Early Blockade of CB1 Receptors Ameliorates Schizophrenia-like Alterations in the Neurodevelopmental MAM Model of Schizophrenia

. 2022 Jan 10 ; 12 (1) : . [epub] 20220110

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35053256

In agreement with the neurodevelopmental hypothesis of schizophrenia, prenatal exposure of Sprague-Dawley rats to the antimitotic agent methylazoxymethanol acetate (MAM) at gestational day 17 produces long-lasting behavioral alterations such as social withdrawal and cognitive impairment in adulthood, mimicking a schizophrenia-like phenotype. These abnormalities were preceded at neonatal age both by the delayed appearance of neonatal reflexes, an index of impaired brain maturation, and by higher 2-arachidonoylglycerol (2-AG) brain levels. Schizophrenia-like deficits were reversed by early treatment [from postnatal day (PND) 2 to PND 8] with the CB1 antagonist/inverse agonist AM251 (0.5 mg/kg/day). By contrast, early CB1 blockade affected the behavioral performance of control rats which was paralleled by enhanced 2-AG content in the prefrontal cortex (PFC). These results suggest that prenatal MAM insult leads to premorbid anomalies at neonatal age via altered tone of the endocannabinoid system, which may be considered as an early marker preceding the development of schizophrenia-like alterations in adulthood.

Zobrazit více v PubMed

Rapoport J., Giedd J., Gogtay N. Neurodevelopmental model of schizophrenia: Update. Mol. Psychiatry. 2012;17:1228–1238. doi: 10.1038/mp.2012.23. PubMed DOI PMC

Marenco S., Weinberger D.R. The neurodevelopmental hypothesis of schizophrenia: Following a trail of evidence from cradle to grave. Dev. Psychopathol. 2000;12:501–527. doi: 10.1017/S0954579400003138. PubMed DOI

Phillips L.J., Yung A.R., Yuen H.P., Pantelis C., McGorry P.D. Prediction and prevention of transition to psychosis in young people at incipient risk for schizophrenia. Am. J. Med. Genet. 2002;114:929–937. doi: 10.1002/ajmg.b.10790. PubMed DOI

Sommer I.E., Bearden C.E., Van Dellen E., Breetvelt E.J., Duijff S.N., Maijer K., Van Amelsvoort T., De Haan L., Gur R.E., Arango C., et al. Early interventions in risk groups for schizophrenia: What are we waiting for? NPJ Schizophr. 2016;2:16003. doi: 10.1038/npjschz.2016.3. PubMed DOI PMC

Loss C.M., Teodoro L., Rodrigues G.D., Moreira L.R., Peres F.F., Zuardi A.W., Crippa J.A., Eduardo J., Hallak C., Abílio V.C. Is cannabidiol during neurodevelopment a promising therapy for schizophrenia and autism spectrum disorders? Front. Pharmacol. 2021;11:635763. doi: 10.3389/fphar.2020.635763. PubMed DOI PMC

Salokangas R.K., McGlashan T.H. Early detection and intervention of psychosis. A review. Nord. J. Psychiatry. 2008;62:92–105. doi: 10.1080/08039480801984008. PubMed DOI

Lodge D.J., Grace A.A. Gestational methylazoxymethanol acetate administration: A developmental disruption model of schizophrenia. Behav. Brain Res. 2009;204:306–312. doi: 10.1016/j.bbr.2009.01.031. PubMed DOI PMC

Micale V., Kucerova J., Sulcova A. Leading compounds for the validation of animal models of psychopathology. Cell Tissue Res. 2013;354:309–330. doi: 10.1007/s00441-013-1692-9. PubMed DOI

D’Addario C., Micale V., Di Bartolomeo M., Stark T., Pucci M., Sulcova A., Palazzo M., Babinska Z., Cremaschi L., Drago F., et al. A preliminary study of endocannabinoid system regulation in psychosis: Distinct alterations of CNR1 promoter DNA methylation in patients with schizophrenia. Schizophr. Res. 2017;188:132–140. doi: 10.1016/j.schres.2017.01.022. PubMed DOI

