The Effects of Peripubertal THC Exposure in Neurodevelopmental Rat Models of Psychopathology
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36835313
PubMed Central
PMC9962163
DOI
10.3390/ijms24043907
PII: ijms24043907
Knihovny.cz E-zdroje
- Klíčová slova
- dopamine D2/D3 receptors, methylazoxymethanol acetate, psychopathology, Δ9-tetrahydrocannabinol,
- MeSH
- dopamin metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- prefrontální mozková kůra účinky léků metabolismus MeSH
- receptory dopaminu D3 metabolismus MeSH
- schizofrenie * chemicky indukované MeSH
- těhotenství MeSH
- tetrahydrokanabinol * toxicita MeSH
- zpožděný efekt prenatální expozice * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dopamin MeSH
- receptory dopaminu D3 MeSH
- tetrahydrokanabinol * MeSH
Adolescent exposure to cannabinoids as a postnatal environmental insult may increase the risk of psychosis in subjects exposed to perinatal insult, as suggested by the two-hit hypothesis of schizophrenia. Here, we hypothesized that peripubertal Δ9-tetrahydrocannabinol (aTHC) may affect the impact of prenatal methylazoxymethanol acetate (MAM) or perinatal THC (pTHC) exposure in adult rats. We found that MAM and pTHC-exposed rats, when compared to the control group (CNT), were characterized by adult phenotype relevant to schizophrenia, including social withdrawal and cognitive impairment, as revealed by social interaction test and novel object recognition test, respectively. At the molecular level, we observed an increase in cannabinoid CB1 receptor (Cnr1) and/or dopamine D2/D3 receptor (Drd2, Drd3) gene expression in the prefrontal cortex of adult MAM or pTHC-exposed rats, which we attributed to changes in DNA methylation at key regulatory gene regions. Interestingly, aTHC treatment significantly impaired social behavior, but not cognitive performance in CNT groups. In pTHC rats, aTHC did not exacerbate the altered phenotype nor dopaminergic signaling, while it reversed cognitive deficit in MAM rats by modulating Drd2 and Drd3 gene expression. In conclusion, our results suggest that the effects of peripubertal THC exposure may depend on individual differences related to dopaminergic neurotransmission.
Department of Biomedical and Biotechnological Sciences University of Catania 95123 Catania Italy
Department of Pharmacology Faculty of Medicine Masaryk University 62500 Brno Czech Republic
Scientific Core Unit Neuroimaging Max Planck Institute of Psychiatry 80804 Munich Germany
Zobrazit více v PubMed
Owen M.J., O’ Donovan M.C., Thapar A., Craddock N. Neurodevelopmental hypothesis of schizophrenia. Br. J. Psychiatry. 2011;198:173–175. doi: 10.1192/bjp.bp.110.084384. PubMed DOI PMC
Nadeem A., Ahmad S.F., Al-Harbi N.O., Attia S.M., Bakheet S.A., Ibrahim K.E., Alqahtani F., Alqinyah M. Nrf2 activator, sulforaphane ameliorates autism-like symptoms through suppression of Th17 related signaling and rectification of oxidant-antioxidant imbalance in periphery and brain of BTBR T+tf/J mice. Behav. Brain Res. 2019;364:213–224. doi: 10.1016/j.bbr.2019.02.031. PubMed DOI
Ahmad S.F., Ansari M.A., Nadeem A., Bakheet S.A., Alshammari M.A., Attia S.M. Protection by tyrosine kinase inhibitor, tyrphostin AG126, through the suppression of IL-17A, RORγt, and T-bet signaling, in the BTBR mouse model of autism. Brain Res. Bull. 2018;142:328–337. doi: 10.1016/j.brainresbull.2018.08.020. PubMed DOI
