Robust Self-Healing Metallo-Supergels of Folic Acid: Potential Sustainable Gelator for Oilfield Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
24-10199S
Czech Science Foundation
MUNI/A/1575/2023
Grant Agency of Masaryk University
352900
Research Council of Finland
Photonics Research and Innovation
CZ.02.1.01/0.0/0.0/18_046/0015974
European Regional Development Fund
LM2023051
Ministerstvo Školství, Mládeže a Tělovýchovy
Grantová Agentura, Masarykova univerzita
24-10199S
Grantová Agentura České Republiky
PubMed
40095282
PubMed Central
PMC12057599
DOI
10.1002/chem.202500748
Knihovny.cz E-zdroje
- Klíčová slova
- folic acid, gel, metallogel, oil mining, rheology, supramolecular chemistry,
- Publikační typ
- časopisecké články MeSH
The majority of known metallosupramolecular gels are based on carefully designed ligands using extensive chemical synthesis. Their gelation is often limited to a certain specific metal salt. We demonstrate that in the presence of a wide group of metal salts natural and readily available folic acid (FA) can act as a supergelator. We report a systematic investigation of 17 mechanically robust FA-based metallogels at extremely low concentrations (<0.2 wt%). Using oscillatory rheological measurements, we further show that these metallogels undergo rapid recovery and self-healing, recovering up to 95% of their original stiffness within 1 min. Among the metallogels studied, FA-chromium(III) acetate gel (0.4 wt%) displayed the highest stiffness with a storage modulus of 4 kPa. More importantly, the stiffness, recovery, and sol ↔ gel transitions can be readily tuned by changing either the metal salt or the concentration. Using a combination of various analytical methods, we also suggest a structure of self-assembly in the metallogel network. This study defines non-toxic FA as a robust and sustainable building block for metallogels-mechanically tunable, multi-responsive soft materials. Finally, as a proof-of-concept experiment, we demonstrate that the FA-chromium(III) acetate gel can be considered as a potent sustainable gellator for enhanced oil recovery applications.
CEITEC Central European Institute of Technology Masaryk University Brno Czechia
Department of Chemistry Faculty of Science Masaryk University Brno Czechia
Department of Chemistry University of Helsinki Helsinki Finland
Department of Natural Drugs Faculty of Pharmacy Masaryk University Brno Czechia
Faculty of Engineering and Natural Sciences Tampere University Tampere Finland
Zobrazit více v PubMed
Dong S., Luo Y., Yan X., Zheng B., Ding X., Yu Y., Ma Z., Zhao Q., Huang F., Angew. Chem., Int. Ed. 2011, 50, 1909. PubMed
Kitahara T., Shirakawa M., Kawano S. I., Beginn U., Fujita N., Shinkai S., J. Am. Chem. Soc. 2005, 127, 14981. PubMed
Folmer B. J. B., Sijbesma R. P., Versteegen R. M., van der Rijt J. A. J., Meijer E. W., Adv. Mater. 2000, 12, 878.
Dawn A., Int. J. Mol. Sci. 2019, 20, 781. PubMed
Díaz Díaz D., Kühbeck D., Koopmans R. J., Chem. Soc. Rev. 2011, 40, 427. PubMed
Lin Q., Lu T. T., Zhu X., Sun B., Yang Q. P., Wei T. B., Zhang Y. M., Chem. Commun. 2015, 51, 1635. PubMed
Tu T., Fang W., Bao X., Li X., Dötz K. H., Angew. Chem., Int. Ed. 2011, 50, 6601. PubMed
Adhikary A., Das K. S., Saha S., Roy M., Mondal R., Dalton Trans. 2020, 49, 13487. PubMed
Klaewklod A., Tantishaiyakul V., Hirun N., Sangfai T., Li L., Mater. Sci. Eng. C 2015, 50, 242. PubMed
Rizzo C., Andrews J. L., Steed J. W., D'Anna F., J. Colloid Interface Sci. 2019, 548, 184. PubMed
Piepenbrock M. O. M., Lloyd G. O., Clarke N., Steed J. W., Chem. Rev. 2010, 110, 1960. PubMed
Tam A. Y. Y., Yam V. W. W., Chem. Soc. Rev. 2013, 42, 1540. PubMed
Dastidar P., Ganguly S., Sarkar K., Chem. Asian J. 2016, 11, 2484. PubMed
Winter A., Schubert U. S., Chem. Soc. Rev. 2016, 45, 5311. PubMed
Jung J. H., Lee J. H., Silverman J. R., John G., Chem. Soc. Rev. 2013, 42, 924. PubMed
Wu H., Zheng J., Kjøniksen A.‐L., Wang W., Zhang Y., Ma J., Adv. Mater. 2019, 31, 1806204. PubMed
Tatikonda R., Bhowmik S., Rissanen K., Haukka M., Cametti M., Dalton Trans. 2016, 45, 12756. PubMed
Steed J. W., Chem. Commun. 2011, 47, 1379. PubMed
Zhan J., Zhang M., Zhou M., Liu B., Chen D., Liu Y., Chen Q., Qiu H., Yin S., Macromol. Rapid Commun. 2014, 35, 1424. PubMed
Deng G., Tang C., Li F., Jiang H., Chen Y., Macromolecules 2010, 43, 1191.