Večeřa J., Bártová E., Krejčí J., Legartová S., Komůrková D., Rudá-Kučerová J., Štark T., Dražanová E., Kašpárek T., Šulcová A., et al. HDAC1 and HDAC3 underlie dynamic H3K9 acetylation during embryonic neurogenesis and in schizo-phrenia-like animals. Cell Physiol. 2018;233:530–548. doi: 10.1002/jcp.25914. PubMed DOI PMC

Chalkiadaki K., Velli A., Kyriazidis E., Stavroulaki V., Vouvoutsis V., Chatzaki E., Aivaliotis M., Sidiropoulou K. Development of the MAM model of schizophrenia in mice: Sex similarities and differences of hippocampal and prefrontal cortical function. Neuropharmacology. 2019;144:193–207. doi: 10.1016/j.neuropharm.2018.10.026. PubMed DOI

Micale V., Tabiova K., Kucerova J., Drago F. Role of endocannabinoid system in depression from preclinical to clinical evidence. In: Campolongo P., Fattore L., editors. Cannabinoid Modulation of Emotion, Memory, and Motivation. Springer; New York, NY, USA: 2015. pp. 97–129.

Micale V., Drago F. Endocannabinoid system, stress and HPA axis. Eur. J. Pharmacol. 2018;834:230–239. doi: 10.1016/j.ejphar.2018.07.039. PubMed DOI

Stark T., Di Martino S., Drago F., Wotjak C.T., Micale V. Phytocannabinoids and schizophrenia: Focus on adolescence as a critical window of enhanced vulnerability and opportunity for treatment. Pharmacol. Res. 2021;174:105938. doi: 10.1016/j.phrs.2021.105938. PubMed DOI

Micale V., Mazzola C., Drago F. Endocannabinoids and neurodegenerative diseases. Pharmacol. Res. 2007;56:382–392. doi: 10.1016/j.phrs.2007.09.008. PubMed DOI

Androvicova R., Horacek J., Stark T., Drago F., Micale V. Endocannabinoid system in sexual motivational processes: Is it a novel therapeutic horizon? Pharmacol. Res. 2017;115:200–208. doi: 10.1016/j.phrs.2016.11.021. PubMed DOI

Viveros M.P., Llorente R., Suarez J., Llorente-Berzal A., López-Gallardo M., Rodriguez de Fonseca F. The endocannabinoid system in critical neurodevelopmental periods: Sex differences and neuropsychiatric implications. J. Psychopharmacol. 2012;26:164–176. doi: 10.1177/0269881111408956. PubMed DOI

Harkany T., Cinquina V. Physiological rules of endocannabinoid action during fetal and neonatal brain development. Cannabis Cannabinoid Res. 2021;6:381–388. doi: 10.1089/can.2021.0096. PubMed DOI PMC

Harkany T., Guzmán M., Galve-Roperh I., Berghuis P., Devi A.L., Mackie K. The emerging functions of endocannabinoid signaling during CNS development. Pharmacol. Sci. 2007;28:83–92. doi: 10.1016/j.tips.2006.12.004. PubMed DOI

Kucerova J., Tabiova K., Drago F., Micale V. Therapeutic potential of cannabinoids in schizophrenia. Recent pat. CNS Drug Discov. 2014;9:13–25. PubMed

Saito A., Ballinger M.D.L., Pletnikov M.V., Wong D.F., Kamiya A. Endocannabinoid system: Potential novel targets for treatment of schizophrenia. Neurobiol. Dis. 2015;53:10–17. doi: 10.1016/j.nbd.2012.11.020. PubMed DOI PMC

Fox W.M. Reflex-ontogeny and behavioural development of the mouse. Animal Behav. 1965;13:234–241. doi: 10.1016/0003-3472(65)90041-2. PubMed DOI

Tonkiss J., Harrison R.H., Galler J.R. Differential effects of prenatal protein malnutrition and prenatal cocaine on a test of homing behavior in rat pups. Physiol. Behav. 1996;60:1013–1018. doi: 10.1016/0031-9384(96)00152-7. PubMed DOI

Baharnoori M., Bhardwaj S.K., Srivastava L.K. Neonatal behavioral changes in rats with gestational exposure to lipopoly-saccharide: A prenatal infection model for developmental neuropsychiatric disorders. Schizophr. Bull. 2012;38:444–456. doi: 10.1093/schbul/sbq098. PubMed DOI PMC

Ausderau K.K., Dammann C.C., McManus K., Schneider M., Emborg M.E., Schultz-Darken N. Cross-species comparison of behavioral neurodevelopmental milestones in the common marmoset monkey and human child. Dev. Psychobiol. 2017;59:807–821. doi: 10.1002/dev.21545. PubMed DOI PMC

Ruda-Kucerova J., Babinska Z., Amchova P., Stark T., Drago F., Sulcova A., Micale V. Reactivity to addictive drugs in the methylazoxymethanol (MAM) model of schizophrenia in male and female rats. World J. Biol. Psychiatry. 2017;18:129–142. doi: 10.1080/15622975.2016.1190032. PubMed DOI

Stark T., Ruda-Kucerova S., Iannotti F.A., D’Addario C., Di Marco R., Pekarik V., Drazanova E., Piscitelli F., Bari M., Babinska Z., et al. Peripubertal Treatment with cannabidiol reverses behavioral alterations in MAM model of schizophrenia. Neuropharmacology. 2019;146:212–221. doi: 10.1016/j.neuropharm.2018.11.035. PubMed DOI

Stark T., Di Bartolomeo M., Di Marco R., Drazanova E., Platania C.B.M., Iannotti F.A., Ruda-Kucerova J., D’Addario C., Kratka L., Pekarik V., et al. Altered dopamine D3 receptor gene expression in MAM model of schizophrenia is reversed by peripubertal cannabidiol treatment. Biochem. Pharmacol. 2020;177:114004. doi: 10.1016/j.bcp.2020.114004. PubMed DOI

Drazanova E., Ruda-Kucerova J., Kratka L., Stark T., Kuchar M., Maryska M., Drago F., Starkuk Z., Jr., Micale V. Different effects of prenatal MAM vs. perinatal THC exposure on regional cerebral blood perfusion detected by arterial spin labelling MRI in rats. Sci. Rep. 2019;9:6062. doi: 10.1038/s41598-019-42532-z. PubMed DOI PMC

Horska K., Kotolova H., Karpisek M., Babinska Z., Hammer T., Prochazka J., Stark T., Micale V., Ruda-Kucerova J. Metabolic profile of methylazoxymethanol model of schizophrenia in rats and effects of three antipsychotics in long-acting formulation. Toxicol. Appl. Pharmacol. 2020;406:115214. doi: 10.1016/j.taap.2020.115214. PubMed DOI

Kucera J., Horska K., Hruska P., Kuruczova D., Micale V., Ruda-Kucerova J., Bienertova-Vasku J. Interacting effects of the MAM model of schizophrenia and antipsychotic treatment: Untargeted proteomics approach in adipose tissue. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2021;108:110165. doi: 10.1016/j.pnpbp.2020.110165. PubMed DOI

Fride E., Ginzburg Y., Breuer A., Bisogno T., Di Marzo V., Mechoulam R. Critical role of the endogenous cannabinoid system in mouse pup suckling and growth. Eur. J. Pharmacol. 2001;419:207–214. doi: 10.1016/S0014-2999(01)00953-0. PubMed DOI

Terzian A.L., Drago F., Wotjak C.T., Micale V. The dopamine and cannabinoid interaction in the modulation of emotions and cognition: Assessing the role of cannabinoid CB1 receptor in neurons expressing dopamine D1 receptors. Front. Behav. Neurosci. 2011;5:49. doi: 10.3389/fnbeh.2011.00049. PubMed DOI PMC

Di Bartolomeo M., Stark T., Maurel O.M., Iannotti F.A., Kuchar M., Ruda-Kucerova J., Piscitelli F., Laudani S., Pekarik V., Salomone S., et al. Crosstalk between the transcriptional regulation of dopamine D2 and cannabinoid CB1 receptors in schizophrenia: Analyses in patients and in perinatal Δ9-tetrahydrocannabinol-exposed rats. Pharmacol. Res. 2021;164:105357. doi: 10.1016/j.phrs.2020.105357. PubMed DOI

Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. 4th ed. Acad Press; San Diego, CA, USA: 1998.

