Binge-like Alcohol Exposure in Adolescence: Behavioural, Neuroendocrine and Molecular Evidence of Abnormal Neuroplasticity… and Return

. 2021 Sep 04 ; 9 (9) : . [epub] 20210904

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34572345

Grantová podpora
EA 1642 ERAB: The European Foundation for Alcohol Research
post doctoral fellowship Fondazione Zardi Gori
Piano triennale per la Ricerca - Linea Intervento 2, Bando" CHANCE"- Linea Intervento 1 and Starting Grant 2020 Università di Catania

Odkazy

PubMed 34572345
PubMed Central PMC8470908
DOI 10.3390/biomedicines9091161
PII: biomedicines9091161
Knihovny.cz E-zdroje

Binge alcohol consumption among adolescents affects the developing neural networks underpinning reward and stress processing in the nucleus accumbens (NAc). This study explores in rats the long-lasting effects of early intermittent exposure to intoxicating alcohol levels at adolescence, on: (1) the response to natural positive stimuli and inescapable stress; (2) stress-axis functionality; and (3) dopaminergic and glutamatergic neuroadaptation in the NAc. We also assess the potential effects of the non-intoxicating phytocannabinoid cannabidiol, to counteract (or reverse) the development of detrimental consequences of binge-like alcohol exposure. Our results show that adolescent binge-like alcohol exposure alters the sensitivity to positive stimuli, exerts social and novelty-triggered anxiety-like behaviour, and passive stress-coping during early and prolonged withdrawal. In addition, serum corticosterone and hypothalamic and NAc corticotropin-releasing hormone levels progressively increase during withdrawal. Besides, NAc tyrosine hydroxylase levels increase at late withdrawal, while the expression of dopamine transporter, D1 and D2 receptors is dynamically altered during binge and withdrawal. Furthermore, the expression of markers of excitatory postsynaptic signaling-PSD95; Homer-1 and -2 and the activity-regulated spine-morphing proteins Arc, LIM Kinase 1 and FOXP1-increase at late withdrawal. Notably, subchronic cannabidiol, during withdrawal, attenuates social- and novelty-induced aversion and passive stress-coping and rectifies the hyper-responsive stress axis and NAc dopamine and glutamate-related neuroplasticity. Overall, the exposure to binge-like alcohol levels in adolescent rats makes the NAc, during withdrawal, a locus minoris resistentiae as a result of perturbations in neuroplasticity and in stress-axis homeostasis. Cannabidiol holds a promising potential for increasing behavioural, neuroendocrine and molecular resilience against binge-like alcohol harmful effects.

Zobrazit více v PubMed

ESPAD Group . ESPAD Report 2019: Results from the European School Survey Project on Alcohol and Other Drugs. EMCDDA Joint Publications, Publications Office of the European Union; Luxembourg: 2020.

Shnitko T.A., Spear L.P., Robinson N.L. Adolescent binge-like alcohol alters sensitivity to acute alcohol effects on dopamine release in the nucleus accumbens of adult rats. Psychopharmacology. 2016;233:361–371. doi: 10.1007/s00213-015-4106-8. PubMed DOI PMC

Varlinskaya E.I., Spear L.P., Spear N.E. Acute effects of ethanol on behavior of adolescent rats: Role of social context. Alcohol. Clin. Exp. Res. 2001;25:377–385. doi: 10.1111/j.1530-0277.2001.tb02224.x. PubMed DOI

Spear L.P., Varlinskaya E.I. Adolescence. Alcohol sensitivity, tolerance, and intake. Recent Dev. Alcohol. 2005;17:143–159. PubMed

Patrick M.E., Schulenberg J.E., Martz M.E., Maggs J.L., O’Malley P.M., Johnston L.D. Extreme binge drinking among 12th-grade students in the United States: Prevalence and predictors. JAMA Pediatr. 2013;167:1019–1025. doi: 10.1001/jamapediatrics.2013.2392. Erratum in 2013, 167, 1172. PubMed DOI PMC

National Institute on Alcohol Abuse and Alcoholism . NIAAA Council Approves Definition of Binge Drinking, NIAAA Newsletter, No. 3. National Institute on Alcohol Abuse and Alcoholism; Bethesda, MD, USA: 2004.

Koob G.F., Weiss F. Neuropharmacology of Cocaine and Ethanol Dependence. Recent Dev. Alcohol. 1992;10:201–233. doi: 10.1007/978-1-4899-1648-8_11. PubMed DOI

Robbins T.W., Everitt B.J. Limbic-striatal memory systems and drug addiction. Neurobiol. Learn. Mem. 2002;78:625–636. doi: 10.1006/nlme.2002.4103. PubMed DOI

Brodie M.S., Shefner S.A., Dunwiddie T.V. Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro. Brain Res. 1990;508:65–69. doi: 10.1016/0006-8993(90)91118-Z. PubMed DOI

Diana M., Pistis M., Muntoni A., Rossetti Z.L., Gessa G. Marked decrease of A10 dopamine neuronal firing during ethanol withdrawal syndrome in rats. Eur. J. Pharmacol. 1992;221:403–404. doi: 10.1016/0014-2999(92)90734-L. PubMed DOI

