Binge-like Alcohol Exposure in Adolescence: Behavioural, Neuroendocrine and Molecular Evidence of Abnormal Neuroplasticity… and Return
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
EA 1642
ERAB: The European Foundation for Alcohol Research
post doctoral fellowship
Fondazione Zardi Gori
Piano triennale per la Ricerca - Linea Intervento 2, Bando" CHANCE"- Linea Intervento 1 and Starting Grant 2020
Università di Catania
PubMed
34572345
PubMed Central
PMC8470908
DOI
10.3390/biomedicines9091161
PII: biomedicines9091161
Knihovny.cz E-zdroje
- Klíčová slova
- adolescence, binge alcohol drinking, cannabidiol, nucleus accumbens,
- Publikační typ
- časopisecké články MeSH
Binge alcohol consumption among adolescents affects the developing neural networks underpinning reward and stress processing in the nucleus accumbens (NAc). This study explores in rats the long-lasting effects of early intermittent exposure to intoxicating alcohol levels at adolescence, on: (1) the response to natural positive stimuli and inescapable stress; (2) stress-axis functionality; and (3) dopaminergic and glutamatergic neuroadaptation in the NAc. We also assess the potential effects of the non-intoxicating phytocannabinoid cannabidiol, to counteract (or reverse) the development of detrimental consequences of binge-like alcohol exposure. Our results show that adolescent binge-like alcohol exposure alters the sensitivity to positive stimuli, exerts social and novelty-triggered anxiety-like behaviour, and passive stress-coping during early and prolonged withdrawal. In addition, serum corticosterone and hypothalamic and NAc corticotropin-releasing hormone levels progressively increase during withdrawal. Besides, NAc tyrosine hydroxylase levels increase at late withdrawal, while the expression of dopamine transporter, D1 and D2 receptors is dynamically altered during binge and withdrawal. Furthermore, the expression of markers of excitatory postsynaptic signaling-PSD95; Homer-1 and -2 and the activity-regulated spine-morphing proteins Arc, LIM Kinase 1 and FOXP1-increase at late withdrawal. Notably, subchronic cannabidiol, during withdrawal, attenuates social- and novelty-induced aversion and passive stress-coping and rectifies the hyper-responsive stress axis and NAc dopamine and glutamate-related neuroplasticity. Overall, the exposure to binge-like alcohol levels in adolescent rats makes the NAc, during withdrawal, a locus minoris resistentiae as a result of perturbations in neuroplasticity and in stress-axis homeostasis. Cannabidiol holds a promising potential for increasing behavioural, neuroendocrine and molecular resilience against binge-like alcohol harmful effects.
Department of Biomedical and Biotechnological Sciences University of Catania 95123 Catania Italy
Zobrazit více v PubMed
ESPAD Group . ESPAD Report 2019: Results from the European School Survey Project on Alcohol and Other Drugs. EMCDDA Joint Publications, Publications Office of the European Union; Luxembourg: 2020.
Shnitko T.A., Spear L.P., Robinson N.L. Adolescent binge-like alcohol alters sensitivity to acute alcohol effects on dopamine release in the nucleus accumbens of adult rats. Psychopharmacology. 2016;233:361–371. doi: 10.1007/s00213-015-4106-8. PubMed DOI PMC
Varlinskaya E.I., Spear L.P., Spear N.E. Acute effects of ethanol on behavior of adolescent rats: Role of social context. Alcohol. Clin. Exp. Res. 2001;25:377–385. doi: 10.1111/j.1530-0277.2001.tb02224.x. PubMed DOI
Spear L.P., Varlinskaya E.I. Adolescence. Alcohol sensitivity, tolerance, and intake. Recent Dev. Alcohol. 2005;17:143–159. PubMed
Patrick M.E., Schulenberg J.E., Martz M.E., Maggs J.L., O’Malley P.M., Johnston L.D. Extreme binge drinking among 12th-grade students in the United States: Prevalence and predictors. JAMA Pediatr. 2013;167:1019–1025. doi: 10.1001/jamapediatrics.2013.2392. Erratum in 2013, 167, 1172. PubMed DOI PMC
National Institute on Alcohol Abuse and Alcoholism . NIAAA Council Approves Definition of Binge Drinking, NIAAA Newsletter, No. 3. National Institute on Alcohol Abuse and Alcoholism; Bethesda, MD, USA: 2004.