Lo Pumo R., Bellia M., Nicosia A., Micale V., Drago F. Long-lasting neurotoxicity of prenatal benzene acute exposure in rats. Toxicology. 2006;223:227–234. doi: 10.1016/j.tox.2006.04.001. PubMed DOI

Tamburella A., Micale V., Mazzola C., Salomone S., Drago F. The selective norepinephrine reuptake inhibitor atomoxetine counteracts behavioral impairments in trimethyltin-intoxicated rats. Eur. J. Pharmacol. 2012;683:148–154. doi: 10.1016/j.ejphar.2012.02.045. PubMed DOI

Drago F., Nicolosi A., Micale V., Lo Menzo G. Placebo affects the performance of rats in models of depression: Is it a good control for behavioral experiments? Eur. Neuropsychopharmacol. 2001;11:209–213. doi: 10.1016/S0924-977X(01)00084-0. PubMed DOI

Tamburella A., Micale V., Navarria A., Drago F. Antidepressant properties of the 5-HT4 receptor partial agonist, SL65.0155: Behavioral and neurochemical studies in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2009;33:1205–1210. doi: 10.1016/j.pnpbp.2009.07.001. PubMed DOI

Pamplona F.A., Henes K., Micale V., Mauch C.P., Takahashi R.N., Wotjak C.T. Prolonged fear incubation leads to gener-alized avoidance behavior in mice. J. Psychiatr. Res. 2011;45:354–360. doi: 10.1016/j.jpsychires.2010.06.015. PubMed DOI

Direnberger S., Mues M., Micale V., Wotjak C.T., Dietzel S., Schubert M., Scharr A., Hassan S., Wahl-Schott C., Biel M., et al. Biocompatibility of a genetically encoded calcium indicator in a transgenic mouse model. Nat. Commun. 2012;3:1031. doi: 10.1038/ncomms2035. PubMed DOI

Ruda-Kucerova J., Amchova P., Babinska Z., Dusek L., Micale V., Sulcova A. Sex differences in the reinstatement of methamphetamine seeking after forced abstinence in sprague-dawley rats. Front. Psychiatry. 2015;6:91. doi: 10.3389/fpsyt.2015.00091. PubMed DOI PMC

Uttl L., Szczurowska E., Hajkova K., Horsley R.R., Štefková K., Hložek T., Šíchová K., Balíková M., Kuchař M., Micale V., et al. Behavioral and pharmacokinetic profile of indole-derived synthetic cannabinoids JWH-073 and JWH-210 as compared to the phytocannabinoid Delta (9)-THC in rats. Front. Neurosci. 2018;12:703. doi: 10.3389/fnins.2018.00703. PubMed DOI PMC

Raffaele M., Kovacovicova K., Biagini T., Lo Re O., Frohlich J., Giallongo S., Nhan J.D., Giannone A.G., Cabibi D., Ivanov M., et al. Nociceptin/orphanin FQ opioid receptor (NOP) selective ligand MCOPPB links anxiolytic and senolytic effects. GeroScience. 2021 doi: 10.1007/s11357-021-00487-y. PubMed DOI PMC

Terzian A.L.B., Micale V., Wotjak C.T. Cannabinoid receptor type 1 receptors on GABAergic vs. glutamatergic neurons dif-ferentially gate sex-dependent social interest in mice. Eur. J. Neurosci. 2014;40:2293–2298. doi: 10.1111/ejn.12561. PubMed DOI

Chiodi V., Domenici M.R., Biagini T., De Simone R., Tartaglione A.M., Di Rosa M., Lo Re O., Mazza T., Micale V., Vin-ciguerra M. Systemic depletion of histone macroH2A1.1 boosts hippocampal synaptic plasticity and social behavior in mice. FASEB J. 2021;3:e21793. doi: 10.1096/fj.202100569R. PubMed DOI