Mereu G., Fadda F., Gessa G.L. Ethanol stimulates the firing rate of nigral dopaminergic neurons in unanesthetized rats. Brain Res. 1984;292:63–69. doi: 10.1016/0006-8993(84)90890-4. PubMed DOI

Gonzales R.A., Weiss F. Suppression of Ethanol-Reinforced Behavior by Naltrexone Is Associated with Attenuation of the Ethanol-Induced Increase in Dialysate Dopamine Levels in the Nucleus Accumbens. J. Neurosci. 1998;18:10663–10671. doi: 10.1523/JNEUROSCI.18-24-10663.1998. PubMed DOI PMC

Brancato A., Plescia F., Marino R.A.M., Maniaci G., Navarra M., Cannizzaro C. Involvement of Dopamine D2 Receptors in Addictive-Like Behaviour for Acetaldehyde. PLoS ONE. 2014;9:e99454. doi: 10.1371/journal.pone.0099454. PubMed DOI PMC

Plescia F., Brancato A., Marino R.A.M., Cannizzaro C. Acetaldehyde as a drug of abuse: Insight into AM281 administration on operant-conflict paradigm in rats. Front. Behav. Neurosci. 2013;7:64. doi: 10.3389/fnbeh.2013.00064. PubMed DOI PMC

Spiga S., Talani G., Mulas G., Licheri V., Fois G.R., Muggironi G., Masala N., Cannizzaro C., Biggio G., Sanna E., et al. Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats. Proc. Natl. Acad. Sci. USA. 2014;111:E3745–E3754. doi: 10.1073/pnas.1406768111. PubMed DOI PMC

Cannizzaro C., Talani G., Brancato A., Mulas G., Spiga S., De Luca M.A., Sanna A., Marino R.A.M., Biggio G., Sanna E., et al. Dopamine Restores Limbic Memory Loss, Dendritic Spine Structure, and NMDAR-Dependent LTD in the Nucleus Ac-cumbens of Alcohol-Withdrawn Rats. J. Neurosci. 2019;39:929–943. doi: 10.1523/JNEUROSCI.1377-18.2018. PubMed DOI PMC

Dani J.A., Zhou F.-M. Selective Dopamine Filter of Glutamate Striatal Afferents. Neuron. 2004;42:522–524. doi: 10.1016/j.neuron.2004.05.008. PubMed DOI

Kauer J., Malenka R.C. Synaptic plasticity and addiction. Nat. Rev. Neurosci. 2007;8:844–858. doi: 10.1038/nrn2234. PubMed DOI

Thorpe H.H.A., Hamidullah S., Jenkins B.W., Khokhar J.Y. Adolescent neurodevelopment and substance use: Receptor ex-pression and behavioral consequences. Pharmacol Ther. 2020;206:107431. doi: 10.1016/j.pharmthera.2019.107431. PubMed DOI

Beckley J.T., Laguesse S., Phamluong K., Morisot N., Wegner S.A., Ron D. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons. J. Neurosci. 2016;36:701–713. doi: 10.1523/JNEUROSCI.2254-15.2016. PubMed DOI PMC

Crews F.T., Robinson D.L., Chandler L.J., Ehlers C.L., Mulholland P.J., Pandey S.C., Rodd Z.A., Spear L.P., Swartzwelder H.S., Vetreno R.P. Mechanisms of Persistent Neurobiological Changes Following Adolescent Alcohol Exposure: NADIA Con-sortium Findings. Alcohol. Clin. Exp. Res. 2019;43:1806–1822. doi: 10.1111/acer.14154. PubMed DOI PMC

Ernst M., Fudge J.L. A developmental neurobiological model of motivated behavior: Anatomy, connectivity and ontogeny of the triadic nodes. Neurosci. Biobehav. Rev. 2009;33:367–382. doi: 10.1016/j.neubiorev.2008.10.009. PubMed DOI PMC

Chartier K.G., Hesselbrock M.N., Hesselbrock V.M. Alcohol problems in young adults transitioning from adolescence to adulthood: The association with race and gender. Addict. Behav. 2011;36:167–174. doi: 10.1016/j.addbeh.2010.10.007. PubMed DOI PMC

Guilarte T.R., McGlothan J.L. Hippocampal NMDA receptor mRNA undergoes subunit specific changes during develop-mental lead exposure. Brain Res. 1998;790:98–107. doi: 10.1016/S0006-8993(98)00054-7. PubMed DOI

Andersen S., Teicher M. Sex differences in dopamine receptors and their relevance to ADHD. Neurosci. Biobehav. Rev. 2000;24:137–141. doi: 10.1016/S0149-7634(99)00044-5. PubMed DOI

McCutcheon J.E., Marinelli M. Age matters. Eur. J. Neurosci. 2009;29:997–1014. doi: 10.1111/j.1460-9568.2009.06648.x. PubMed DOI PMC

Jucaite A., Forssberg H., Karlsson P., Halldin C., Farde L. Age-related reduction in dopamine D1 receptors in the human brain: From late childhood to adulthood, a positron emission tomography study. Neuroscience. 2010;167:104–110. doi: 10.1016/j.neuroscience.2010.01.034. PubMed DOI

McCutcheon J.E., Conrad K.L., Carr S.B., Ford K.A., McGehee D.S., Marinelli M. Dopamine neurons in the ventral tegmental area fire faster in adolescent rats than in adults. J. Neurophysiol. 2012;108:1620–1630. doi: 10.1152/jn.00077.2012. PubMed DOI PMC