Ahmad S.F., Ansari M.A., Nadeem A., Bakheet S.A., Alqahtani F., Alhoshani A.R., Alasmari F., Alsaleh N.B., Attia S.M. 5-aminoisoquinolinone attenuates social behavior deficits and immune abnormalities in the BTBR T+ Itpr3tf/J mouse model for autism. Pharmacol. Biochem. Behav. 2020;189:172859. doi: 10.1016/j.pbb.2020.172859. PubMed DOI
Al-Mazroua H.A., Nadeem A., Ansari M.A., Attia S.M., Albekairi T.H., Bakheet S.A., Alobaidi A.F., Alhosaini K., Alqarni S.A., Ibrahim K.E., et al. Methylmercury chloride exposure exacerbates existing neurobehavioral and immune dysfunctions in the BTBR T+ Itpr3tf/J mouse model of autism. Immunol. Lett. 2022;244:19–27. doi: 10.1016/j.imlet.2022.03.001. PubMed DOI
Higuera-Matas A., Ucha M., Ambrosio E. Long-term consequences of perinatal and adolescent cannabinoid exposure on neural and psychological processes. Neurosci. Biobehav. Rev. 2015;55:119–146. doi: 10.1016/j.neubiorev.2015.04.020. PubMed DOI
Stiles J., Jernigan T.L. The Basics of Brain Development. Neuropsychol. Rev. 2010;20:327–348. doi: 10.1007/s11065-010-9148-4. PubMed DOI PMC
Giedd J.N., Blumenthal J., Jeffries N.O., Castellanos F.X., Liu H., Zijdenbos A., Paus T., Evans A.C., Rapoport J.L. Brain development during childhood and adolescence: A longitudinal MRI study. Nat. Neurosci. 1999;2:861–863. doi: 10.1038/13158. PubMed DOI
Spear L.P. The adolescent brain and age-related behavioral manifestations. Neurosci. Biobehav. Rev. 2020;24:417–463. doi: 10.1016/S0149-7634(00)00014-2. PubMed DOI
Andersen S.L. Trajectories of brain development: Point of vulnerability or window of opportunity? Neurosci. Biobehav. Rev. 2003;27:3–18. doi: 10.1016/S0149-7634(03)00005-8. PubMed DOI
Micale V., Kucerova J., Sulcova A. Leading compounds for the validation of animal models of psychopathology. Cell Tissue Res. 2013;354:309–330. doi: 10.1007/s00441-013-1692-9. PubMed DOI
Alpár A., Di Marzo V., Harkany T. At the Tip of an Iceberg: Prenatal Marijuana and Its Possible Relation to Neuropsychiatric Outcome in the Offspring. Biol. Psychiatry. 2016;79:e33–e45. doi: 10.1016/j.biopsych.2015.09.009. PubMed DOI
Di Bartolomeo M., Stark T., Maurel O.M., Iannotti F.A., Kuchar M., Ruda-Kucerova J., Piscitelli F., Laudani S., Pekarik V., Salomone S., et al. Crosstalk between the transcriptional regulation of dopamine D2 and cannabinoid CB1 receptors in schizophrenia: Analyses in patients and in perinatal Δ9-tetrahydrocannabinol-exposed rats. Pharmacol. Res. 2021;164:105357. doi: 10.1016/j.phrs.2020.105357. PubMed DOI
Stark T., Di Martino S., Drago F., Wotjak C.T., Micale V. Phytocannabinoids and schizophrenia: Focus on adolescence as a critical window of enhanced vulnerability and opportunity for treatment. Pharmacol. Res. 2021;174:105938. doi: 10.1016/j.phrs.2021.105938. PubMed DOI
Hermann H., Marsicano G., Lutz B. Coexpression of the cannabinoid receptor type 1 with dopamine and serotonin receptors in distinct neuronal subpopulations of the adult mouse forebrain. Neuroscience. 2002;109:451–460. doi: 10.1016/S0306-4522(01)00509-7. PubMed DOI
Meschler J.P., Howlett A.C. Signal transduction interactions between CB1 cannabinoid and dopamine receptors in the rat and monkey striatum. Neuropharmacology. 2001;40:918–926. doi: 10.1016/S0028-3908(01)00012-0. PubMed DOI
Stark T., Iannotti F.A., Di Martino S., Di Bartolomeo M., Ruda-Kucerova J., Piscitelli F., Wotjak C.T., D’Addario C., Drago F., Di Marzo V., et al. Early Blockade of CB1 Receptors Ameliorates Schizophrenia-like Alterations in the Neurodevelopmental MAM Model of Schizophrenia. Biomolecules. 2022;12:108. doi: 10.3390/biom12010108. PubMed DOI PMC
