Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
17720758
PubMed Central
PMC2048728
DOI
10.1104/pp.107.104380
PII: pp.107.104380
Knihovny.cz E-zdroje
- MeSH
- Brassicaceae genetika MeSH
- chromozomy rostlin genetika MeSH
- databáze genetické MeSH
- fylogeneze MeSH
- genom rostlinný * MeSH
- karyotypizace MeSH
- malování chromozomů MeSH
- vznik druhů (genetika) MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The paleopolyploid character of genomes of the economically important genus Brassica and closely related species (tribe Brassiceae) is still fairly controversial. Here, we report on the comparative painting analysis of block F of the crucifer Ancestral Karyotype (AK; n = 8), consisting of 24 conserved genomic blocks, in 10 species traditionally treated as members of the tribe Brassiceae. Three homeologous copies of block F were identified per haploid chromosome complement in Brassiceae species with 2n = 14, 18, 20, 32, and 36. In high-polyploid (n >or= 30) species Crambe maritima (2n = 60), Crambe cordifolia (2n = 120), and Vella pseudocytisus (2n = 68), six, 12, and six copies of the analyzed block have been revealed, respectively. Homeologous regions resembled the ancestral structure of block F within the AK or were altered by inversions and/or translocations. In two species of the subtribe Zillineae, two of the three homeologous regions were combined via a reciprocal translocation onto one chromosome. Altogether, these findings provide compelling evidence of an ancient hexaploidization event and corresponding whole-genome triplication shared by the tribe Brassiceae. No direct relationship between chromosome number and genome size variation (1.2-2.5 pg/2C) has been found in Brassiceae species with 2n = 14 to 36. Only two homeologous copies of block F suggest a whole-genome duplication but not the triplication event in Orychophragmus violaceus (2n = 24), and confirm a phylogenetic position of this species outside the tribe Brassiceae. Chromosome duplication detected in Orychophragmus as well as chromosome rearrangements shared by Zillineae species demonstrate the usefulness of comparative cytogenetics for elucidation of phylogenetic relationships.
Zobrazit více v PubMed
Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259 89–120
Al-Shehbaz IA, Yang G (2000) A revision of the Chinese endemic Orychophragmus (Brassicaceae). Novon 10 349–353
Anderson JK, Warwick SI (1999) Chromosome number evolution in the tribe Brassiceae (Brassicaceae): evidence from isozyme number. Plant Syst Evol 215 255–285
Appel O, Al-Shehbaz IA (2003) Cruciferae. In K Kubitzki, C Bayer, eds, The Families and Genera of Vascular Plants. Springer-Verlag, Berlin, pp 75–174
Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408 796–815 PubMed
Bailey CD, Koch MA, Mayer M, Mummenhoff K, O'Kane SL Jr, Warwick SI, Windham MD, Al-Shehbaz IA (2006) Toward a global phylogeny of the Brassicaceae. Mol Biol Evol 23 2142–2160 PubMed
Barow M, Meister A (2002) Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry 47 1–7 PubMed
Bennett MD, Leitch IJ, Price HJ, Johnston JS (2003) Comparisons with Caenorhabditis (∼100 Mb) and Drosophila (∼175 Mb) using flow cytometry show genome size in Arabidopsis to be ∼157 Mb and thus ∼25% larger than the Arabidopsis Genome Initiative estimate of ∼125 Mb. Ann Bot (Lond) 91 547–557 PubMed PMC
Boivin K, Acarkan A, Mbulu R-S, Clarenz O, Schmidt R (2004) The Arabidopsis genome sequence as a tool for genome analysis in Brassicaceae. A comparison of the Arabidopsis and Capsella rubella genomes. Plant Physiol 135 735–744 PubMed PMC
Francisco-Ortega J, Fuertes-Aguilar J, Gomez-Campo C, Santos-Guerra A, Jansen RK (1999) ITS sequence phylogeny of Crambe L. (Brassicaceae): Molecular data reveal two Old World disjunctions. Mol Phylogenet Evol 11 361–380 PubMed
Gomez-Campo C (1980) Morphology and morpho-taxonamy of the tribe Brassiceae. In SK Tsunoda, K Hinata, C Gomez-Campo, eds, Brassica Crops and Wild Allies: Biology and Breeding. Japan Scientific Societies Press, Tokyo, pp 3–30
Hedge IC (1976) A systematic and geographical survey of the Old World Cruciferae. In JG Vaughn, AJ Macleod, BMG Jones, eds, The Biology and Chemistry of the Cruciferae. Academic Press, London, pp 1–45
Kuittinen H, de Haan AA, Vogl C, Oikarinen S, Leppälä J, Koch M, Mitchell-Olds T, Langley CH, Savolainen O (2004) Comparing the linkage maps of the close relatives Arabidopsis lyrata and A. thaliana. Genetics 168 1575–1584 PubMed PMC
Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150 1217–1228 PubMed PMC
Lagercrantz U, Lydiate D (1996) Comparative genome mapping in Brassica. Genetics 144 1903–1910 PubMed PMC
Lysak MA, Koch M, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15 516–525 PubMed PMC
Lysak MA, Lexer C (2006) Towards the era of comparative evolutionary genomics in Brassicaceae. Plant Syst Evol 259 175–198
Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103 5224–5229 PubMed PMC
Meister A, Barow M (2007) DNA base composition in plant genomes. In J Doležel, J Greilhuber, J Suda, eds, Flow Cytometry with Plant Cells. Wiley-VCH, Weinheim, Germany, pp 177–215
Nelson MN, Lydiate DJ (2006) New evidence from Sinapis alba L. for ancestral triplication in a crucifer genome. Genome 49 230–238 PubMed
Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In HA Crissman, Z Darzynkiewicz, eds, Methods in Cell Biology, Vol 33. Academic Press, New York, pp 105–110 PubMed
Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171 765–781 PubMed PMC
Schranz EM, Lysak MA, Mitchell-Olds T (2006) The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11 535–542 PubMed
Schubert I (2007) Chromosome evolution. Curr Opin Plant Biol 10 1–7 PubMed
Schulz OE (1936) Cruciferae. In A Engler, K Prantl, eds, Die natürlichen Pflanzenfamilien, Vol 17B. Engelmann, Leipzig, Germany, pp 227–658
Warwick SI, Al-Shehbaz IA (2006) Brassicaceae: chromosome number index and database on CD-Rom. Plant Syst Evol 259 237–248
Warwick SI, Black LD (1994) Evaluation of the subtribes Moricandiinae, Savignyinae, Vellinae and Zillinae (Brassicaceae, tribe Brassiceae) using chloroplast DNA restriction site variation. Can J Bot 72 1692–1701
Warwick SI, Sauder C (2005) Phylogeny of tribe Brassiceae (Brassicaceae) based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer (ITS) and chloroplast trnL intron sequences. Can J Bot 83 467–483
Ziolkowski PA, Kaczmarek M, Babula D, Sadowski J (2006) Genome evolution in Arabidopsis/Brassica: conservation and divergence of ancient rearranged segments and their breakpoints. Plant J 47 63–74 PubMed
Complementing model species with model clades
Fast diploidization in close mesopolyploid relatives of Arabidopsis
Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae)