Prenatal Exposure to Δ9-Tetrahydrocannabinol Affects Hippocampus-Related Cognitive Functions in the Adolescent Rat Offspring: Focus on Specific Markers of Neuroplasticity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FISR2019_00202
Fondo Integrativo Speciale per la Ricerca (FISR)
PubMed
36840014
PubMed Central
PMC9963541
DOI
10.3390/pharmaceutics15020692
PII: pharmaceutics15020692
Knihovny.cz E-zdroje
- Klíčová slova
- CB1R expression, adolescent rat offspring, hippocampal excitatory plasticity, prenatal THC exposure, spatial learning and memory,
- Publikační typ
- časopisecké články MeSH
Previous evidence suggests that prenatal exposure to THC (pTHC) derails the neurodevelopmental trajectories towards a vulnerable phenotype for impaired emotional regulation and limbic memory. Here we aimed to investigate pTHC effect on hippocampus-related cognitive functions and markers of neuroplasticity in adolescent male offspring. Wistar rats were exposed to THC (2 mg/kg) from gestational day 5 to 20 and tested for spatial memory, object recognition memory and reversal learning in the reinforce-motivated Can test and in the aversion-driven Barnes maze test; locomotor activity and exploration, anxiety-like behaviour, and response to natural reward were assessed in the open field, elevated plus maze, and sucrose preference tests, respectively. The gene expression levels of NMDA NR1-2A subunits, mGluR5, and their respective scaffold proteins PSD95 and Homer1, as well as CB1R and the neuromodulatory protein HINT1, were measured in the hippocampus. pTHC offspring exhibited deficits in spatial and object recognition memory and reversal learning, increased locomotor activity, increased NR1-, decreased NR2A- and PSD95-, increased mGluR5- and Homer1-, and augmented CB1R- and HINT1-hippocampal mRNA levels. Our data shows that pTHC is associated with specific impairment in spatial cognitive processing and effectors of hippocampal neuroplasticity and suggests novel targets for future pharmacological challenges.
Zobrazit více v PubMed
Metz T.D., Borgelt L.M. Marijuana Use in Pregnancy and While Breastfeeding. Obstet. Gynecol. 2018;132:1198–1210. doi: 10.1097/AOG.0000000000002878. PubMed DOI PMC
Kraemer K.L., Day N.L., Rubio D., Jarlenski M., Arnold R.M. Beliefs and attitudes regarding prenatal marijuana use: Perspectives of pregnant women who report use. Drug Alcohol Depend. 2019;196:14–20. PubMed PMC
Fitzcharles M.A., Eisenberg E. Medical cannabis: A forward vision for the clinician. Eur. J. Pain. 2018;22:485–491. doi: 10.1002/ejp.1185. PubMed DOI
Klumpers L.E., Thacker D.L. A Brief Background on Cannabis: From Plant to Medical Indications. J. AOAC Int. 2019;102:412–420. doi: 10.5740/jaoacint.18-0208. PubMed DOI
Weisman J.M., Rodríguez M. A systematic review of medical students’ and professionals’ attitudes and knowledge regarding medical cannabis. J. Cannabis. Res. 2021;3:47. doi: 10.1186/s42238-021-00100-1. PubMed DOI PMC
Romero J., Garcia-Palomero E., Berrendero F., Garcia-Gil L., Hernandez M.L., Ramos J.A., Fernández-Ruiz J.J. Atypical location of cannabinoid receptors in white matter areas during rat brain development. Synapse. 1997;26:317–323. doi: 10.1002/(SICI)1098-2396(199707)26:3<317::AID-SYN12>3.0.CO;2-S. PubMed DOI
Berrendero F., García-Gil L., Hernández M.L., Romero J., Cebeira M., de Miguel R., Ramos J.A., Fernández-Ruiz J.J. Localization of mRNA expression and activation of signal transduction mechanisms for cannabinoid receptor in rat brain during fetal development. Development. 1998;125:3179–3188. doi: 10.1242/dev.125.16.3179. PubMed DOI
Fernández-Ruiz J., Berrendero F., Hernández M.L., Ramos J.A. The endogenous cannabinoid system and brain development. Trends Neurosci. 2000;23:14–20. doi: 10.1016/S0166-2236(99)01491-5. PubMed DOI
Fride E., Gobshtis N., Dahan H., Weller A., Giuffrida A., Ben-Shabat S. The endocannabinoid system during development: Emphasis on perinatal events and delayed effects. Vitam. Horm. 2009;81:139–158. PubMed
Martin M., Ledent C., Parmentier M., Maldonado R., Valverde O. Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology. 2002;159:379–387. doi: 10.1007/s00213-001-0946-5. PubMed DOI
Brancato A., Lavanco G., Cavallaro A., Plescia F., Cannizzaro C. The use of the Emotional-Object Recognition as an assay to assess learning and memory associated to an aversive stimulus in rodents. J. Neurosci. Methods. 2016;274:106–115. doi: 10.1016/j.jneumeth.2016.09.010. PubMed DOI