Brancato A., Castelli V., Lavanco G., Tringali G., Micale V., Kuchar M., Pizzolanti G., Feo S., Cannizzaro C. Binge-like alcohol exposure in adolescence: Behavioural, neuroendocrine and molecular evidence of abnormal neuroplasticity…and return. Biomedicines. 2021;9:1161. doi: 10.3390/biomedicines9091161. PubMed DOI PMC

Iannotti F.A., Di Marzo V., Petrosino S. Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders. Prog. Lipid Res. 2016;62:107–128. doi: 10.1016/j.plipres.2016.02.002. PubMed DOI

Nguyen A.T., Armstrong E.A., Yager J.Y. Neurodevelopmental reflex testing in neonatal rat pups. J. Vis. Exp. 2017;122:55261. doi: 10.3791/55261. PubMed DOI PMC

Antonelli T., Tomasini M.C., Tattoli M., Cassano T., Tanganelli S., Finetti S., Mazzoni E., Trabace L., Steardo L., Cuomo V., et al. Prenatal exposure to the CB1 receptor agonist WIN 55,212-2 causes learning disruption associated with impaired cortical NMDA receptor function and emotional reactivity changes in rat offspring. Cereb. Cortex. 2005;15:2013–2020. doi: 10.1093/cercor/bhi076. PubMed DOI

Gregory E.H., Pfaff D.W. Development of olfactory-guided behavior in infant rats. Physiol. Behav. 1971;6:573–576. doi: 10.1016/0031-9384(71)90208-3. PubMed DOI

Compton M.T., Walker E.F. Physical manifestations of neurodevelopmental disruption: Are minor physical anomalies part of the syndrome of schizophrenia? Schizophr. Bull. 2009;35:425–436. doi: 10.1093/schbul/sbn151. PubMed DOI PMC

Bramon E., Murray R.M. A plausible model of schizophrenia must incorporate psychological and social, as well as neuro developmental, risk factors. Dialogues Clin. Neurosci. 2001;3:243–256. PubMed PMC

Llorente R., Llorente-Berzal A., Petrosino S., Marco E.M., Guaza C., Prada C., López-Gallardo M., Di Marzo V., Viveros M.P. Gender-dependent cellular and biochemical effects of maternal deprivation on the hippocampus of neonatal rats: A pos-sible role for the endocannabinoid system. Dev. Neurobiol. 2008;68:1334–1347. doi: 10.1002/dneu.20666. PubMed DOI

Seillier A., Advani T., Cassano T., Hensler J.G., Giuffrida A. Inhibition of fatty-acid amide hydrolase and CB1 receptor antagonism differentially affect behavioural responses in normal and PCP-treated rats. Int. J. Neuropsychopharmacol. 2010;13:373–386. doi: 10.1017/S146114570999023X. PubMed DOI

Bisogno T., Howell F., Williams G., Minassi A., Cascio M.G., Ligresti A., Matias I., Schiano-Moriello A., Paul P., Williams E.J., et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J. Cell Biol. 2003;163:463–468. doi: 10.1083/jcb.200305129. PubMed DOI PMC

Katona I., Urbán G.M., Wallace M., Ledent C., Jung K.M., Piomelli D., Mackie K., Freund T.F. Molecular composition of the endocannabinoid system at glutamatergic synapses. J. Neurosci. 2006;26:5628–5637. doi: 10.1523/JNEUROSCI.0309-06.2006. PubMed DOI PMC

Melis M., Pistis M., Perra S., Muntoni A.L., Pillolla G., Gessa G.L. Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J. Neurosci. 2014;24:53–62. doi: 10.1523/JNEUROSCI.4503-03.2004. PubMed DOI PMC

Poels E.M.P., Kegeles L.S., Kantrowitz J.T., Slifstein M., Javitt D.C., Lieberman J.A., Abi-Dargham A., Girgis R.R. Imaging glutamate in schizophrenia: Review of findings and implications for drug discovery. Mol. Psychiatry. 2014;19:20–29. doi: 10.1038/mp.2013.136. PubMed DOI