Koob G.F., Weiss F. Neuropharmacology of Cocaine and Ethanol Dependence. Recent Dev. Alcohol. 1992;10:201–233. doi: 10.1007/978-1-4899-1648-8_11. PubMed DOI
Robbins T.W., Everitt B.J. Limbic-striatal memory systems and drug addiction. Neurobiol. Learn. Mem. 2002;78:625–636. doi: 10.1006/nlme.2002.4103. PubMed DOI
Brodie M.S., Shefner S.A., Dunwiddie T.V. Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro. Brain Res. 1990;508:65–69. doi: 10.1016/0006-8993(90)91118-Z. PubMed DOI
Diana M., Pistis M., Muntoni A., Rossetti Z.L., Gessa G. Marked decrease of A10 dopamine neuronal firing during ethanol withdrawal syndrome in rats. Eur. J. Pharmacol. 1992;221:403–404. doi: 10.1016/0014-2999(92)90734-L. PubMed DOI
Mereu G., Fadda F., Gessa G.L. Ethanol stimulates the firing rate of nigral dopaminergic neurons in unanesthetized rats. Brain Res. 1984;292:63–69. doi: 10.1016/0006-8993(84)90890-4. PubMed DOI
Gonzales R.A., Weiss F. Suppression of Ethanol-Reinforced Behavior by Naltrexone Is Associated with Attenuation of the Ethanol-Induced Increase in Dialysate Dopamine Levels in the Nucleus Accumbens. J. Neurosci. 1998;18:10663–10671. doi: 10.1523/JNEUROSCI.18-24-10663.1998. PubMed DOI PMC
Brancato A., Plescia F., Marino R.A.M., Maniaci G., Navarra M., Cannizzaro C. Involvement of Dopamine D2 Receptors in Addictive-Like Behaviour for Acetaldehyde. PLoS ONE. 2014;9:e99454. doi: 10.1371/journal.pone.0099454. PubMed DOI PMC
Plescia F., Brancato A., Marino R.A.M., Cannizzaro C. Acetaldehyde as a drug of abuse: Insight into AM281 administration on operant-conflict paradigm in rats. Front. Behav. Neurosci. 2013;7:64. doi: 10.3389/fnbeh.2013.00064. PubMed DOI PMC
Spiga S., Talani G., Mulas G., Licheri V., Fois G.R., Muggironi G., Masala N., Cannizzaro C., Biggio G., Sanna E., et al. Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats. Proc. Natl. Acad. Sci. USA. 2014;111:E3745–E3754. doi: 10.1073/pnas.1406768111. PubMed DOI PMC
Cannizzaro C., Talani G., Brancato A., Mulas G., Spiga S., De Luca M.A., Sanna A., Marino R.A.M., Biggio G., Sanna E., et al. Dopamine Restores Limbic Memory Loss, Dendritic Spine Structure, and NMDAR-Dependent LTD in the Nucleus Ac-cumbens of Alcohol-Withdrawn Rats. J. Neurosci. 2019;39:929–943. doi: 10.1523/JNEUROSCI.1377-18.2018. PubMed DOI PMC
Dani J.A., Zhou F.-M. Selective Dopamine Filter of Glutamate Striatal Afferents. Neuron. 2004;42:522–524. doi: 10.1016/j.neuron.2004.05.008. PubMed DOI
Kauer J., Malenka R.C. Synaptic plasticity and addiction. Nat. Rev. Neurosci. 2007;8:844–858. doi: 10.1038/nrn2234. PubMed DOI
Thorpe H.H.A., Hamidullah S., Jenkins B.W., Khokhar J.Y. Adolescent neurodevelopment and substance use: Receptor ex-pression and behavioral consequences. Pharmacol Ther. 2020;206:107431. doi: 10.1016/j.pharmthera.2019.107431. PubMed DOI
Beckley J.T., Laguesse S., Phamluong K., Morisot N., Wegner S.A., Ron D. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons. J. Neurosci. 2016;36:701–713. doi: 10.1523/JNEUROSCI.2254-15.2016. PubMed DOI PMC
Crews F.T., Robinson D.L., Chandler L.J., Ehlers C.L., Mulholland P.J., Pandey S.C., Rodd Z.A., Spear L.P., Swartzwelder H.S., Vetreno R.P. Mechanisms of Persistent Neurobiological Changes Following Adolescent Alcohol Exposure: NADIA Con-sortium Findings. Alcohol. Clin. Exp. Res. 2019;43:1806–1822. doi: 10.1111/acer.14154. PubMed DOI PMC
Ernst M., Fudge J.L. A developmental neurobiological model of motivated behavior: Anatomy, connectivity and ontogeny of the triadic nodes. Neurosci. Biobehav. Rev. 2009;33:367–382. doi: 10.1016/j.neubiorev.2008.10.009. PubMed DOI PMC
Chartier K.G., Hesselbrock M.N., Hesselbrock V.M. Alcohol problems in young adults transitioning from adolescence to adulthood: The association with race and gender. Addict. Behav. 2011;36:167–174. doi: 10.1016/j.addbeh.2010.10.007. PubMed DOI PMC
Guilarte T.R., McGlothan J.L. Hippocampal NMDA receptor mRNA undergoes subunit specific changes during develop-mental lead exposure. Brain Res. 1998;790:98–107. doi: 10.1016/S0006-8993(98)00054-7. PubMed DOI
Andersen S., Teicher M. Sex differences in dopamine receptors and their relevance to ADHD. Neurosci. Biobehav. Rev. 2000;24:137–141. doi: 10.1016/S0149-7634(99)00044-5. PubMed DOI