Spear L. The adolescent brain and age-related behavioral manifestations. Neurosci. Biobehav. Rev. 2000;24:417–463. doi: 10.1016/S0149-7634(00)00014-2. PubMed DOI

Tarazi F.I., Tomasini E.C., Baldessarini R.J. Postnatal development of dopamine and serotonin transporters in rat cau-date-putamen and nucleus accumbens septi. Neurosci. Lett. 1998;254:21–24. doi: 10.1016/S0304-3940(98)00644-2. PubMed DOI

Blakemore S.-J. Development of the Social Brain in Adolescence. J. R. Soc. Med. 2012;105:111–116. doi: 10.1258/jrsm.2011.110221. PubMed DOI PMC

Vilpoux C., Warnault V., Pierrefiche O., Daoust M., Naassila M. Ethanol-sensitive brain regions in rat and mouse: A carto-graphic review, using immediate early gene expression. Alcohol. Clin. Exp. Res. 2009;33:945–969. doi: 10.1111/j.1530-0277.2009.00916.x. PubMed DOI

Varlinskaya E.I., Spear L.P. Social interactions in adolescent and adult Sprague–Dawley rats: Impact of social deprivation and test context familiarity. Behav. Brain Res. 2008;188:398–405. doi: 10.1016/j.bbr.2007.11.024. PubMed DOI PMC

Pattwell S.S., Duhoux S., Hartley C.A., Johnson D.C., Jing D., Elliott M.D., Ruberry E.J., Powers A., Mehta N., Yang R.R., et al. Altered fear learning across development in both mouse and human. Proc. Natl. Acad. Sci. USA. 2012;109:16318–16323. doi: 10.1073/pnas.1206834109. PubMed DOI PMC

Martin C.S., Lynch K.G., Pollock N.K., Clark D.B. Gender differences and similarities in the personality correlates of adolescent alcohol problems. Psychol. Addict. Behav. 2000;14:121–133. doi: 10.1037/0893-164X.14.2.121. PubMed DOI

Spear L.P. Adolescent neurobehavioral characteristics, alcohol sensitivities, and intake: Setting the stage for alcohol use disorders? Child. Dev. Perspect. 2011;5:231–238. doi: 10.1111/j.1750-8606.2011.00182.x. PubMed DOI PMC

File S.E., Seth P. A review of 25 years of the social interaction test. Eur. J. Pharmacol. 2003;463:35–53. doi: 10.1016/S0014-2999(03)01273-1. PubMed DOI

Morales M., Varlinskaya E.I., Spear L.P. Anxiolytic effects of the GABA(A) receptor partial agonist, L-838,417: Impact of age, test context familiarity, and stress. Pharmacol. Biochem. Behav. 2013;109:31–37. doi: 10.1016/j.pbb.2013.05.004. PubMed DOI PMC

Varlinskaya E.I., Doremus-Fitzwater T.L., Spear L.P. Repeated restraint stress alters sensitivity to the social consequences of ethanol in adolescent and adult rats. Pharmacol. Biochem. Behav. 2010;96:228–235. doi: 10.1016/j.pbb.2010.05.011. PubMed DOI PMC

Di Liberto V., Frinchi M., Verdi V., Vitale A., Plescia F., Cannizzaro C., Massenti M.F., Belluardo N., Mudò G. Anxiolytic effects of muscarinic acetylcholine receptors agonist oxotremorine in chronically stressed rats and related changes in BDNF and FGF2 levels in the hippocampus and prefrontal cortex. Psychopharmacology. 2016;234:559–573. doi: 10.1007/s00213-016-4498-0. PubMed DOI

Holleran K.M., Winder D.G. Preclinical voluntary drinking models for alcohol abstinence-induced affective disturbances in mice. Genes Brain Behav. 2016;16:8–14. doi: 10.1111/gbb.12338. PubMed DOI

Micale V., Di Marzo V., Sulcova A., Wotjak C.T., Drago F. Endocannabinoid system and mood disorders: Priming a target for new therapies. Pharmacol. Ther. 2013;138:18–37. doi: 10.1016/j.pharmthera.2012.12.002. PubMed DOI

Micale V., Tabiova K., Kucerova J., Drago F. Role of the endocannabinoid system in depression: From preclinical to clinical evidence. In: Campolongo P., Fattore L., editors. Cannabinoid Modulation of Emotion, Memory, and Motivation. Springer; New York, NY, USA: 2015. pp. 97–129.

