Robust Self-Healing Metallo-Supergels of Folic Acid: Potential Sustainable Gelator for Oilfield Applications

. 2025 May ; 31 (25) : e202500748. [epub] 20250409

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40095282

Grantová podpora
24-10199S Czech Science Foundation
MUNI/A/1575/2023 Grant Agency of Masaryk University
352900 Research Council of Finland
Photonics Research and Innovation
CZ.02.1.01/0.0/0.0/18_046/0015974 European Regional Development Fund
LM2023051 Ministerstvo Školství, Mládeže a Tělovýchovy
Grantová Agentura, Masarykova univerzita
24-10199S Grantová Agentura České Republiky

The majority of known metallosupramolecular gels are based on carefully designed ligands using extensive chemical synthesis. Their gelation is often limited to a certain specific metal salt. We demonstrate that in the presence of a wide group of metal salts natural and readily available folic acid (FA) can act as a supergelator. We report a systematic investigation of 17 mechanically robust FA-based metallogels at extremely low concentrations (<0.2 wt%). Using oscillatory rheological measurements, we further show that these metallogels undergo rapid recovery and self-healing, recovering up to 95% of their original stiffness within 1 min. Among the metallogels studied, FA-chromium(III) acetate gel (0.4 wt%) displayed the highest stiffness with a storage modulus of 4 kPa. More importantly, the stiffness, recovery, and sol ↔ gel transitions can be readily tuned by changing either the metal salt or the concentration. Using a combination of various analytical methods, we also suggest a structure of self-assembly in the metallogel network. This study defines non-toxic FA as a robust and sustainable building block for metallogels-mechanically tunable, multi-responsive soft materials. Finally, as a proof-of-concept experiment, we demonstrate that the FA-chromium(III) acetate gel can be considered as a potent sustainable gellator for enhanced oil recovery applications.

Zobrazit více v PubMed

Dong S., Luo Y., Yan X., Zheng B., Ding X., Yu Y., Ma Z., Zhao Q., Huang F., Angew. Chem., Int. Ed. 2011, 50, 1909. PubMed

Kitahara T., Shirakawa M., Kawano S. I., Beginn U., Fujita N., Shinkai S., J. Am. Chem. Soc. 2005, 127, 14981. PubMed

Folmer B. J. B., Sijbesma R. P., Versteegen R. M., van der Rijt J. A. J., Meijer E. W., Adv. Mater. 2000, 12, 878.

Dawn A., Int. J. Mol. Sci. 2019, 20, 781. PubMed

Díaz Díaz D., Kühbeck D., Koopmans R. J., Chem. Soc. Rev. 2011, 40, 427. PubMed

Lin Q., Lu T. T., Zhu X., Sun B., Yang Q. P., Wei T. B., Zhang Y. M., Chem. Commun. 2015, 51, 1635. PubMed

Tu T., Fang W., Bao X., Li X., Dötz K. H., Angew. Chem., Int. Ed. 2011, 50, 6601. PubMed

Adhikary A., Das K. S., Saha S., Roy M., Mondal R., Dalton Trans. 2020, 49, 13487. PubMed

Klaewklod A., Tantishaiyakul V., Hirun N., Sangfai T., Li L., Mater. Sci. Eng. C 2015, 50, 242. PubMed

Rizzo C., Andrews J. L., Steed J. W., D'Anna F., J. Colloid Interface Sci. 2019, 548, 184. PubMed

Piepenbrock M. O. M., Lloyd G. O., Clarke N., Steed J. W., Chem. Rev. 2010, 110, 1960. PubMed

Tam A. Y. Y., Yam V. W. W., Chem. Soc. Rev. 2013, 42, 1540. PubMed

Dastidar P., Ganguly S., Sarkar K., Chem. Asian J. 2016, 11, 2484. PubMed

Winter A., Schubert U. S., Chem. Soc. Rev. 2016, 45, 5311. PubMed

Jung J. H., Lee J. H., Silverman J. R., John G., Chem. Soc. Rev. 2013, 42, 924. PubMed

Wu H., Zheng J., Kjøniksen A.‐L., Wang W., Zhang Y., Ma J., Adv. Mater. 2019, 31, 1806204. PubMed

Tatikonda R., Bhowmik S., Rissanen K., Haukka M., Cametti M., Dalton Trans. 2016, 45, 12756. PubMed

Steed J. W., Chem. Commun. 2011, 47, 1379. PubMed

Zhan J., Zhang M., Zhou M., Liu B., Chen D., Liu Y., Chen Q., Qiu H., Yin S., Macromol. Rapid Commun. 2014, 35, 1424. PubMed

Deng G., Tang C., Li F., Jiang H., Chen Y., Macromolecules 2010, 43, 1191.

