz B., Wotjak C. T. (2012). Cannabinoid CB1 receptor deficiency increases contextual fear memory under highly aversive conditions and long-term potentiation in vivo. Neurobiol. Learn. Mem. 98, 47–55. 10.1016/j.nlm.2012.04.008, PMID: PubMed DOI
Janero D. R., Lindsley L., Vemuri V. K., Makriyannis A. (2011). Cannabinoid 1 G protein-coupled receptor (periphero-)neutral antagonists: emerging therapeutics for treating obesity-driven metabolic disease and reducing cardiovascular risk. Expert Opin. Drug Discovery 6, 995–1025. 10.1517/17460441.2011.608063, PMID: PubMed DOI
Kamprath K., Wotjak C. T. (2004). Nonassociative learning processes determine expression and extinction of conditioned fear in mice. Learn. Mem. 11, 770–786. 10.1101/lm.86104, PMID: PubMed DOI PMC
Kamprath K., Marsicano G., Tang J., Monory K., Bisogno T., Di Marzo V., et al. . (2006). Cannabinoid CB1 receptor mediates fear extinction via habituation-like processes. J. Neurosci. 26, 6677–6686. 10.1523/JNEUROSCI.0153-06.2006, PMID: PubMed DOI PMC
Kamprath K., Plendl W., Marsicano G., Deussing J. M., Wurst W., Lutz B., et al. . (2009). Endocannabinoids mediate acute fear adaptation via glutamatergic neurons independently of corticotropin-releasing hormone signaling. Genes Brain Behav. 8, 203–211. 10.1111/j.1601-183X.2008.00463.x, PMID: PubMed DOI
Kirilly E., Gonda X., Bagdy G. (2012). CB1 receptor antagonists: new discoveries leading to new perspectives. Acta Physiol. 205, 41–60. 10.1111/j.1748-1716.2011.02402.x, PMID: PubMed DOI
Klumpers L. E., Fridberg M., de Kam M. L., Little P. B., Jensen N. O., Kleinloog H. D., et al. . (2013). Peripheral selectivity of the novel cannabinoid receptor antagonist TM38837 in healthy subjects. Br. J. Clin. Pharmacol. 76, 846–857. 10.1111/bcp.12141, PMID: PubMed DOI PMC
Le Foll B., Gorelick D. A., Goldberg S. R. (2009). The future of endocannabinoid-oriented clinical research after CB1 antagonists. Psychopharmacology 205, 171–174. 10.1007/s00213-009-1506-7, PMID: PubMed DOI PMC
Llorente-Berzal A., Terzian A. L., di Marzo V., Micale V., Viveros M. P., Wotjak C. T. (2015). 2-AG promotes the expression of conditioned fear via cannabinoid receptor type 1 on GABAergic neurons. Psychopharmacology 232, 2811–2825. 10.1007/s00213-015-3917-y, PMID: PubMed DOI
Marsicano G., Wotjak C. T., Azad S. C., Bisogno T., Rammes G., Cascio M. G., et al. . (2002). The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534. 10.1038/nature00839, PMID: PubMed DOI
Metna-Laurent M., Soria-Gómez E., Verrier D., Conforzi M., Jégo P., Lafenêtre P., et al. . (2012). Bimodal control of fear-coping strategies by CB₁ cannabinoid receptors. J. Neurosci. 32, 7109–7118. 10.1523/JNEUROSCI.1054-12.2012, PMID: PubMed DOI PMC
Meye F. J., Trezza V., Vanderschuren L. J., Ramakers G. M., Adan R. A. (2013). Neutral antagonism at the cannabinoid 1 receptor: a safer treatment for obesity. Mol. Psychiatry 18, 1294–1301. 10.1038/mp.2012.145, PMID: PubMed DOI
Micale V., Di Marzo V., Sulcova A., Wotjak C. T., Drago F. (2013). Endocannabinoid system and mood disorders: priming a target for new therapies. Pharmacol. Ther. 138, 18–37. 10.1016/j.pharmthera.2012.12.002, PMID: PubMed DOI
Micale V., Tabiová K., Kučerová J., Drago F. (2015). “Role of the endocannabinoid system in depression: from preclinical to clinical evidence” in Cannabinoid modulation of emotion, memory, and motivation. eds. Campolongo P., Fattore L. (New York: Springer; ), 97–129.
Micale V., Stepan J., Jurik A., Pamplona F. A., Marsch R., Drago F., et al. . (2017). Extinction of avoidance behavior by safety learning depends on endocannabinoid signaling in the hippocampus. J. Psychiatr. Res. 90, 46–59. 10.1016/j.jpsychires.2017.02.002, PMID: PubMed DOI
Moreira F. A., Crippa J. A. (2009). The psychiatric side-effects of rimonabant. Rev. Bras. Psiquiatr. 31, 145–153. 10.1590/S1516-44462009000200012, PMID: PubMed DOI
Noerregaard P. K., Fridberg M., Elling C. E. (2010). “TM38837–a novel second generation peripheral selective CB1 receptor antagonist with efficacy and potency in rodent obesity models equal to brain-penetrant CB1 antagonist rimonabant” in 20th Annual Symposium of the International Cannabinoid Research Society 2010. p 39.