Hurd Y.L., Spriggs S., Alishayev J., Winkel G., Gurgov K., Kudrich C., Oprescu A.M., Salsitz E. Cannabidiol for the Reduction of Cue-Induced Craving and Anxiety in Drug-Abstinent Individuals With Heroin Use Disorder: A Double-Blind Randomized Placebo-Controlled Trial. Am. J. Psychiatry. 2019;176:911–922. doi: 10.1176/appi.ajp.2019.18101191. PubMed DOI

Turna J., Syan S.K., Frey B.N., Rush B., Costello M.J., Weiss M., MacKillop J. Cannabidiol as a Novel Candidate Alcohol Use Disorder Pharmacotherapy: A Systematic Review. Alcohol. Clin. Exp. Res. 2019;43:550–563. doi: 10.1111/acer.13964. PubMed DOI PMC

Viudez-Martínez A., García-Gutiérrez M.S., Navarron C., Morales-Calero M.I., Navarrete F., Torres-Suárez A.I., Manzanares J. Cannabidiol reduces ethanol consumption, motivation and relapse in mice. Addict. Biol. 2017;23:154–164. doi: 10.1111/adb.12495. PubMed DOI

Viudez-Martínez A., García-Gutiérrez M.S., Manzanares J. Gender differences in the effects of cannabidiol on ethanol binge drinking in mice. Addict. Biol. 2019;25:e12765. doi: 10.1111/adb.12765. PubMed DOI

Hložek T., Uttl L., Kadeřábek L., Balíková M., Lhotková E., Horsley R.R., Nováková P., Šíchová K., Štefková K., Tylš F., et al. Pharmacokinetic and behavioural profile of THC, CBD, and THC+CBD combination after pulmonary, oral, and subcutaneous administration in rats and confirmation of conversion in vivo of CBD to THC. Eur. Neuropsy-Chopharmacol. 2017;27:1223–1237. doi: 10.1016/j.euroneuro.2017.10.037. PubMed DOI

Spear L.P. Adolescent alcohol exposure: Are there separable vulnerable periods within adolescence? Physiol. Behav. 2015;148:122–130. doi: 10.1016/j.physbeh.2015.01.027. PubMed DOI PMC

Varlinskaya E.I., Truxell E., Spear L.P. Chronic intermittent ethanol exposure during adolescence: Effects on social behavior and ethanol sensitivity in adulthood. Alcohol. 2014;48:433–444. doi: 10.1016/j.alcohol.2014.01.012. PubMed DOI PMC

Turner P.V., Brabb T., Pekow C., Vasbinder M.A. Administration of Substances to Laboratory Animals: Routes of Administration and Factors to Consider. J. Am. Assoc. Lab. Anim. Sci. 2011;50:600–613. PubMed PMC

Brancato A., Plescia F., Lavanco G., Cavallaro A., Cannizzaro C. Continuous and Intermittent Alcohol Free-Choice from Pre-gestational Time to Lactation: Focus on Drinking Trajectories and Maternal Behavior. Front. Behav. Neurosci. 2016;10:31. doi: 10.3389/fnbeh.2016.00031. PubMed DOI PMC

Cryan J.F., Page M.E., Lucki I. Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology. 2005;182:335–344. doi: 10.1007/s00213-005-0093-5. PubMed DOI

Abelson K.S., Kalliokoski O., Teilmann A.C., Hau J. Applicability of Commercially Available ELISA Kits for the Quantification of Faecal Immunoreactive Corticosterone Metabolites in Mice. Vivo. 2016;30:739–744. doi: 10.21873/invivo.10989. PubMed DOI

Paxinos G., Watson C.R., Emson P.C. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. J. Neurosci. Methods. 1980;3:129–149. doi: 10.1016/0165-0270(80)90021-7. PubMed DOI

Brancato A., Castelli V., Lavanco G., Marino R.A.M., Cannizzaro C. In utero Δ9-tetrahydrocannabinol exposure confers vulnerability towards cognitive impairments and alcohol drinking in the adolescent offspring: Is there a role for neuropeptide Y? J. Psychopharmacol. 2020;34:663–679. doi: 10.1177/0269881120916135. PubMed DOI

Badowska D.M., Brzózka M.M., Chowdhury A., Malzahn D., Rossner M.J. Data calibration and reduction allows to visualize behavioural profiles of psychosocial influences in mice towards clinical domains. Eur. Arch. Psychiatry Clin. Neurosci. 2014;265:483–496. doi: 10.1007/s00406-014-0532-6. PubMed DOI

Ménard C., Quirion R., Vigneault E., Bouchard S., Ferland G., El Mestikawy S., Gaudreau P. Glutamate presynaptic vesicular transporter and postsynaptic receptor levels correlate with spatial memory status in aging rat models. Neurobiol. Aging. 2015;36:1471–1482. doi: 10.1016/j.neurobiolaging.2014.11.013. PubMed DOI

van der Staay F.J., Schuurman T., van Reenen C.G., Korte S.M. Emotional reactivity and cognitive performance in aversively motivated tasks: A comparison between four rat strains. Behav Brain Funct. 2009;15:50. doi: 10.1186/1744-9081-5-50. PubMed DOI PMC

Lees B., Meredith L., Kirkland A.E., Bryant B.E., Squeglia L.M. Effect of alcohol use on the adolescent brain and behavior. Pharmacol. Biochem. Behav. 2020;192:172906. doi: 10.1016/j.pbb.2020.172906. PubMed DOI PMC

Castro D.C., Bruchas M.R. A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell. Neuron. 2019;102:529–552. doi: 10.1016/j.neuron.2019.03.003. PubMed DOI PMC

Brancato A., Castelli V., Cavallaro A., Lavanco G., Plescia F., Cannizzaro C. Pre-conceptional and Peri-Gestational Maternal Binge Alcohol Drinking Produces Inheritance of Mood Disturbances and Alcohol Vulnerability in the Adolescent Off-spring. Front. Psychiatry. 2018;23:150. doi: 10.3389/fpsyt.2018.00150. PubMed DOI PMC