McCutcheon J.E., Marinelli M. Age matters. Eur. J. Neurosci. 2009;29:997–1014. doi: 10.1111/j.1460-9568.2009.06648.x. PubMed DOI PMC
Jucaite A., Forssberg H., Karlsson P., Halldin C., Farde L. Age-related reduction in dopamine D1 receptors in the human brain: From late childhood to adulthood, a positron emission tomography study. Neuroscience. 2010;167:104–110. doi: 10.1016/j.neuroscience.2010.01.034. PubMed DOI
McCutcheon J.E., Conrad K.L., Carr S.B., Ford K.A., McGehee D.S., Marinelli M. Dopamine neurons in the ventral tegmental area fire faster in adolescent rats than in adults. J. Neurophysiol. 2012;108:1620–1630. doi: 10.1152/jn.00077.2012. PubMed DOI PMC
Spear L. The adolescent brain and age-related behavioral manifestations. Neurosci. Biobehav. Rev. 2000;24:417–463. doi: 10.1016/S0149-7634(00)00014-2. PubMed DOI
Tarazi F.I., Tomasini E.C., Baldessarini R.J. Postnatal development of dopamine and serotonin transporters in rat cau-date-putamen and nucleus accumbens septi. Neurosci. Lett. 1998;254:21–24. doi: 10.1016/S0304-3940(98)00644-2. PubMed DOI
Blakemore S.-J. Development of the Social Brain in Adolescence. J. R. Soc. Med. 2012;105:111–116. doi: 10.1258/jrsm.2011.110221. PubMed DOI PMC
Vilpoux C., Warnault V., Pierrefiche O., Daoust M., Naassila M. Ethanol-sensitive brain regions in rat and mouse: A carto-graphic review, using immediate early gene expression. Alcohol. Clin. Exp. Res. 2009;33:945–969. doi: 10.1111/j.1530-0277.2009.00916.x. PubMed DOI
Varlinskaya E.I., Spear L.P. Social interactions in adolescent and adult Sprague–Dawley rats: Impact of social deprivation and test context familiarity. Behav. Brain Res. 2008;188:398–405. doi: 10.1016/j.bbr.2007.11.024. PubMed DOI PMC
Pattwell S.S., Duhoux S., Hartley C.A., Johnson D.C., Jing D., Elliott M.D., Ruberry E.J., Powers A., Mehta N., Yang R.R., et al. Altered fear learning across development in both mouse and human. Proc. Natl. Acad. Sci. USA. 2012;109:16318–16323. doi: 10.1073/pnas.1206834109. PubMed DOI PMC
Martin C.S., Lynch K.G., Pollock N.K., Clark D.B. Gender differences and similarities in the personality correlates of adolescent alcohol problems. Psychol. Addict. Behav. 2000;14:121–133. doi: 10.1037/0893-164X.14.2.121. PubMed DOI
Spear L.P. Adolescent neurobehavioral characteristics, alcohol sensitivities, and intake: Setting the stage for alcohol use disorders? Child. Dev. Perspect. 2011;5:231–238. doi: 10.1111/j.1750-8606.2011.00182.x. PubMed DOI PMC
File S.E., Seth P. A review of 25 years of the social interaction test. Eur. J. Pharmacol. 2003;463:35–53. doi: 10.1016/S0014-2999(03)01273-1. PubMed DOI
Morales M., Varlinskaya E.I., Spear L.P. Anxiolytic effects of the GABA(A) receptor partial agonist, L-838,417: Impact of age, test context familiarity, and stress. Pharmacol. Biochem. Behav. 2013;109:31–37. doi: 10.1016/j.pbb.2013.05.004. PubMed DOI PMC
Varlinskaya E.I., Doremus-Fitzwater T.L., Spear L.P. Repeated restraint stress alters sensitivity to the social consequences of ethanol in adolescent and adult rats. Pharmacol. Biochem. Behav. 2010;96:228–235. doi: 10.1016/j.pbb.2010.05.011. PubMed DOI PMC
Di Liberto V., Frinchi M., Verdi V., Vitale A., Plescia F., Cannizzaro C., Massenti M.F., Belluardo N., Mudò G. Anxiolytic effects of muscarinic acetylcholine receptors agonist oxotremorine in chronically stressed rats and related changes in BDNF and FGF2 levels in the hippocampus and prefrontal cortex. Psychopharmacology. 2016;234:559–573. doi: 10.1007/s00213-016-4498-0. PubMed DOI
Holleran K.M., Winder D.G. Preclinical voluntary drinking models for alcohol abstinence-induced affective disturbances in mice. Genes Brain Behav. 2016;16:8–14. doi: 10.1111/gbb.12338. PubMed DOI
Micale V., Di Marzo V., Sulcova A., Wotjak C.T., Drago F. Endocannabinoid system and mood disorders: Priming a target for new therapies. Pharmacol. Ther. 2013;138:18–37. doi: 10.1016/j.pharmthera.2012.12.002. PubMed DOI
Micale V., Tabiova K., Kucerova J., Drago F. Role of the endocannabinoid system in depression: From preclinical to clinical evidence. In: Campolongo P., Fattore L., editors. Cannabinoid Modulation of Emotion, Memory, and Motivation. Springer; New York, NY, USA: 2015. pp. 97–129.