Zhou Q., Dong X., Yuan J., Zhang B., Lu S., Xiong Y., Liao Y., Wang Q., Yang Y., Wang H., J. Mol. Liq. 2019, 292, 111373.
Kolari K., Bulatov E., Tatikonda R., Bertula K., Kalenius E., M. H. Nonappa, Soft Matter 2020, 16, 2795. PubMed
Tatikonda R., Bertula K., Nonappa N., Hietala S., Rissanen K., Haukka M., Dalton Trans. 2017, 46, 2793. PubMed PMC
Scaranti M., Cojocaru E., Banerjee S., Banerji U., Nat. Rev. Clin. Oncol. 2020, 17, 349. PubMed
Fazary A. E., Ramadan A. M., Complex Met. 2014, 1, 139.
Nombona N., Chidawanyika W., Nyokong T., Polyhedron 2011, 30, 654.
Hamed E., Attia M. S., Bassiouny K., Bioinorg. Chem. Appl. 2009, 979680, 1. PubMed PMC
Abd El‐Wahed M. G., Refat M. S., El‐Megharbel S. M., Spectrochim. Acta, Part A 2008, 70, 916. PubMed
Kaduk J. A., Crowder C. E., Zhong K., Powder Diffraction 2015, 30, 52.
Mastropaolo D., Camerman A., Camerman N., Science 1980, 210, 334. PubMed
Braga D., Chelazzi L., Grepioni F., Maschio L., Nanna S., Taddei P., Cryst. Growth Des. 2016, 16, 2218.
Chakraborty P., Roy B., Bairi P., Nandi A. K., ACS Appl. Mater. Interfaces 2014, 6, 3615. PubMed
Song Y., Gao J., Xu X., Zhao H., Xue R., Zhou J., Hong W., Qiu H., Mater. Sci. Eng. C 2017, 75, 706. PubMed
Liu K., Zang S., Xue R., Yang J., Wang L., Huang J., Yan Y., ACS Appl. Mater. Interfaces 2018, 10, 4530. PubMed
Bonazzi S., DeMorais M. M., Gottarelli G., Mariani P., Spada G. P., Angew. Chem., Int. Ed. 1993, 32, 248.
Ciuchi F., Nicola G. D., Franz H., Gottarelli G., Mariani P., Bossi M. G. P., Spada G. P., J. Am. Chem. Soc. 1994, 116, 7064.
Gottarelli G., Mazzina E., Spada G. P., Carsughi F., Nicola G. D., Mariani P., Sabatucci A., Bonazzi S., Helv. Chim. Acta. 1996, 79, 220.
Xing P., Chu X., Ma M., Li S., Hao A., Phys. Chem. Chem. Phys. 2014, 16, 8346. PubMed
Davis J. T., Angew. Chem., Int. Ed. 2004, 43, 668. PubMed
Davis J. T., Spada G. P., Chem. Soc. Rev. 2007, 36, 296. PubMed
Zhang H., Yang H., Sarsenbekuly B., Zhang M., Jiang H., Kang W., Aidarova S., Adv. Colloid Interface Sci. 2020, 282, 102214. PubMed
Lu X. G., Wang W., Wang R., Liu Y. G., Shan J. C., presented at Int. Oil Gas Conf. Exhib. China, Beijing, China, June 2010.
Shi W., Lu X., Qing H., Liu X., Zhou W., Wang X., Wang X., Li B., Liu X., Wang J.. J. Appl. Polym. Sci. 2019, 136, 46991.
Singh R., Mahto V., Polym. Advan. Technol. 2016, 27, 204.
Jordan D. S., Green D. W., Terry R. E., Willhite G. P.. Soc. Pet. Eng. J. 1982, 22, 463.