Cannizzaro C., La Barbera M., Plescia F., Cacace S., Tringali G. Ethanol modulates corticotropin releasing hormone release from the rat hypothalamus: Does acetaldehyde play a role? Alcohol. Clin. Exp. Res. 2010;34:588–593. doi: 10.1111/j.1530-0277.2009.01127.x. PubMed DOI

Plescia F., Brancato A., Marino R.A.M., Vita C., Navarra M., Cannizzaro C. Effect of Acetaldehyde Intoxication and Withdrawal on NPY Expression: Focus on Endocannabinoidergic System Involvement. Front. Psychiatry. 2014;5:138. doi: 10.3389/fpsyt.2014.00138. PubMed DOI PMC

Plescia F., Brancato A., Venniro M., Maniaci G., Cannizzaro E., Sutera F.M., De Caro V., Giannola L.I., Cannizzaro C. Acetaldehyde self-administration by a two-bottle choice paradigm: Consequences on emotional reactivity, spatial learning, and memory. Alcohol. 2015;49:139–148. doi: 10.1016/j.alcohol.2015.01.002. PubMed DOI

Cacace S., Plescia F., La Barbera M., Cannizzaro C. Evaluation of chronic alcohol self-administration by a 3-bottle choice paradigm in adult male rats. Effects on behavioural reactivity, spatial learning and reference memory. Behav. Brain Res. 2011;219:213–220. doi: 10.1016/j.bbr.2011.01.004. PubMed DOI

Foltran F., Gregori D., Franchin L., Verduci E., Giovannini M. Effect of alcohol consumption in prenatal life, childhood, and adolescence on child development. Nutr. Rev. 2011;69:642–659. doi: 10.1111/j.1753-4887.2011.00417.x. PubMed DOI

Gellner A.-K., Voelter J., Schmidt U., Beins E.C., Stein V., Philipsen A., Hurlemann R. Molecular and neurocircuitry mechanisms of social avoidance. Cell. Mol. Life Sci. 2020;78:1163–1189. doi: 10.1007/s00018-020-03649-x. PubMed DOI PMC

Thoman D.B., Sansone C., Pasupathi M. Talking about interest: Exploring the role of social interaction for regulating motivation and the interest experience. J. Happiness Stud. 2006;8:335–370. doi: 10.1007/s10902-006-9016-3. DOI

Carstensen L.L. A life-span approach to social motivation. In: Heckhausen J., Dweck C.S., editors. Motivation and Self-Regulation Across the Life Span. Cambridge University Press; Cambridge, UK: 1998. pp. 341–364.

Carlton C.N., Sullivan-Toole H., Ghane M., Richey J.A. Reward Circuitry and Motivational Deficits in Social Anxiety Disorder: What Can Be Learned From Mouse Models? Front. Neurosci. 2020;14:154. doi: 10.3389/fnins.2020.00154. PubMed DOI PMC

Holleran K.M., Wilson H.H., Fetterly T., Bluett R., Centanni S.W., Gilfarb R., Rocco L.E.R., Patel S., Winder D.G. Ketamine and MAG Lipase Inhibitor-Dependent Reversal of Evolving Depressive-Like Behavior During Forced Abstinence From Alcohol Drinking. Neuropsychopharmacology. 2016;41:2062–2071. doi: 10.1038/npp.2016.3. PubMed DOI PMC

Pang T.Y., Renoir T., Du X., Lawrence A.J., Hannan A. Depression-related behaviours displayed by female C57BL/6J mice during abstinence from chronic ethanol consumption are rescued by wheel-running. Eur. J. Neurosci. 2013;37:1803–1810. doi: 10.1111/ejn.12195. PubMed DOI

Stevenson J.R., Schroeder J.P., Nixon K., Besheer J., Crews F.T., Hodge C.W. Abstinence following alcohol drinking produces depression-like behavior and reduced hippocampal neurogenesis in mice. Neuropsychopharmacology. 2009;34:1209–1222. doi: 10.1038/npp.2008.90. PubMed DOI PMC

Jury N.J., DiBerto J.F., Kash T.L., Holmes A. Sex differences in the behavioral sequelae of chronic ethanol exposure. Alcohol. 2016;58:53–60. doi: 10.1016/j.alcohol.2016.07.007. PubMed DOI PMC

Pleil K.E., Lowery-Gionta E.G., Crowley N.A., Li C., Marcinkiewcz C.A., Rose J.H., McCall N.M., Maldonado-Devincci A.M., Morrow A.L., Jones S.R., et al. Effects of chronic ethanol exposure on neuronal function in the prefrontal cortex and extended amygdala. Neuropharmacology. 2015;99:735–749. doi: 10.1016/j.neuropharm.2015.06.017. PubMed DOI PMC

Sidhu H., Kreifeldt M., Contet C. Affective Disturbances During Withdrawal from Chronic Intermittent Ethanol Inhalation in C57BL/6J and DBA/2J Male Mice. Alcohol. Clin. Exp. Res. 2018;42:1281–1290. doi: 10.1111/acer.13760. PubMed DOI PMC