Zhou Q., Dong X., Yuan J., Zhang B., Lu S., Xiong Y., Liao Y., Wang Q., Yang Y., Wang H., J. Mol. Liq. 2019, 292, 111373.

Kolari K., Bulatov E., Tatikonda R., Bertula K., Kalenius E., M. H. Nonappa, Soft Matter 2020, 16, 2795. PubMed

Tatikonda R., Bertula K., Nonappa N., Hietala S., Rissanen K., Haukka M., Dalton Trans. 2017, 46, 2793. PubMed PMC

Scaranti M., Cojocaru E., Banerjee S., Banerji U., Nat. Rev. Clin. Oncol. 2020, 17, 349. PubMed

Fazary A. E., Ramadan A. M., Complex Met. 2014, 1, 139.

Nombona N., Chidawanyika W., Nyokong T., Polyhedron 2011, 30, 654.

Hamed E., Attia M. S., Bassiouny K., Bioinorg. Chem. Appl. 2009, 979680, 1. PubMed PMC

Abd El‐Wahed M. G., Refat M. S., El‐Megharbel S. M., Spectrochim. Acta, Part A 2008, 70, 916. PubMed

Kaduk J. A., Crowder C. E., Zhong K., Powder Diffraction 2015, 30, 52.

Mastropaolo D., Camerman A., Camerman N., Science 1980, 210, 334. PubMed

Braga D., Chelazzi L., Grepioni F., Maschio L., Nanna S., Taddei P., Cryst. Growth Des. 2016, 16, 2218.

Chakraborty P., Roy B., Bairi P., Nandi A. K., ACS Appl. Mater. Interfaces 2014, 6, 3615. PubMed

Song Y., Gao J., Xu X., Zhao H., Xue R., Zhou J., Hong W., Qiu H., Mater. Sci. Eng. C 2017, 75, 706. PubMed

Liu K., Zang S., Xue R., Yang J., Wang L., Huang J., Yan Y., ACS Appl. Mater. Interfaces 2018, 10, 4530. PubMed

Bonazzi S., DeMorais M. M., Gottarelli G., Mariani P., Spada G. P., Angew. Chem., Int. Ed. 1993, 32, 248.

Ciuchi F., Nicola G. D., Franz H., Gottarelli G., Mariani P., Bossi M. G. P., Spada G. P., J. Am. Chem. Soc. 1994, 116, 7064.

Gottarelli G., Mazzina E., Spada G. P., Carsughi F., Nicola G. D., Mariani P., Sabatucci A., Bonazzi S., Helv. Chim. Acta. 1996, 79, 220.

Xing P., Chu X., Ma M., Li S., Hao A., Phys. Chem. Chem. Phys. 2014, 16, 8346. PubMed

Davis J. T., Angew. Chem., Int. Ed. 2004, 43, 668. PubMed

Davis J. T., Spada G. P., Chem. Soc. Rev. 2007, 36, 296. PubMed

Zhang H., Yang H., Sarsenbekuly B., Zhang M., Jiang H., Kang W., Aidarova S., Adv. Colloid Interface Sci. 2020, 282, 102214. PubMed

Lu X. G., Wang W., Wang R., Liu Y. G., Shan J. C., presented at Int. Oil Gas Conf. Exhib. China, Beijing, China, June 2010.

Shi W., Lu X., Qing H., Liu X., Zhou W., Wang X., Wang X., Li B., Liu X., Wang J.. J. Appl. Polym. Sci. 2019, 136, 46991.

Singh R., Mahto V., Polym. Advan. Technol. 2016, 27, 204.

Jordan D. S., Green D. W., Terry R. E., Willhite G. P.. Soc. Pet. Eng. J. 1982, 22, 463.