Ruda-Kucerova J., Babinska Z., Amchova P., Stark T., Drago F., Sulcova A., Micale V. Reactivity to addictive drugs in the methylazoxymethanol (MAM) model of schizophrenia in male and female rats. World J. Biol. Psychiatry. 2017;18:129–142. doi: 10.1080/15622975.2016.1190032. PubMed DOI
D’Addario C., Micale V., Di Bartolomeo M., Stark T., Pucci M., Sulcova A., Palazzo M., Babinska Z., Cremaschi L., Drago F., et al. A preliminary study of endocannabinoid system regulation in psychosis: Distinct alterations of CNR1 promoter DNA methylation in patients with schizophrenia. Schizophr. Res. 2017;188:132–140. doi: 10.1016/j.schres.2017.01.022. PubMed DOI
Stark T., Ruda-Kucerova J., Iannotti F.A., D’Addario C., Di Marco R., Pekarik V., Drazanova E., Piscitelli F., Bari M., Babinska Z., et al. Peripubertal cannabidiol treatment rescues behavioral and neurochemical abnormalities in the MAM model of schizophrenia. Neuropharmacology. 2019;146:212–221. doi: 10.1016/j.neuropharm.2018.11.035. PubMed DOI
Stark T., Di Bartolomeo M., Di Marco R., Drazanova E., Platania C.B.M., Iannotti F.A., Ruda-Kucerova J., D’Addario C., Kratka L., Pekarik V., et al. Altered dopamine D3 receptor gene expression in MAM model of schizophrenia is reversed by peripubertal cannabidiol treatment. Biochem. Pharmacol. 2020;177:114004. doi: 10.1016/j.bcp.2020.114004. PubMed DOI
Drazanova E., Ruda-Kucerova J., Kratka L., Stark T., Kuchar M., Maryska M., Drago F., Starcuk Z., Micale V. Different effects of prenatal MAM vs. perinatal THC exposure on regional cerebral blood perfusion detected by Arterial Spin Labelling MRI in rats. Sci. Rep. 2019;9:6062. doi: 10.1038/s41598-019-42532-z. PubMed DOI PMC
Kucerova J., Tabiova K., Drago F., Micale V. Therapeutic Potential of Cannabinoids in Schizophrenia. Recent Pat. CNS Drug Discov. 2014;9:13–25. doi: 10.2174/1574889809666140307115532. PubMed DOI
Peters K.Z., Naneix F. The role of dopamine and endocannabinoid systems in prefrontal cortex development: Adolescence as a critical period. Front. Neural Circuits. 2022;16:939235. doi: 10.3389/fncir.2022.939235. PubMed DOI PMC
Micale V., Di Bartolomeo M., Di Martino S., Stark T., Dell’Osso B., Drago F., D’Addario C. Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol. Ther. 2023;241:108279. doi: 10.1016/j.pharmthera.2022.108279. PubMed DOI
Howes O.D., Kapur S. The Dopamine Hypothesis of Schizophrenia: Version III--The Final Common Pathway. Schizophr. Bull. 2009;35:549–562. doi: 10.1093/schbul/sbp006. PubMed DOI PMC
Shing N., Walker M.C., Chang P. The role of aberrant neural oscillations in the hippocampal-medial prefrontal cortex circuit in neurodevelopmental and neurological disorders. Neurobiol. Learn. Mem. 2022;195:107683. doi: 10.1016/j.nlm.2022.107683. PubMed DOI
Eggan S.M., Hashimoto T., Lewis D.A. Reduced Cortical Cannabinoid 1 Receptor Messenger RNA and Protein Expression in Schizophrenia. Arch. Gen. Psychiatry. 2008;65:772. doi: 10.1001/archpsyc.65.7.772. PubMed DOI PMC
DiNieri J.A., Wang X., Szutorisz H., Spano S.M., Kaur J., Casaccia P., Dow-Edwards D., Hurd Y.L. Maternal Cannabis Use Alters Ventral Striatal Dopamine D2 Gene Regulation in the Offspring. Biol. Psychiatry. 2011;70:763–769. doi: 10.1016/j.biopsych.2011.06.027. PubMed DOI PMC
Wang X., Dow-Edwards D., Anderson V., Minkoff H., Hurd Y.L. In utero marijuana exposure associated with abnormal amygdala dopamine D2 gene expression in the human fetus. Biol. Psychiatry. 2004;56:909–915. doi: 10.1016/j.biopsych.2004.10.015. PubMed DOI