Koob G.F., Buck C.L., Cohen A., Edwards S., Park P.E., Schlosburg J.E., Schmeichel B., Vendruscolo L.F., Wade C.L., Whitfield T.W., et al. Addiction as a stress surfeit disorder. Neuropharmacology. 2013;76:370–382. doi: 10.1016/j.neuropharm.2013.05.024. PubMed DOI PMC

Molendijk M.L., de Kloet E.R. Coping with the forced swim stressor: Current state-of-the-art. Behav. Brain Res. 2019;364:1–10. doi: 10.1016/j.bbr.2019.02.005. PubMed DOI

Nishimura H., Tsuda A., Oguchi M., Ida Y., Tanaka M. Is immobility of rats in the forced swim test “behavioral despair”? Physiol. Behav. 1988;42:93–95. doi: 10.1016/0031-9384(88)90266-1. PubMed DOI

Przybycien-Szymanska M.M., Giffin-Rao Y.S., Pak T.R. Binge-pattern alcohol exposure during puberty induces sexually dimorphic changes in genes regulating the HPA axis. Am. J. Physiol. Metab. 2010;298:E320–E328. doi: 10.1152/ajpendo.00615.2009. PubMed DOI PMC

Przybycien-Szymanska M.M., Mott N.N., Pak T.R. Alcohol Dysregulates Corticotropin-Releasing-Hormone (CRH) Promoter Activity by Interfering with the Negative Glucocorticoid Response Element (nGRE) PLoS ONE. 2011;6:e26647. doi: 10.1371/journal.pone.0026647. PubMed DOI PMC

Walsh J., Friedman A.K., Sun H., A Heller E., Ku S.M., Juarez B., Burnham V.L., Mazei-Robison M., Ferguson D., Golden S., et al. Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway. Nat. Neurosci. 2013;17:27–29. doi: 10.1038/nn.3591. PubMed DOI PMC

Rodriguez-Arias M., Navarrete F., Blanco-Gandia M.C., Arenas M.C., Bartoll-Andrés A., Aguilar M.A., Rubio G., Miñarro J., Manzanares J. Social defeat in adolescent mice increases vulnerability to alcohol consumption. Addict. Biol. 2016;21:87–97. doi: 10.1111/adb.12184. PubMed DOI

Copeland B.J., Neff N.H., Hadjiconstantinou M. Enhanced dopamine uptake in the striatum following repeated restraint stress. Synapse. 2005;57:167–174. doi: 10.1002/syn.20169. PubMed DOI

Salamone J.D., Correa M. The Mysterious Motivational Functions of Mesolimbic Dopamine. Neuron. 2012;76:470–485. doi: 10.1016/j.neuron.2012.10.021. PubMed DOI PMC

Wise R.A. Rewards wanted: Molecular mechanisms of motivation. Discov. Med. 2004;4:180–186. PubMed

Hajnal A., Norgren R. Accumbens dopamine mechanisms in sucrose intake. Brain Res. 2001;904:76–84. doi: 10.1016/S0006-8993(01)02451-9. PubMed DOI

Baik J.H. Dopamine signaling in reward-related behaviors. Front. Neural Circuits. 2013;11:152. doi: 10.3389/fncir.2013.00152. PubMed DOI PMC

Melis M., Spiga S., Diana M. The Dopamine Hypothesis of Drug Addiction: Hypodopaminergic State. Int. Rev. Neurobiol. 2005;63:101–154. doi: 10.1016/s0074-7742(05)63005-x. PubMed DOI

Campioni M.R., Xu M., McGehee D.S. Stress-Induced Changes in Nucleus Accumbens Glutamate Synaptic Plasticity. J. Neurophysiol. 2009;101:3192–3198. doi: 10.1152/jn.91111.2008. PubMed DOI PMC

Scheefhals N., MacGillavry H.D. Functional organization of postsynaptic glutamate receptors. Mol. Cell. Neurosci. 2018;91:82–94. doi: 10.1016/j.mcn.2018.05.002. PubMed DOI PMC

Gass J.T., Olive M.F. Glutamatergic substrates of drug addiction and alcoholism. Biochem. Pharmacol. 2008;75:218–265. doi: 10.1016/j.bcp.2007.06.039. PubMed DOI PMC

Iii W.C.G., Haun H.L., Hazelbaker C.L., Ramachandra V.S., Becker H.C. Increased Extracellular Glutamate In the Nucleus Accumbens Promotes Excessive Ethanol Drinking in Ethanol Dependent Mice. Neuropsychopharmacology. 2013;39:707–717. doi: 10.1038/npp.2013.256. PubMed DOI PMC

Griffin W.C., Ramachandra V.S., Knackstedt L.A., Becker H.C. Repeated cycles of chronic intermittent ethanol exposure in-crease basal glutamate in the nucleus accumbens of mice without affecting glutamate transport. Front. Pharmacol. 2015;23:27. PubMed PMC

Uys J.D., McGuier N.S., Gass J.T., Griffin W.C., 3rd, Ball L.E., Mulholland P.J. Chronic intermittent ethanol exposure and with-drawal leads to adaptations in nucleus accumbens core postsynaptic density proteome and dendritic spines. Addict. Biol. 2016;21:560–574. doi: 10.1111/adb.12238. PubMed DOI PMC