Hurd Y.L., Spriggs S., Alishayev J., Winkel G., Gurgov K., Kudrich C., Oprescu A.M., Salsitz E. Cannabidiol for the Reduction of Cue-Induced Craving and Anxiety in Drug-Abstinent Individuals With Heroin Use Disorder: A Double-Blind Randomized Placebo-Controlled Trial. Am. J. Psychiatry. 2019;176:911–922. doi: 10.1176/appi.ajp.2019.18101191. PubMed DOI
Turna J., Syan S.K., Frey B.N., Rush B., Costello M.J., Weiss M., MacKillop J. Cannabidiol as a Novel Candidate Alcohol Use Disorder Pharmacotherapy: A Systematic Review. Alcohol. Clin. Exp. Res. 2019;43:550–563. doi: 10.1111/acer.13964. PubMed DOI PMC
Viudez-Martínez A., García-Gutiérrez M.S., Navarron C., Morales-Calero M.I., Navarrete F., Torres-Suárez A.I., Manzanares J. Cannabidiol reduces ethanol consumption, motivation and relapse in mice. Addict. Biol. 2017;23:154–164. doi: 10.1111/adb.12495. PubMed DOI
Viudez-Martínez A., García-Gutiérrez M.S., Manzanares J. Gender differences in the effects of cannabidiol on ethanol binge drinking in mice. Addict. Biol. 2019;25:e12765. doi: 10.1111/adb.12765. PubMed DOI
Hložek T., Uttl L., Kadeřábek L., Balíková M., Lhotková E., Horsley R.R., Nováková P., Šíchová K., Štefková K., Tylš F., et al. Pharmacokinetic and behavioural profile of THC, CBD, and THC+CBD combination after pulmonary, oral, and subcutaneous administration in rats and confirmation of conversion in vivo of CBD to THC. Eur. Neuropsy-Chopharmacol. 2017;27:1223–1237. doi: 10.1016/j.euroneuro.2017.10.037. PubMed DOI
Spear L.P. Adolescent alcohol exposure: Are there separable vulnerable periods within adolescence? Physiol. Behav. 2015;148:122–130. doi: 10.1016/j.physbeh.2015.01.027. PubMed DOI PMC
Varlinskaya E.I., Truxell E., Spear L.P. Chronic intermittent ethanol exposure during adolescence: Effects on social behavior and ethanol sensitivity in adulthood. Alcohol. 2014;48:433–444. doi: 10.1016/j.alcohol.2014.01.012. PubMed DOI PMC
Turner P.V., Brabb T., Pekow C., Vasbinder M.A. Administration of Substances to Laboratory Animals: Routes of Administration and Factors to Consider. J. Am. Assoc. Lab. Anim. Sci. 2011;50:600–613. PubMed PMC
Brancato A., Plescia F., Lavanco G., Cavallaro A., Cannizzaro C. Continuous and Intermittent Alcohol Free-Choice from Pre-gestational Time to Lactation: Focus on Drinking Trajectories and Maternal Behavior. Front. Behav. Neurosci. 2016;10:31. doi: 10.3389/fnbeh.2016.00031. PubMed DOI PMC
Cryan J.F., Page M.E., Lucki I. Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology. 2005;182:335–344. doi: 10.1007/s00213-005-0093-5. PubMed DOI
Abelson K.S., Kalliokoski O., Teilmann A.C., Hau J. Applicability of Commercially Available ELISA Kits for the Quantification of Faecal Immunoreactive Corticosterone Metabolites in Mice. Vivo. 2016;30:739–744. doi: 10.21873/invivo.10989. PubMed DOI
Paxinos G., Watson C.R., Emson P.C. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. J. Neurosci. Methods. 1980;3:129–149. doi: 10.1016/0165-0270(80)90021-7. PubMed DOI
Brancato A., Castelli V., Lavanco G., Marino R.A.M., Cannizzaro C. In utero Δ9-tetrahydrocannabinol exposure confers vulnerability towards cognitive impairments and alcohol drinking in the adolescent offspring: Is there a role for neuropeptide Y? J. Psychopharmacol. 2020;34:663–679. doi: 10.1177/0269881120916135. PubMed DOI
Badowska D.M., Brzózka M.M., Chowdhury A., Malzahn D., Rossner M.J. Data calibration and reduction allows to visualize behavioural profiles of psychosocial influences in mice towards clinical domains. Eur. Arch. Psychiatry Clin. Neurosci. 2014;265:483–496. doi: 10.1007/s00406-014-0532-6. PubMed DOI
Ménard C., Quirion R., Vigneault E., Bouchard S., Ferland G., El Mestikawy S., Gaudreau P. Glutamate presynaptic vesicular transporter and postsynaptic receptor levels correlate with spatial memory status in aging rat models. Neurobiol. Aging. 2015;36:1471–1482. doi: 10.1016/j.neurobiolaging.2014.11.013. PubMed DOI
van der Staay F.J., Schuurman T., van Reenen C.G., Korte S.M. Emotional reactivity and cognitive performance in aversively motivated tasks: A comparison between four rat strains. Behav Brain Funct. 2009;15:50. doi: 10.1186/1744-9081-5-50. PubMed DOI PMC