Saito A., Ballinger M.D.L., Pletnikov M.V., Wong D.F., Kamiya A. Endocannabinoid system: Potential novel targets for treatment of schizophrenia. Neurobiol. Dis. 2013;53:10–17. doi: 10.1016/j.nbd.2012.11.020. PubMed DOI PMC
Ruggiero R.N., Rossignoli M.T., De Ross J.B., Hallak J.E.C., Leite J.P., Bueno-Junior L.S. Cannabinoids and Vanilloids in Schizophrenia: Neurophysiological Evidence and Directions for Basic Research. Front. Pharmacol. 2017;8:399. doi: 10.3389/fphar.2017.00399. PubMed DOI PMC
Schneider M. Adolescence as a vulnerable period to alter rodent behavior. Cell Tissue Res. 2013;354:99–106. doi: 10.1007/s00441-013-1581-2. PubMed DOI
Feigenson K.A., Kusnecov A.W., Silverstein S.M. Inflammation and the two-hit hypothesis of schizophrenia. Neurosci. Biobehav. Rev. 2014;38:72–93. doi: 10.1016/j.neubiorev.2013.11.006. PubMed DOI PMC
Gomes F.V., Guimarães F.S., Grace A.A. Effects of Pubertal Cannabinoid Administration on Attentional Set-Shifting and Dopaminergic Hyper-Responsivity in a Developmental Disruption Model of Schizophrenia. Int. J. Neuropsychopharmacol. 2015;18:pyu018. doi: 10.1093/ijnp/pyu018. PubMed DOI PMC
Aguilar D.D., Giuffrida A., Lodge D.J. Adolescent Synthetic Cannabinoid Exposure Produces Enduring Changes in Dopamine Neuron Activity in a Rodent Model of Schizophrenia Susceptibility. Int. J. Neuropsychopharmacol. 2018;21:393–403. doi: 10.1093/ijnp/pyy003. PubMed DOI PMC
Lecca S., Luchicchi A., Scherma M., Fadda P., Muntoni A.L., Pistis M. Δ9-Tetrahydrocannabinol During Adolescence Attenuates Disruption of Dopamine Function Induced in Rats by Maternal Immune Activation. Front. Behav. Neurosci. 2019;13:202. doi: 10.3389/fnbeh.2019.00202. PubMed DOI PMC
Ruda-Kucerova J., Babinska Z., Stark T., Micale V. Suppression of Methamphetamine Self-Administration by Ketamine Pre-treatment Is Absent in the Methylazoxymethanol (MAM) Rat Model of Schizophrenia. Neurotox. Res. 2017;32:121–133. doi: 10.1007/s12640-017-9718-9. PubMed DOI
Večeřa J., Bártová E., Krejčí J., Legartová S., Komůrková D., Rudá-Kučerová J., Štark T., Dražanová E., Kašpárek T., Šulcová A., et al. HDAC1 and HDAC3 underlie dynamic H3K9 acetylation during embryonic neurogenesis and in schizophrenia-like animals. J. Cell. Physiol. 2018;233:530–548. doi: 10.1002/jcp.25914. PubMed DOI PMC
Horska K., Kotolova H., Karpisek M., Babinska Z., Hammer T., Prochazka J., Stark T., Micale V., Ruda-Kucerova J. Metabolic profile of methylazoxymethanol model of schizophrenia in rats and effects of three antipsychotics in long-acting formulation. Toxicol. Appl. Pharmacol. 2020;406:115214. doi: 10.1016/j.taap.2020.115214. PubMed DOI
Kucera J., Horska K., Hruska P., Kuruczova D., Micale V., Ruda-Kucerova J., Bienertova-Vasku J. Interacting effects of the MAM model of schizophrenia and antipsychotic treatment: Untargeted proteomics approach in adipose tissue. Progr. Neuro-Psychopharmacol. Biol. Psychiatry. 2021;108:110165. doi: 10.1016/j.pnpbp.2020.110165. PubMed DOI
Uttl L., Szczurowska E., Hájková K., Horsley R.R., Štefková K., Hložek T., Šíchová K., Balíková M., Kuchař M., Micale v., et al. Behavioral and Pharmacokinetic Profile of Indole-Derived Synthetic Cannabinoids JWH-073 and JWH-210 as Compared to the Phytocannabinoid Δ9-THC in Rats. Front. Neurosci. 2018;12:703. doi: 10.3389/fnins.2018.00703. PubMed DOI PMC
Brancato A., Castelli V., Lavanco G., Tringali G., Micale V., Kuchar M., D’Amico C., Pizzolanti G., Feo S., Cannizzaro C. Binge-like Alcohol Exposure in Adolescence: Behavioural, Neuroendocrine and Molecular Evidence of Abnormal Neuroplasticity… and Return. Biomedicines. 2021;9:1161. doi: 10.3390/biomedicines9091161. PubMed DOI PMC