Bauer J., Pedersen A., Scherbaum N., Bening J., Patschke J., Kugel H., Heindel W., Arolt V., Ohrmann P. Craving in Alcohol-Dependent Patients After Detoxification Is Related to Glutamatergic Dysfunction in the Nucleus Accumbens and the Anterior Cingulate Cortex. Neuropsychopharmacology. 2013;38:1401–1408. doi: 10.1038/npp.2013.45. PubMed DOI PMC

Kapasova Z., Szumlinski K.K. Strain differences in alcohol-induced neurochemical plasticity: A role for accumbens gluta-mate in alcohol intake. Alcohol. Clin. Exp. Res. 2008;32:617–631. doi: 10.1111/j.1530-0277.2008.00620.x. PubMed DOI

Pouysségur J., Volmat V., Lenormand P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol. 2002;64:755–763. doi: 10.1016/S0006-2952(02)01135-8. PubMed DOI

Yang L., Mao L., Tang Q., Samdani S., Liu Z., Wang J.Q. A novel Ca2+-independent signaling pathway to extracellular sig-nal-regulated protein kinase by coactivation of NMDA receptors and metabotropic glutamate receptor 5 in neurons. J. Neurosci. 2004;24:10846–10857. doi: 10.1523/JNEUROSCI.2496-04.2004. PubMed DOI PMC

Guzowski J.F., Miyashita T., Chawla M.K., Sanderson J., Maes L.I., Houston F.P., Lipa P., McNaughton B.L., Worley P.F., Barnes C.A. Recent behavioral history modifies coupling between cell activity and Arc gene transcription in hippocampal CA1 neurons. Proc. Natl. Acad. Sci. USA. 2006;103:1077–1082. doi: 10.1073/pnas.0505519103. PubMed DOI PMC

Stanyon C.A., Bernard O. LIM-kinase1. Int. J. Biochem. Cell Biol. 1999;31:389–394. doi: 10.1016/S1357-2725(98)00116-2. PubMed DOI

Steward O., Wallace C.S., Lyford G.L., Worley P.F. Synaptic Activation Causes the mRNA for the IEG Arc to Localize Selectively near Activated Postsynaptic Sites on Dendrites. Neuron. 1998;21:741–751. doi: 10.1016/S0896-6273(00)80591-7. PubMed DOI

Steward O., Worley P.F. Selective Targeting of Newly Synthesized Arc mRNA to Active Synapses Requires NMDA Receptor Activation. Neuron. 2001;30:227–240. doi: 10.1016/S0896-6273(01)00275-6. PubMed DOI

Pandey S.C., Zhang H., Ugale R., Prakash A., Xu T., Misra K. Effector Immediate-Early Gene Arc in the Amygdala Plays a Critical Role in Alcoholism. J. Neurosci. 2008;28:2589–2600. doi: 10.1523/JNEUROSCI.4752-07.2008. PubMed DOI PMC

Butts A.R., Ojelade S.A., Pronovost E.D., Seguin A., Merrill C., Rodan A.R., Rothenfluh A. Altered Actin Filament Dynamics in the Drosophila Mushroom Bodies Lead to Fast Acquisition of Alcohol Consumption Preference. J. Neurosci. 2019;39:8877–8884. doi: 10.1523/JNEUROSCI.0973-19.2019. PubMed DOI PMC

Anderson A.G., Kulkarni A., Harper M., Konopka G. Single-Cell Analysis of Foxp1-Driven Mechanisms Essential for Striatal Development. Cell Rep. 2020;30:3051–3066. doi: 10.1016/j.celrep.2020.02.030. PubMed DOI PMC

Rocca D.L., Wilkinson K.A., Henley J.M. SUMOylation of FOXP1 regulates transcriptional repression via CtBP1 to drive dendritic morphogenesis. Sci. Rep. 2017;7:877. doi: 10.1038/s41598-017-00707-6. PubMed DOI PMC

Khandelwal N., Cavalier S., Rybalchenko V., Kulkarni A., Anderson A.G., Konopka G., Gibson J.R. FOXP1 negatively regulates intrinsic excitability in D2 striatal projection neurons by promoting inwardly rectifying and leak potassium currents. Mol. Psychiatry. 2021:1–14. doi: 10.1038/s41380-020-00995-x. PubMed DOI PMC

Tang B., Becanovic K., Desplats P., Spencer B., Hill A.M., Connolly C., Masliah E., Leavitt B., Thomas E.A. Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS: Implications for transcriptional dysregulation in Huntington disease. Hum. Mol. Genet. 2012;21:3097–3111. doi: 10.1093/hmg/dds132. PubMed DOI PMC

Vanderschuren L.J., Niesink R.J., Van Ree J.M. The neurobiology of social play behavior in rats. Neurosci. Biobehav. Rev. 1997;21:309–326. doi: 10.1016/S0149-7634(96)00020-6. PubMed DOI

Navarrete F., Aracil-Fernández A., Manzanares J. Cannabidiol regulates behavioural alterations and gene expression changes induced by spontaneous cannabinoid withdrawal. Br. J. Pharmacol. 2018;175:2676–2688. doi: 10.1111/bph.14226. PubMed DOI PMC

Stark T., Ruda-Kucerova J., Iannotti F.A., D’Addario C., Di Marco R., Pekarik V., Drazanova E., Piscitelli F., Bari M., Ba-binska Z., et al. Peripubertal cannabidiol treatment rescues behavioral and neurochemical ab-normalities in the MAM model of schizophrenia. Neuropharmacology. 2019;146:212–221. doi: 10.1016/j.neuropharm.2018.11.035. PubMed DOI