Lees B., Meredith L., Kirkland A.E., Bryant B.E., Squeglia L.M. Effect of alcohol use on the adolescent brain and behavior. Pharmacol. Biochem. Behav. 2020;192:172906. doi: 10.1016/j.pbb.2020.172906. PubMed DOI PMC
Castro D.C., Bruchas M.R. A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell. Neuron. 2019;102:529–552. doi: 10.1016/j.neuron.2019.03.003. PubMed DOI PMC
Brancato A., Castelli V., Cavallaro A., Lavanco G., Plescia F., Cannizzaro C. Pre-conceptional and Peri-Gestational Maternal Binge Alcohol Drinking Produces Inheritance of Mood Disturbances and Alcohol Vulnerability in the Adolescent Off-spring. Front. Psychiatry. 2018;23:150. doi: 10.3389/fpsyt.2018.00150. PubMed DOI PMC
Cannizzaro C., La Barbera M., Plescia F., Cacace S., Tringali G. Ethanol modulates corticotropin releasing hormone release from the rat hypothalamus: Does acetaldehyde play a role? Alcohol. Clin. Exp. Res. 2010;34:588–593. doi: 10.1111/j.1530-0277.2009.01127.x. PubMed DOI
Plescia F., Brancato A., Marino R.A.M., Vita C., Navarra M., Cannizzaro C. Effect of Acetaldehyde Intoxication and Withdrawal on NPY Expression: Focus on Endocannabinoidergic System Involvement. Front. Psychiatry. 2014;5:138. doi: 10.3389/fpsyt.2014.00138. PubMed DOI PMC
Plescia F., Brancato A., Venniro M., Maniaci G., Cannizzaro E., Sutera F.M., De Caro V., Giannola L.I., Cannizzaro C. Acetaldehyde self-administration by a two-bottle choice paradigm: Consequences on emotional reactivity, spatial learning, and memory. Alcohol. 2015;49:139–148. doi: 10.1016/j.alcohol.2015.01.002. PubMed DOI
Cacace S., Plescia F., La Barbera M., Cannizzaro C. Evaluation of chronic alcohol self-administration by a 3-bottle choice paradigm in adult male rats. Effects on behavioural reactivity, spatial learning and reference memory. Behav. Brain Res. 2011;219:213–220. doi: 10.1016/j.bbr.2011.01.004. PubMed DOI
Foltran F., Gregori D., Franchin L., Verduci E., Giovannini M. Effect of alcohol consumption in prenatal life, childhood, and adolescence on child development. Nutr. Rev. 2011;69:642–659. doi: 10.1111/j.1753-4887.2011.00417.x. PubMed DOI
Gellner A.-K., Voelter J., Schmidt U., Beins E.C., Stein V., Philipsen A., Hurlemann R. Molecular and neurocircuitry mechanisms of social avoidance. Cell. Mol. Life Sci. 2020;78:1163–1189. doi: 10.1007/s00018-020-03649-x. PubMed DOI PMC
Thoman D.B., Sansone C., Pasupathi M. Talking about interest: Exploring the role of social interaction for regulating motivation and the interest experience. J. Happiness Stud. 2006;8:335–370. doi: 10.1007/s10902-006-9016-3. DOI
Carstensen L.L. A life-span approach to social motivation. In: Heckhausen J., Dweck C.S., editors. Motivation and Self-Regulation Across the Life Span. Cambridge University Press; Cambridge, UK: 1998. pp. 341–364.
Carlton C.N., Sullivan-Toole H., Ghane M., Richey J.A. Reward Circuitry and Motivational Deficits in Social Anxiety Disorder: What Can Be Learned From Mouse Models? Front. Neurosci. 2020;14:154. doi: 10.3389/fnins.2020.00154. PubMed DOI PMC
Holleran K.M., Wilson H.H., Fetterly T., Bluett R., Centanni S.W., Gilfarb R., Rocco L.E.R., Patel S., Winder D.G. Ketamine and MAG Lipase Inhibitor-Dependent Reversal of Evolving Depressive-Like Behavior During Forced Abstinence From Alcohol Drinking. Neuropsychopharmacology. 2016;41:2062–2071. doi: 10.1038/npp.2016.3. PubMed DOI PMC
Pang T.Y., Renoir T., Du X., Lawrence A.J., Hannan A. Depression-related behaviours displayed by female C57BL/6J mice during abstinence from chronic ethanol consumption are rescued by wheel-running. Eur. J. Neurosci. 2013;37:1803–1810. doi: 10.1111/ejn.12195. PubMed DOI
Stevenson J.R., Schroeder J.P., Nixon K., Besheer J., Crews F.T., Hodge C.W. Abstinence following alcohol drinking produces depression-like behavior and reduced hippocampal neurogenesis in mice. Neuropsychopharmacology. 2009;34:1209–1222. doi: 10.1038/npp.2008.90. PubMed DOI PMC
Jury N.J., DiBerto J.F., Kash T.L., Holmes A. Sex differences in the behavioral sequelae of chronic ethanol exposure. Alcohol. 2016;58:53–60. doi: 10.1016/j.alcohol.2016.07.007. PubMed DOI PMC
Pleil K.E., Lowery-Gionta E.G., Crowley N.A., Li C., Marcinkiewcz C.A., Rose J.H., McCall N.M., Maldonado-Devincci A.M., Morrow A.L., Jones S.R., et al. Effects of chronic ethanol exposure on neuronal function in the prefrontal cortex and extended amygdala. Neuropharmacology. 2015;99:735–749. doi: 10.1016/j.neuropharm.2015.06.017. PubMed DOI PMC