Pérez‐Robles S., Matute C. A., Lara J. R., Lopera S. H., Cortés F. B., Franco C. A., Nanomaterials, 2019, 10, 74. PubMed PMC

Juárez J. L., Rodriguez M. R., Montes J., Trujillo F. D., Monzòn J., Dupuis G., Gaillard N., (2020), SPE Europec. OnePetro.

Yan S., Jian‐yong X., Guanyou Z., Xinzhi C., Zhongjun L., Chenggang L., Yongxin Y., Xinjiang Petroleum Geology 2012, 33, 198.

Sydansk R. D., SPE Improved Oil Recovery Conference , 1988, SPE‐17329‐MS.

Sydansk R. D., SPE Reserv. Engin. 1990, 5, 346.

Sydansk R. D., SPE Adv. Tech. Ser. 1993, 1, 146.

Arnedo‐Sánchez L., Nonappa N., Bhowmik S., Hietala S., Puttreddy R., Lahtinen M., Cola L. D., Rissanen K., Dalton Trans. 2017, 46, 7309. PubMed

Larson R. G., Wei Y., J. Rheol. 2019, 63, 477.

Weng W., Jamieson A. M., Rowan S. J., Tetrahedron 2007, 63, 7419.

Mukhopadhyay P., Fujita N., Takada A., Kishida T., Shirakawa M., Shinkai S., Angew. Chem., Int. Ed. 2010, 49, 6338. PubMed

Lescanne M., Grondin P., d'Aléo A., Fages F., Pozzo J. L., Monval O. M., Reinheimer P., Colin A., Langmuir 2004, 20, 3032. PubMed

Zhang M., Xu D., Yan X., Chen J., Dong S., Zheng B., Huang F., Angew. Chem., Int. Ed. 2012, 51, 7011. PubMed

Steed J. W., Chem. Soc. Rev. 2010, 39, 3686. PubMed

Raczyńska E. D., Duczmal K., Darowska M., Vibrat. Spec. 2005, 39, 37.

Kanie K., Nishii M., Yasuda T., Taki T., Ujiie S., Kato T., J. Mater. Chem. 2001, 11, 2875.

Kato T., Matsuoka T., Nishii M., Kamikawa Y., Kanie K., Nishimura T., Yashima E., Ujiie S., Angew. Chem., Int. Ed. 2004, 43, 1969. PubMed

Gocheva G., Petkov N., Luri A. G., Iliev S., Ivanova N., Petrova J., Mitrev Y., Madjarova G., Ivanova A., J. Mol. Liq. 2019, 292, 111392.

Birdsall B., Casarotto M. G., Cheung H. A., Basran J., Roberts G. C., Feeney J., FEBS letters 1997, 402, 157. PubMed

Stuenzi H., Spiccia L., Rotzinger F. P., Marty W., Inorg. Chem. 1989, 28, 66.

Tackett J. E., Appl. Spectrosc. 1991, 45, 1674.

Baranwal B. P., Fatma T., J. Mol. Struct. 2005, 750, 72.

Bertini I., Luchinat C., Parigi G., Ravera E., in NMR of Paramagnetic Molecules (Eds: Bertini I., Luchinat C., Parigi G., Ravera E.), Elsevier: Boston, USA: 2017, pp. 175–253.

Novotný J., Sojka M., Komorovsky S., Nečas M., Marek R., J. Am. Chem. Soc. 2016, 138, 8432. PubMed

Özdemir Z., Šaman D., Bertula K., Lahtinen M., Bednárová L., Pazderková M., Rárová L., Nonappa Z. W., Langmuir 2021, 37, 2693. PubMed

Vora A., Riga A., Dollimore D., Alexander K. S., Thermochim. Acta 2002, 392, 209.

Day B. P. F., Gregory J. F., J. Food Sci. 1983, 48, 581.

Vora A., Riga A., Dollimore D., Alexander K., J. Therm. Anal. Calor. 2004, 75, 709.

Fishman E. G., Jenkins L. J. Jr, Coon R. A., Jones R. A., Toxicol. Appl. Pharmacol. 1969, 15, 74. PubMed

Vogin E. E., Carson S., Cannon G., Linegar C. R., Rubin L. F., Toxicol. Appl. Pharmacol. 1970, 16, 606. PubMed

Kapp R. W. Jr, Eventoff B. E., Teratog., Carcinog., and Mutag. 1981, 1, 141. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...