Gastambide F., Cotel M.C., Gilmour G., O’Neill M.J., Robbins T.W., Tricklebank M.D. Selective remediation of reversal learning deficits in the neurodevelopmental MAM model of schizophrenia by a novel mGlu5 positive allosteric modulator. Neuropsychopharmacology. 2012;37:1057–1066. doi: 10.1038/npp.2011.298. PubMed DOI PMC

Hradetzky E., Sanderson T.M., Tsang T.M., Sherwood J.L., Fitzjohn S.M., Lakics V., Malik N., Schoeffmann S., O’Neill M.J., Cheng T.M.K. The methylazoxymethanol acetate (MAM-E17) rat model: Molecular and functional effects in the hippocampus. Neuropsychopharmacology. 2012;37:364–377. doi: 10.1038/npp.2011.219. PubMed DOI PMC

Gulchina Y., Xu S.J., Snyder M.A., Elefant F., Gao W.J. Epigenetic mechanisms underlying NMDA receptor hypofunction in the prefrontal cortex of juvenile animals in the MAM model for schizophrenia. J. Neurochem. 2017;143:320–333. doi: 10.1111/jnc.14101. PubMed DOI PMC

Snyder M.A., Adelman A.E., Gao W.J. Gestational methylazoxymethanol exposure leads to NMDAR dysfunction in hippocampus during early development and lasting deficits in learning. Neuropsychopharmacology. 2013;38:328–340. doi: 10.1038/npp.2012.180. PubMed DOI PMC

Unger E.L., Paul T., Murray-Kolb L.E., Felt B., Jones B.C., Beard J.L. Early iron deficiency alters sensorimotor development and brain monoamines in rats. J. Nutr. 2007;137:118–124. doi: 10.1093/jn/137.1.118. PubMed DOI

Weinstock M. Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Prog. Neurobiol. 2001;65:427–451. doi: 10.1016/S0301-0082(01)00018-1. PubMed DOI

Igonina T.N., Ragaeva D.N., Tikhonova M.A., Petrova O.M., Herbeck Y.E., Rozhkova I.N., Amstislavskaya T.G., Amstislavsky S.Y. Neurodevelopment and behavior in neonatal OXYS rats with genetically determined accelerated senescence. Brain Res. 2018;1681:75–84. doi: 10.1016/j.brainres.2017.12.021. PubMed DOI

Sarnat H.B. Immunocytochemical markers of neuronal maturation in human diagnostic neuropathology. Cell Tiss. Res. 2015;359:279–294. doi: 10.1007/s00441-014-1988-4. PubMed DOI

Young J.W., Zhou X., Geyer M.A. Animal models of schizophrenia. Curr. Top Behav. Neurosci. 2010;4:391–433. PubMed

Guidali C., Viganò D., Petrosino S., Zamberletti E., Realini N., Binelli G., Rubino T., Di Marzo V., Parolaro D. Cannabinoid CB1 receptor antagonism prevents neurochemical and behavioural deficits induced by chronic phencyclidine. Int. J. Neuro-psychopharmacol. 2011;14:17–28. doi: 10.1017/S1461145710000209. PubMed DOI

Kruk-Slomka M., Budzynska B., Slomka T., Banaszkiewicz I., Biala G. The influence of the CB1 receptor ligands on the schizophrenia-like effects in mice induced by MK-801. Neurotox. Res. 2016;30:658–676. doi: 10.1007/s12640-016-9662-0. PubMed DOI PMC

Marsicano G., Lutz B. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur. J. Neurosci. 1999;11:4213–4225. doi: 10.1046/j.1460-9568.1999.00847.x. PubMed DOI

Micale V., Stepan J., Jurik A., Pamplona F.A., Marsch R., Drago F., Eder M., Wotjak C.T. Extinction of avoidance behavior by safety learning depends on endocannabinoid signaling in the hippocampus. J. Psychiatr. Res. 2017;90:46–59. doi: 10.1016/j.jpsychires.2017.02.002. PubMed DOI

Gessa G.L., Melis M., Muntoni A.L., Diana M. Cannabinoids activate mesolimbic dopamine neurons by an action on can-nabinoid CB1 receptors. Eur. J. Pharmacol. 1998;341:39–44. doi: 10.1016/S0014-2999(97)01442-8. PubMed DOI