Sidhu H., Kreifeldt M., Contet C. Affective Disturbances During Withdrawal from Chronic Intermittent Ethanol Inhalation in C57BL/6J and DBA/2J Male Mice. Alcohol. Clin. Exp. Res. 2018;42:1281–1290. doi: 10.1111/acer.13760. PubMed DOI PMC
Koob G.F., Buck C.L., Cohen A., Edwards S., Park P.E., Schlosburg J.E., Schmeichel B., Vendruscolo L.F., Wade C.L., Whitfield T.W., et al. Addiction as a stress surfeit disorder. Neuropharmacology. 2013;76:370–382. doi: 10.1016/j.neuropharm.2013.05.024. PubMed DOI PMC
Molendijk M.L., de Kloet E.R. Coping with the forced swim stressor: Current state-of-the-art. Behav. Brain Res. 2019;364:1–10. doi: 10.1016/j.bbr.2019.02.005. PubMed DOI
Nishimura H., Tsuda A., Oguchi M., Ida Y., Tanaka M. Is immobility of rats in the forced swim test “behavioral despair”? Physiol. Behav. 1988;42:93–95. doi: 10.1016/0031-9384(88)90266-1. PubMed DOI
Przybycien-Szymanska M.M., Giffin-Rao Y.S., Pak T.R. Binge-pattern alcohol exposure during puberty induces sexually dimorphic changes in genes regulating the HPA axis. Am. J. Physiol. Metab. 2010;298:E320–E328. doi: 10.1152/ajpendo.00615.2009. PubMed DOI PMC
Przybycien-Szymanska M.M., Mott N.N., Pak T.R. Alcohol Dysregulates Corticotropin-Releasing-Hormone (CRH) Promoter Activity by Interfering with the Negative Glucocorticoid Response Element (nGRE) PLoS ONE. 2011;6:e26647. doi: 10.1371/journal.pone.0026647. PubMed DOI PMC
Walsh J., Friedman A.K., Sun H., A Heller E., Ku S.M., Juarez B., Burnham V.L., Mazei-Robison M., Ferguson D., Golden S., et al. Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway. Nat. Neurosci. 2013;17:27–29. doi: 10.1038/nn.3591. PubMed DOI PMC
Rodriguez-Arias M., Navarrete F., Blanco-Gandia M.C., Arenas M.C., Bartoll-Andrés A., Aguilar M.A., Rubio G., Miñarro J., Manzanares J. Social defeat in adolescent mice increases vulnerability to alcohol consumption. Addict. Biol. 2016;21:87–97. doi: 10.1111/adb.12184. PubMed DOI
Copeland B.J., Neff N.H., Hadjiconstantinou M. Enhanced dopamine uptake in the striatum following repeated restraint stress. Synapse. 2005;57:167–174. doi: 10.1002/syn.20169. PubMed DOI
Salamone J.D., Correa M. The Mysterious Motivational Functions of Mesolimbic Dopamine. Neuron. 2012;76:470–485. doi: 10.1016/j.neuron.2012.10.021. PubMed DOI PMC
Wise R.A. Rewards wanted: Molecular mechanisms of motivation. Discov. Med. 2004;4:180–186. PubMed
Hajnal A., Norgren R. Accumbens dopamine mechanisms in sucrose intake. Brain Res. 2001;904:76–84. doi: 10.1016/S0006-8993(01)02451-9. PubMed DOI
Baik J.H. Dopamine signaling in reward-related behaviors. Front. Neural Circuits. 2013;11:152. doi: 10.3389/fncir.2013.00152. PubMed DOI PMC
Melis M., Spiga S., Diana M. The Dopamine Hypothesis of Drug Addiction: Hypodopaminergic State. Int. Rev. Neurobiol. 2005;63:101–154. doi: 10.1016/s0074-7742(05)63005-x. PubMed DOI
Campioni M.R., Xu M., McGehee D.S. Stress-Induced Changes in Nucleus Accumbens Glutamate Synaptic Plasticity. J. Neurophysiol. 2009;101:3192–3198. doi: 10.1152/jn.91111.2008. PubMed DOI PMC
Scheefhals N., MacGillavry H.D. Functional organization of postsynaptic glutamate receptors. Mol. Cell. Neurosci. 2018;91:82–94. doi: 10.1016/j.mcn.2018.05.002. PubMed DOI PMC
Gass J.T., Olive M.F. Glutamatergic substrates of drug addiction and alcoholism. Biochem. Pharmacol. 2008;75:218–265. doi: 10.1016/j.bcp.2007.06.039. PubMed DOI PMC
Iii W.C.G., Haun H.L., Hazelbaker C.L., Ramachandra V.S., Becker H.C. Increased Extracellular Glutamate In the Nucleus Accumbens Promotes Excessive Ethanol Drinking in Ethanol Dependent Mice. Neuropsychopharmacology. 2013;39:707–717. doi: 10.1038/npp.2013.256. PubMed DOI PMC
Griffin W.C., Ramachandra V.S., Knackstedt L.A., Becker H.C. Repeated cycles of chronic intermittent ethanol exposure in-crease basal glutamate in the nucleus accumbens of mice without affecting glutamate transport. Front. Pharmacol. 2015;23:27. PubMed PMC
Uys J.D., McGuier N.S., Gass J.T., Griffin W.C., 3rd, Ball L.E., Mulholland P.J. Chronic intermittent ethanol exposure and with-drawal leads to adaptations in nucleus accumbens core postsynaptic density proteome and dendritic spines. Addict. Biol. 2016;21:560–574. doi: 10.1111/adb.12238. PubMed DOI PMC