Pérez‐Robles S., Matute C. A., Lara J. R., Lopera S. H., Cortés F. B., Franco C. A., Nanomaterials, 2019, 10, 74. PubMed PMC
Juárez J. L., Rodriguez M. R., Montes J., Trujillo F. D., Monzòn J., Dupuis G., Gaillard N., (2020), SPE Europec. OnePetro.
Yan S., Jian‐yong X., Guanyou Z., Xinzhi C., Zhongjun L., Chenggang L., Yongxin Y., Xinjiang Petroleum Geology 2012, 33, 198.
Sydansk R. D., SPE Improved Oil Recovery Conference , 1988, SPE‐17329‐MS.
Sydansk R. D., SPE Reserv. Engin. 1990, 5, 346.
Sydansk R. D., SPE Adv. Tech. Ser. 1993, 1, 146.
Arnedo‐Sánchez L., Nonappa N., Bhowmik S., Hietala S., Puttreddy R., Lahtinen M., Cola L. D., Rissanen K., Dalton Trans. 2017, 46, 7309. PubMed
Larson R. G., Wei Y., J. Rheol. 2019, 63, 477.
Weng W., Jamieson A. M., Rowan S. J., Tetrahedron 2007, 63, 7419.
Mukhopadhyay P., Fujita N., Takada A., Kishida T., Shirakawa M., Shinkai S., Angew. Chem., Int. Ed. 2010, 49, 6338. PubMed
Lescanne M., Grondin P., d'Aléo A., Fages F., Pozzo J. L., Monval O. M., Reinheimer P., Colin A., Langmuir 2004, 20, 3032. PubMed
Zhang M., Xu D., Yan X., Chen J., Dong S., Zheng B., Huang F., Angew. Chem., Int. Ed. 2012, 51, 7011. PubMed
Steed J. W., Chem. Soc. Rev. 2010, 39, 3686. PubMed
Raczyńska E. D., Duczmal K., Darowska M., Vibrat. Spec. 2005, 39, 37.
Kanie K., Nishii M., Yasuda T., Taki T., Ujiie S., Kato T., J. Mater. Chem. 2001, 11, 2875.
Kato T., Matsuoka T., Nishii M., Kamikawa Y., Kanie K., Nishimura T., Yashima E., Ujiie S., Angew. Chem., Int. Ed. 2004, 43, 1969. PubMed
Gocheva G., Petkov N., Luri A. G., Iliev S., Ivanova N., Petrova J., Mitrev Y., Madjarova G., Ivanova A., J. Mol. Liq. 2019, 292, 111392.
Birdsall B., Casarotto M. G., Cheung H. A., Basran J., Roberts G. C., Feeney J., FEBS letters 1997, 402, 157. PubMed
Stuenzi H., Spiccia L., Rotzinger F. P., Marty W., Inorg. Chem. 1989, 28, 66.
Tackett J. E., Appl. Spectrosc. 1991, 45, 1674.
Baranwal B. P., Fatma T., J. Mol. Struct. 2005, 750, 72.
Bertini I., Luchinat C., Parigi G., Ravera E., in NMR of Paramagnetic Molecules (Eds: Bertini I., Luchinat C., Parigi G., Ravera E.), Elsevier: Boston, USA: 2017, pp. 175–253.
Novotný J., Sojka M., Komorovsky S., Nečas M., Marek R., J. Am. Chem. Soc. 2016, 138, 8432. PubMed
Özdemir Z., Šaman D., Bertula K., Lahtinen M., Bednárová L., Pazderková M., Rárová L., Nonappa Z. W., Langmuir 2021, 37, 2693. PubMed
Vora A., Riga A., Dollimore D., Alexander K. S., Thermochim. Acta 2002, 392, 209.
Day B. P. F., Gregory J. F., J. Food Sci. 1983, 48, 581.
Vora A., Riga A., Dollimore D., Alexander K., J. Therm. Anal. Calor. 2004, 75, 709.
Fishman E. G., Jenkins L. J. Jr, Coon R. A., Jones R. A., Toxicol. Appl. Pharmacol. 1969, 15, 74. PubMed
Vogin E. E., Carson S., Cannon G., Linegar C. R., Rubin L. F., Toxicol. Appl. Pharmacol. 1970, 16, 606. PubMed
Kapp R. W. Jr, Eventoff B. E., Teratog., Carcinog., and Mutag. 1981, 1, 141. PubMed