Tzavara E.T., Davis R.J., Perry K.W., Li X., Salhoff C., Bymaster F.P., Witkin J.M., Nomikos G.G. The CB1 receptor an-tagonist SR141716A selectively increases monoaminergic neurotransmission in the medial prefrontal cortex: Implications for therapeutic actions. Br. J. Pharmacol. 2003;138:544–553. doi: 10.1038/sj.bjp.0705100. PubMed DOI PMC

Zamberletti E., Piscitelli F., Cadeddu F., Rubino T., Fratta W., Fadda P., Di Marzo V., Parolaro D. Chronic blockade of CB (1) receptors reverses startle gating deficits and associated neurochemical alterations in rats reared in isolation. Br. J. Pharmacol. 2011;167:1652–1664. doi: 10.1111/j.1476-5381.2012.02095.x. PubMed DOI PMC

Pratt J.A., Winchester C., Egeterton A., Cochrane S.M., Morris B.J. Modelling prefrontal cortex deficits in schizophrenia: Implications for treatment. Br. J. Pharmacol. 2008;153:S465–S470. doi: 10.1038/bjp.2008.24. PubMed DOI PMC

Young J.W., Powell S.B., Risbrough V., Marston H.M., Geyer M.A. Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol. Ther. 2009;122:150–202. doi: 10.1016/j.pharmthera.2009.02.004. PubMed DOI PMC

Rentzsch J., Buntebart E., Stadelmeier A., Gallinat J., Jockers-Scherubl M.C. Differential effects of chronic cannabis use on preattentional cognitive functioning in abstinent schizophrenic patients and healthy subjects. Schizoph. Res. 2011;130:222–227. doi: 10.1016/j.schres.2011.05.011. PubMed DOI

Mas S., Gassó P., Fernández de Bobadilla R., Arnaiz J.A., Bernardo M., Lafuente A. Secondary nonmotor negative symp-toms in healthy volunteers after single doses of haloperidol and risperidone: A double-blind, crossover, placebo-controlled trial. Hum. Psychopharmacol. Clin. Exp. 2013;28:586–593. doi: 10.1002/hup.2350. PubMed DOI

Seillier A., Martinez A., Giuffrida A. Phencyclidine-induced social withdrawal results from from deficient stimulation of cannabinoid CB1 receptors: Implications for schizophrenia. Neuropsychopharmacology. 2013;38:1816–1824. doi: 10.1038/npp.2013.81. PubMed DOI PMC

Gogos A., Langmead C., Sullivan J.C., Lawrence A.J. The importance of sex differences in pharmacology research. Br. J. Pharmacol. 2019;176:4087–4089. doi: 10.1111/bph.14819. PubMed DOI PMC

Rubino T., Parolaro D. Sexually dimorphic effects of cannabinoid compounds on emotion and cognition. Front. Behav. Neurosci. 2011;5:64. doi: 10.3389/fnbeh.2011.00064. PubMed DOI PMC

Fattore L., Fratta W. How important are sex differences in cannabinoid action? Br. J. Pharmacol. 2010;160:544–548. doi: 10.1111/j.1476-5381.2010.00776.x. PubMed DOI PMC

Micale V., Drago F., Noerregaard P.K., Elling C.E., Wotjak C.T. The cannabinoid CB1 antagonist TM38837 with limited penetrance to the brain shows reduced fear-promoting effects in mice. Front. Pharmacol. 2019;10:207. doi: 10.3389/fphar.2019.00207. PubMed DOI PMC

Murphy T., Le Foll B. Targeting the endocannabinoid CB1 Receptor to treat body weight disorders: A preclinical and clinical review of the therapeutic potential of past and present CB1 drugs. Biomolecules. 2020;10:855. doi: 10.3390/biom10060855. PubMed DOI PMC

Hsu K.L., Tsuboi K., Adibekian A., Pugh H., Masuda K., Cravatt B.F. DAGLβ inhibition perturbs a lipid network involved in macrophage inflammatory responses. Nat. Chem. Biol. 2012;8:999–1007. doi: 10.1038/nchembio.1105. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...