Bauer J., Pedersen A., Scherbaum N., Bening J., Patschke J., Kugel H., Heindel W., Arolt V., Ohrmann P. Craving in Alcohol-Dependent Patients After Detoxification Is Related to Glutamatergic Dysfunction in the Nucleus Accumbens and the Anterior Cingulate Cortex. Neuropsychopharmacology. 2013;38:1401–1408. doi: 10.1038/npp.2013.45. PubMed DOI PMC
Kapasova Z., Szumlinski K.K. Strain differences in alcohol-induced neurochemical plasticity: A role for accumbens gluta-mate in alcohol intake. Alcohol. Clin. Exp. Res. 2008;32:617–631. doi: 10.1111/j.1530-0277.2008.00620.x. PubMed DOI
Pouysségur J., Volmat V., Lenormand P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol. 2002;64:755–763. doi: 10.1016/S0006-2952(02)01135-8. PubMed DOI
Yang L., Mao L., Tang Q., Samdani S., Liu Z., Wang J.Q. A novel Ca2+-independent signaling pathway to extracellular sig-nal-regulated protein kinase by coactivation of NMDA receptors and metabotropic glutamate receptor 5 in neurons. J. Neurosci. 2004;24:10846–10857. doi: 10.1523/JNEUROSCI.2496-04.2004. PubMed DOI PMC
Guzowski J.F., Miyashita T., Chawla M.K., Sanderson J., Maes L.I., Houston F.P., Lipa P., McNaughton B.L., Worley P.F., Barnes C.A. Recent behavioral history modifies coupling between cell activity and Arc gene transcription in hippocampal CA1 neurons. Proc. Natl. Acad. Sci. USA. 2006;103:1077–1082. doi: 10.1073/pnas.0505519103. PubMed DOI PMC
Stanyon C.A., Bernard O. LIM-kinase1. Int. J. Biochem. Cell Biol. 1999;31:389–394. doi: 10.1016/S1357-2725(98)00116-2. PubMed DOI
Steward O., Wallace C.S., Lyford G.L., Worley P.F. Synaptic Activation Causes the mRNA for the IEG Arc to Localize Selectively near Activated Postsynaptic Sites on Dendrites. Neuron. 1998;21:741–751. doi: 10.1016/S0896-6273(00)80591-7. PubMed DOI
Steward O., Worley P.F. Selective Targeting of Newly Synthesized Arc mRNA to Active Synapses Requires NMDA Receptor Activation. Neuron. 2001;30:227–240. doi: 10.1016/S0896-6273(01)00275-6. PubMed DOI
Pandey S.C., Zhang H., Ugale R., Prakash A., Xu T., Misra K. Effector Immediate-Early Gene Arc in the Amygdala Plays a Critical Role in Alcoholism. J. Neurosci. 2008;28:2589–2600. doi: 10.1523/JNEUROSCI.4752-07.2008. PubMed DOI PMC
Butts A.R., Ojelade S.A., Pronovost E.D., Seguin A., Merrill C., Rodan A.R., Rothenfluh A. Altered Actin Filament Dynamics in the Drosophila Mushroom Bodies Lead to Fast Acquisition of Alcohol Consumption Preference. J. Neurosci. 2019;39:8877–8884. doi: 10.1523/JNEUROSCI.0973-19.2019. PubMed DOI PMC
Anderson A.G., Kulkarni A., Harper M., Konopka G. Single-Cell Analysis of Foxp1-Driven Mechanisms Essential for Striatal Development. Cell Rep. 2020;30:3051–3066. doi: 10.1016/j.celrep.2020.02.030. PubMed DOI PMC
Rocca D.L., Wilkinson K.A., Henley J.M. SUMOylation of FOXP1 regulates transcriptional repression via CtBP1 to drive dendritic morphogenesis. Sci. Rep. 2017;7:877. doi: 10.1038/s41598-017-00707-6. PubMed DOI PMC
Khandelwal N., Cavalier S., Rybalchenko V., Kulkarni A., Anderson A.G., Konopka G., Gibson J.R. FOXP1 negatively regulates intrinsic excitability in D2 striatal projection neurons by promoting inwardly rectifying and leak potassium currents. Mol. Psychiatry. 2021:1–14. doi: 10.1038/s41380-020-00995-x. PubMed DOI PMC
Tang B., Becanovic K., Desplats P., Spencer B., Hill A.M., Connolly C., Masliah E., Leavitt B., Thomas E.A. Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS: Implications for transcriptional dysregulation in Huntington disease. Hum. Mol. Genet. 2012;21:3097–3111. doi: 10.1093/hmg/dds132. PubMed DOI PMC
Vanderschuren L.J., Niesink R.J., Van Ree J.M. The neurobiology of social play behavior in rats. Neurosci. Biobehav. Rev. 1997;21:309–326. doi: 10.1016/S0149-7634(96)00020-6. PubMed DOI
Navarrete F., Aracil-Fernández A., Manzanares J. Cannabidiol regulates behavioural alterations and gene expression changes induced by spontaneous cannabinoid withdrawal. Br. J. Pharmacol. 2018;175:2676–2688. doi: 10.1111/bph.14226. PubMed DOI PMC
Stark T., Ruda-Kucerova J., Iannotti F.A., D’Addario C., Di Marco R., Pekarik V., Drazanova E., Piscitelli F., Bari M., Ba-binska Z., et al. Peripubertal cannabidiol treatment rescues behavioral and neurochemical ab-normalities in the MAM model of schizophrenia. Neuropharmacology. 2019;146:212–221. doi: 10.1016/j.neuropharm.2018.11.035. PubMed DOI