Fogaça M.V., Campos A.C., Coelho L.D., Duman R.S., Guimarães F.S. The anxiolytic effects of cannabidiol in chronically stressed mice are mediated by the endocannabinoid system: Role of neurogenesis and dendritic remodeling. Neuropharmacology. 2018;135:22–33. doi: 10.1016/j.neuropharm.2018.03.001. PubMed DOI

Sartim A., Guimarães F., Joca S. Antidepressant-like effect of cannabidiol injection into the ventral medial prefrontal cortex—Possible involvement of 5-HT1A and CB1 receptors. Behav. Brain Res. 2016;303:218–227. doi: 10.1016/j.bbr.2016.01.033. PubMed DOI

El-Alfy A.T., Ivey K., Robinson K., Ahmed S., Radwan M., Slade D., Khan I., ElSohly M., Ross S. Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Pharmacol. Biochem. Behav. 2010;95:434–442. doi: 10.1016/j.pbb.2010.03.004. PubMed DOI PMC

Abame M.A., He Y., Wu S., Xie Z., Zhang J., Gong X., Wu C., Shen J. Chronic administration of synthetic cannabidiol induces antidepressant effects involving modulation of serotonin and noradrenaline levels in the hippocampus. Neurosci. Lett. 2020;744:135594. doi: 10.1016/j.neulet.2020.135594. PubMed DOI

Réus G.Z., Stringari R.B., Ribeiro K.F., Luft T., Abelaira H.M., Fries G.R., Aguiar B.W., Kapczinski F., Hallak J.E., Zuardi A.W., et al. Administration of cannabidiol and imipramine induces antidepressant-like effects in the forced swimming test and increases brain-derived neurotrophic factor levels in the rat amygdala. Acta Neuropsychiatr. 2011;23:241–248. doi: 10.1111/j.1601-5215.2011.00579.x. PubMed DOI

Melas P., Scherma M., Fratta W., Cifani C., Fadda P. Cannabidiol as a Potential Treatment for Anxiety and Mood Disorders: Molecular Targets and Epigenetic Insights from Preclinical Research. Int. J. Mol. Sci. 2021;22:1863. doi: 10.3390/ijms22041863. PubMed DOI PMC

Viudez-Martínez A., García-Gutiérrez M.S., Manzanares J. Cannabidiol regulates the expression of hypothala-mus-pituitary-adrenal axis-related genes in response to acute restraint stress. J. Psychopharmacol. 2018;32:1379–1384. doi: 10.1177/0269881118805495. PubMed DOI

Fusar-Poli P., Allen P., Bhattacharyya S., Crippa J.A., Mechelli A., Borgwardt S., Martin-Santos R., Seal M.L., O’Carrol C., Atakan Z., et al. Modulation of effective connectivity during emotional processing by Delta 9-tetrahydrocannabinol and cannabidiol. Int. J. Neuropsychopharmacol. 2010;13:421–432. doi: 10.1017/S1461145709990617. PubMed DOI

Gunasekera B., Diederen K., Bhattacharyya S. Cannabinoids, reward processing, and psychosis. Psychopharmacology. 2021:1–21. doi: 10.1007/s00213-021-05801-2. PubMed DOI PMC

Renard J., Norris C., Rushlow W., Laviolette S.R. Neuronal and molecular effects of cannabidiol on the mesolimbic do-pamine system: Implications for novel schizophrenia treatments. Neurosci. Biobehav. Rev. 2017;75:157–165. doi: 10.1016/j.neubiorev.2017.02.006. PubMed DOI

Di Bartolomeo M., Stark T., Maurel O.M., Iannotti F.A., Kuchar M., Ruda-Kucerova J., Piscitelli F., Laudani S., Pekarik V., Sa-lomone S., et al. Crosstalk between the transcriptional regulation of dopamine D2 and cannabinoid CB1 receptors in schizo-phrenia: Analyses in patients and in perinatal Δ9-tetrahydrocannabinol-exposed rats. Pharmacol. Res. 2021;164:105357. doi: 10.1016/j.phrs.2020.105357. PubMed DOI

Ren Y., Whittard J., Higuera-Matas A., Morris C.V., Hurd Y.L. Cannabidiol, a nonpsychotropic component of cannabis, in-hibits cue-induced heroin seeking and normalizes discrete mesolimbic neuronal disturbances. J. Neurosci. 2009;29:14764–14769. doi: 10.1523/JNEUROSCI.4291-09.2009. PubMed DOI PMC

Campos A.C., Fogaça M.V., Scarante F.F., Joca S., Sales A., Gomes F., Sonego A.B., Rodrigues N.S., Galve-Roperh I., Guimarães F.S. Plastic and Neuroprotective Mechanisms Involved in the Therapeutic Effects of Cannabidiol in Psychiatric Disorders. Front. Pharmacol. 2017;8:269. doi: 10.3389/fphar.2017.00269. PubMed DOI PMC

Lemos J., Wanat M., Smith J., Reyes B.A.S., Hollon N.G., Van Bockstaele E.J., Chavkin C., Phillips P. Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive. Nature. 2012;490:402–406. doi: 10.1038/nature11436. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...