Molina-Holgado F., Amaro A., González M.I., Alvarez F.J., Leret M.L. Effect of maternal Δ9-tetrahydrocannabinol on developing serotonergic system. Eur. J. Pharmacol. 1996;316:39–42. doi: 10.1016/S0014-2999(96)00753-4. PubMed DOI
Scherma M., Dessì C., Muntoni A.L., Lecca S., Satta V., Luchicchi A., Pistis M., Panlilio L.V., Fattore L., Goldberg S.R., et al. Adolescent Δ9-Tetrahydrocannabinol Exposure Alters WIN55,212-2 Self-Administration in Adult Rats. Neuropsychopharmacology. 2016;41:1416–1426. doi: 10.1038/npp.2015.295. PubMed DOI PMC
Terzian A.L., Drago F., Wotjak C.T., Micale V. The Dopamine and Cannabinoid Interaction in the Modulation of Emotions and Cognition: Assessing the Role of Cannabinoid CB1 Receptor in Neurons Expressing Dopamine D1 Receptors. Front. Behav. Neurosci. 2011;5:49. doi: 10.3389/fnbeh.2011.00049. PubMed DOI PMC
Terzian A.L.B., Micale V., Wotjak C.T. Cannabinoid receptor type 1 receptors on GABAergic vs. glutamatergic neurons differentially gate sex-dependent social interest in mice. Eur. J. Neurosci. 2014;40:2293–2298. doi: 10.1111/ejn.12561. PubMed DOI
Chiodi V., Domenici M.R., Biagini T., de Simone R., Tartaglione A.M., Di Rosa M., lo Re O., Mazza T., Micale V., Vinciguerra M. Systemic depletion of histone macroH2A1.1 boosts hippocampal synaptic plasticity and social behavior in mice. FASEB J. 2021;35:e21793. doi: 10.1096/fj.202100569R. PubMed DOI
Raffaele M., Kovacovicova K., Biagini T., Lo Re O., Frohlich J., Giallongo S., Nhan J.D., Giannone A.G., Cabibi D., Ivanov M., et al. Nociceptin/orphanin FQ opioid receptor (NOP) selective ligand MCOPPB links anxiolytic and senolytic effects. Geroscience. 2022;44:463–483. doi: 10.1007/s11357-021-00487-y. PubMed DOI PMC
Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. 4th ed. Academic Press; San Diego, CA, USA: 1998.
Drago F., Nicolosi A., Micale V., Lo Menzo G. Placebo affects the performance of rats in models of depression: Is it a good control for behavioral experiments? Eur. Neuropsychopharmacol. 2001;11:209–213. doi: 10.1016/S0924-977X(01)00084-0. PubMed DOI
Tamburella A., Micale V., Navarria A., Drago F. Antidepressant properties of the 5-HT4 receptor partial agonist, SL65.0155: Behavioral and neurochemical studies in rats. Progr. Neuro-Psychopharmacol. Biol. Psychiatry. 2009;33:1205–1210. doi: 10.1016/j.pnpbp.2009.07.001. PubMed DOI
Tamburella A., Micale V., Mazzola C., Salomone S., Drago F. The selective norepinephrine reuptake inhibitor atomoxetine counteracts behavioral impairments in trimethyltin-intoxicated rats. Eur. J. Pharmacol. 2012;683:148–154. doi: 10.1016/j.ejphar.2012.02.045. PubMed DOI
Pamplona F.A., Henes K., Micale V., Mauch C.P., Takahashi R.N., Wotjak C.T. Prolonged fear incubation leads to generalized avoidance behavior in mice. J. Psychiatr. Res. 2011;45:354–360. doi: 10.1016/j.jpsychires.2010.06.015. PubMed DOI
Ruda-Kucerova J., Amchova P., Babinska Z., Dusek L., Micale V., Sulcova A. Sex Differences in the Reinstatement of Methamphetamine Seeking after Forced Abstinence in Sprague-Dawley Rats. Front. Psychiatry. 2015;6:91. doi: 10.3389/fpsyt.2015.00091. PubMed DOI PMC
Lyon E. Mutation detection using fluorescent hybridization probes and melting curve analysis. Expert Rev. Mol. Diagn. 2011;1:92–101. doi: 10.1586/14737159.1.1.92. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Prenatal MAM exposure raises kynurenic acid levels in the prefrontal cortex of adult rats