Fogaça M.V., Campos A.C., Coelho L.D., Duman R.S., Guimarães F.S. The anxiolytic effects of cannabidiol in chronically stressed mice are mediated by the endocannabinoid system: Role of neurogenesis and dendritic remodeling. Neuropharmacology. 2018;135:22–33. doi: 10.1016/j.neuropharm.2018.03.001. PubMed DOI
Sartim A., Guimarães F., Joca S. Antidepressant-like effect of cannabidiol injection into the ventral medial prefrontal cortex—Possible involvement of 5-HT1A and CB1 receptors. Behav. Brain Res. 2016;303:218–227. doi: 10.1016/j.bbr.2016.01.033. PubMed DOI
El-Alfy A.T., Ivey K., Robinson K., Ahmed S., Radwan M., Slade D., Khan I., ElSohly M., Ross S. Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Pharmacol. Biochem. Behav. 2010;95:434–442. doi: 10.1016/j.pbb.2010.03.004. PubMed DOI PMC
Abame M.A., He Y., Wu S., Xie Z., Zhang J., Gong X., Wu C., Shen J. Chronic administration of synthetic cannabidiol induces antidepressant effects involving modulation of serotonin and noradrenaline levels in the hippocampus. Neurosci. Lett. 2020;744:135594. doi: 10.1016/j.neulet.2020.135594. PubMed DOI
Réus G.Z., Stringari R.B., Ribeiro K.F., Luft T., Abelaira H.M., Fries G.R., Aguiar B.W., Kapczinski F., Hallak J.E., Zuardi A.W., et al. Administration of cannabidiol and imipramine induces antidepressant-like effects in the forced swimming test and increases brain-derived neurotrophic factor levels in the rat amygdala. Acta Neuropsychiatr. 2011;23:241–248. doi: 10.1111/j.1601-5215.2011.00579.x. PubMed DOI
Melas P., Scherma M., Fratta W., Cifani C., Fadda P. Cannabidiol as a Potential Treatment for Anxiety and Mood Disorders: Molecular Targets and Epigenetic Insights from Preclinical Research. Int. J. Mol. Sci. 2021;22:1863. doi: 10.3390/ijms22041863. PubMed DOI PMC
Viudez-Martínez A., García-Gutiérrez M.S., Manzanares J. Cannabidiol regulates the expression of hypothala-mus-pituitary-adrenal axis-related genes in response to acute restraint stress. J. Psychopharmacol. 2018;32:1379–1384. doi: 10.1177/0269881118805495. PubMed DOI
Fusar-Poli P., Allen P., Bhattacharyya S., Crippa J.A., Mechelli A., Borgwardt S., Martin-Santos R., Seal M.L., O’Carrol C., Atakan Z., et al. Modulation of effective connectivity during emotional processing by Delta 9-tetrahydrocannabinol and cannabidiol. Int. J. Neuropsychopharmacol. 2010;13:421–432. doi: 10.1017/S1461145709990617. PubMed DOI
Gunasekera B., Diederen K., Bhattacharyya S. Cannabinoids, reward processing, and psychosis. Psychopharmacology. 2021:1–21. doi: 10.1007/s00213-021-05801-2. PubMed DOI PMC
Renard J., Norris C., Rushlow W., Laviolette S.R. Neuronal and molecular effects of cannabidiol on the mesolimbic do-pamine system: Implications for novel schizophrenia treatments. Neurosci. Biobehav. Rev. 2017;75:157–165. doi: 10.1016/j.neubiorev.2017.02.006. PubMed DOI
Di Bartolomeo M., Stark T., Maurel O.M., Iannotti F.A., Kuchar M., Ruda-Kucerova J., Piscitelli F., Laudani S., Pekarik V., Sa-lomone S., et al. Crosstalk between the transcriptional regulation of dopamine D2 and cannabinoid CB1 receptors in schizo-phrenia: Analyses in patients and in perinatal Δ9-tetrahydrocannabinol-exposed rats. Pharmacol. Res. 2021;164:105357. doi: 10.1016/j.phrs.2020.105357. PubMed DOI
Ren Y., Whittard J., Higuera-Matas A., Morris C.V., Hurd Y.L. Cannabidiol, a nonpsychotropic component of cannabis, in-hibits cue-induced heroin seeking and normalizes discrete mesolimbic neuronal disturbances. J. Neurosci. 2009;29:14764–14769. doi: 10.1523/JNEUROSCI.4291-09.2009. PubMed DOI PMC
Campos A.C., Fogaça M.V., Scarante F.F., Joca S., Sales A., Gomes F., Sonego A.B., Rodrigues N.S., Galve-Roperh I., Guimarães F.S. Plastic and Neuroprotective Mechanisms Involved in the Therapeutic Effects of Cannabidiol in Psychiatric Disorders. Front. Pharmacol. 2017;8:269. doi: 10.3389/fphar.2017.00269. PubMed DOI PMC
Lemos J., Wanat M., Smith J., Reyes B.A.S., Hollon N.G., Van Bockstaele E.J., Chavkin C., Phillips P. Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive. Nature. 2012;490:402–406. doi: 10.1038/nature11436. PubMed DOI PMC
The Effects of Peripubertal THC Exposure in Neurodevelopmental Rat Models of Psychopathology