Plendl W., Wotjak C. T. (2010). Dissociation of within- and between-session extinction of conditioned fear. J. Neurosci. 30, 4990–4998. 10.1523/JNEUROSCI.6038-09.2010, PMID: PubMed DOI PMC
Rey A. A., Purrio M., Viveros M. P., Lutz B. (2012). Biphasic effects of cannabinoids in anxiety responses: CB1 and GABAB receptors in the balance of GABAergic and glutamatergic neurotransmission. Neuropsychopharmacology 37, 2624–2634. 10.1038/npp.2012.123, PMID: PubMed DOI PMC
Riebe C. J., Pamplona F. A., Kamprath K., Wotjak C. T. (2012). Fear relief-toward a new conceptual frame work and what endocannabinoids gotta do with it. Neuroscience 204, 159–185. 10.1016/j.neuroscience.2011.11.057, PMID: PubMed DOI
Rinaldi-Carmona M., Barth F., Héaulme M., Shire D., Calandra B., Congy C., et al. . (1994). SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett. 350, 240–244. 10.1016/0014-5793(94)00773-X, PMID: PubMed DOI
Rinaldi-Carmona M., Pialot F., Congy C., Redon E., Barth F., Bachy A., et al. . (1996). Characterization and distribution of binding sites for [3H]-SR 141716A, a selective brain (CB1) cannabinoid receptor antagonist, in rodent brain. Life Sci. 58, 1239–1247. 10.1016/0024-3205(96)00085-9, PMID: PubMed DOI
Sharma M. K., Machhi J., Murumkar P., Yadav M. R. (2018). New role of phenothiazine derivatives as peripherally acting CB1 receptor antagonizing anti-obesity agents. Sci. Rep. 8:1650. 10.1038/s41598-018-20078-w PubMed DOI PMC
Shrestha N., Cuffe J. S. M., Hutchinson D. S., Headrick J. P., Perkins A. V., McAinch A. J., et al. . (2018). Peripheral modulation of the endocannabinoid system in metabolic disease. Drug Discov. Today 23, 592–604. 10.1016/j.drudis.2018.01.029, PMID: PubMed DOI
Silvestri C., Ligresti A., Di Marzo V. (2011). Peripheral effects of the endocannabinoid system in energy homeostasis: adipose tissue, liver and skeletal muscle. Rev. Endocr. Metab. Disord. 12, 153–162. 10.1007/s11154-011-9167-3, PMID: PubMed DOI
Sink K. S., McLaughlin P. J., Wood J. A., Brown C., Fan P., Vemuri V. K., et al. . (2008). The novel cannabinoid CB1 receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology 33, 946–955. 10.1038/sj.npp.1301476, PMID: PubMed DOI PMC
Sink K. S., Segovia K. N., Collins L. E., Markus E. J., Vemuri V. K., Makriyannis A., et al. (2010a). The CB1 inverse agonist AM251, but not the CB1 antagonist AM4113, enhances retention of contextual fear conditioning in rats. Pharmacol. Biochem. Behav. 95, 479–484. 10.1016/j.pbb.2010.03.011 PubMed DOI PMC
Sink K. S., Segovia K. N., Sink J., Randall P. A., Collins L. E., Correa M., et al. (2010b). Potential anxiogenic effects of cannabinoid CB1 receptor antagonists/inverse agonists in rats: comparisons between AM4113, AM251, and the benzodiazepine inverse agonist FG-7142. Eur. Neuropsychopharmacol. 20, 112–122. 10.1016/j.euroneuro.2009.11.002 PubMed DOI PMC
Takano A., Gulyás B., Varnäs K., Little P. B., Noerregaard P. K., Jensen N. O., et al. . (2014). Low brain CB1 receptor occupancy by a second generation CB1 receptor antagonist TM38837 in comparison with rimonabant in nonhuman primates: a PET study. Synapse 68, 89–97. 10.1002/syn.21721, PMID: PubMed DOI
Tam J., Cinar R., Liu J., Godlewski G., Wesley D., Jourdan T., et al. . (2012). Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance. Cell Metab. 16, 167–179. 10.1016/j.cmet.2012.07.002, PMID: PubMed DOI PMC
Tam J., Hinden L., Drori A., Udi S., Azar S., Baraghithy S. (2018). The therapeutic potential of targeting the peripheral endocannabinoid/CB1 receptor system. Eur. J. Intern. Med. 49, 23–29. 10.1016/j.ejim.2018.01.009, PMID: PubMed DOI
Terzian A. L., Drago F., Wotjak C. T., Micale V. (2011). The dopamine and cannabinoid interaction in the modulation of emotions and cognition: assessing the role of cannabinoid CB1 receptor in neurons expressing dopamine D1 receptors. Front. Behav. Neurosci. 5:49. 10.3389/fnbeh.2011.00049, PMID: PubMed DOI PMC
Terzian A. L., Micale V., Wotjak C. T. (2014). Cannabinoid receptor type 1 receptors on GABAergic vs. glutamatergic neurons differentially gate sex-dependent social interest in mice. Eur. J. Neurosci. 40, 2293–2298. 10.1111/ejn.12561, PMID: PubMed DOI
Van Gaal L. F., Rissanen A. M., Scheen A. J., Ziegler O., Rössner S. (2005). Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365, 1389–1397. 10.1016/S0140-6736(05)66374-X, PMID: PubMed DOI
Ward S. J., Raffa R. B. (2011). Rimonabant redux and strategies to improve the future outlook of CB1 receptor neutral-antagonist/inverse-agonist therapies. Obesity 19, 1325–1334. 10.1038/oby.2011.69, PMID: PubMed DOI
Yen Y. C., Mauch C. P., Dahlhoff M., Micale V., Bunck M., Sartori S. B., et al. . (2012). Increased levels of conditioned fear and avoidance behavior coincide with changes in phosphorylation of the protein kinase B (AKT) within the amygdala in a mouse model of extremes in trait anxiety. Neurobiol. Learn. Mem. 98, 56–65. 10.1016/j.nlm.2012.04.009, PMID: PubMed DOI