Lavanco G., Castelli V., Brancato A., Tringali G., Plescia F., Cannizzaro C. The endocannabinoid-alcohol crosstalk: Recent advances on a bi-faceted target. Clin. Exp. Pharmacol. Physiol. 2018;45:889–896. doi: 10.1111/1440-1681.12967. PubMed DOI
Kano M., Ohno-Shosaku T., Hashimotodani Y., Uchigashima M., Watanabe M. Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 2009;89:309–380. doi: 10.1152/physrev.00019.2008. PubMed DOI
Heifets B.D., Castillo P.E. Endocannabinoid signaling and long-term synaptic plasticity. Annu. Rev. Physiol. 2009;71:283–306. doi: 10.1146/annurev.physiol.010908.163149. PubMed DOI PMC
Busquets Garcia A., Soria-Gomez E., Bellocchio L., Marsicano G. Cannabinoid receptor type-1: Breaking the dogmas. F1000Research. 2016;5 doi: 10.12688/f1000research.8245.1. PubMed DOI PMC
Oliveira da Cruz J.F., Busquets-Garcia A., Zhao Z., Varilh M., Lavanco G., Bellocchio L., Robin L., Cannich A., Julio-Kalajzić F., Lesté-Lasserre T., et al. Specific Hippocampal Interneurons Shape Consolidation of Recognition Memory. Cell Rep. 2020;32:108046. doi: 10.1016/j.celrep.2020.108046. PubMed DOI PMC
Wilson R.I., Nicoll R.A. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature. 2001;410:588–592. doi: 10.1038/35069076. PubMed DOI
Diana M.A., Marty A. Endocannabinoid-mediated short-term synaptic plasticity: Depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE) Br. J. Pharmacol. 2004;142:9–19. doi: 10.1038/sj.bjp.0705726. PubMed DOI PMC
Straiker A., Mackie K. Metabotropic suppression of excitation in murine autaptic hippocampal neurons. Pt 3J. Physiol. 2007;578:773–785. doi: 10.1113/jphysiol.2006.117499. PubMed DOI PMC
Carlson G., Wang Y., Alger B.E. Endocannabinoids facilitate the induction of LTP in the hippocampus. Nat. Neurosci. 2002;5:723–724. doi: 10.1038/nn879. PubMed DOI
Djurisic M., Brott B.K., Saw N.L., Shamloo M., Shatz C.J. Activity-dependent modulation of hippocampal synaptic plasticity via PirB and endocannabinoids. Mol. Psychiatry. 2019;24:1206–1219. doi: 10.1038/s41380-018-0034-4. PubMed DOI PMC
Castillo P.E., Younts T.J., Chávez A.E., Hashimotodani Y. Endocannabinoid signaling and synaptic function. Neuron. 2012;76:70–81. doi: 10.1016/j.neuron.2012.09.020. PubMed DOI PMC
Silva-Cruz A., Carlström M., Ribeiro J.A., Sebastião A.M. Dual Influence of Endocannabinoids on Long-Term Potentiation of Synaptic Transmission. Front. Pharmacol. 2017;8:921. doi: 10.3389/fphar.2017.00921. PubMed DOI PMC
Morris G., Walder K., Kloiber S., Amminger P., Berk M., Bortolasci C.C., Maes M., Puri B.K., Carvalho A.F. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol. Res. 2021;70:105729. doi: 10.1016/j.phrs.2021.105729. PubMed DOI
Monyer H., Sprengel R., Schoepfer R., Herb A., Higuchi M., Lomeli H., Burnashev N., Sakmann B., Seeburg P.H. Heteromeric NMDA receptors: Molecular and functional distinction of subtypes. Science. 1992;256:1217–1221. doi: 10.1126/science.256.5060.1217. PubMed DOI
Furukawa H., Singh S.K., Mancusso R., Gouaux E. Subunit arrangement and function in NMDA receptors. Nature. 2005;438:185–192. doi: 10.1038/nature04089. PubMed DOI
Sengar A.S., Li H., Zhang W., Leung C., Ramani A.K., Saw N.M., Wang Y., Tu Y., Ross P.J., Scherer S.W., et al. Control of Long-Term Synaptic Potentiation and Learning by Alternative Splicing of the NMDA Receptor Subunit GluN1. Cell Rep. 2019;29:4285–4294.e5. doi: 10.1016/j.celrep.2019.11.087. PubMed DOI
Li R., Huang F.S., Abbas A.K., Wigstrom H. Role of NMDA receptor subtypes in different forms of NMDA-dependent synaptic plasticity. BMC Neurosci. 2007;8:55. doi: 10.1186/1471-2202-8-55. PubMed DOI PMC
Baez M.V., Cercato M.C., Jerusalinsky D.A. NMDA Receptor Subunits Change after Synaptic Plasticity Induction and Learning and Memory Acquisition. Neural Plast. 2018;2018:5093048. doi: 10.1155/2018/5093048. PubMed DOI PMC
Dong Y.N., Waxman E.A., Lynch D.R. Interactions of postsynaptic density-95 and the NMDA receptor 2 subunit control calpain-mediated cleavage of the NMDA receptor. J. Neurosci. Off. J. Soc. Neurosci. 2004;24:11035–11045. doi: 10.1523/JNEUROSCI.3722-04.2004. PubMed DOI PMC
Chen X., Levy J.M., Hou A., Winters C.A., Azzam R., Sousa A.A., Leapman R.D., Nicoll R.A., Reese T.S. PSD-95 family MAGUKs are essential for anchoring AMPA and NMDA receptor complexes at the postsynaptic density. Proc. Natl. Acad. Sci. USA. 2015;112:E6983–E6992. doi: 10.1073/pnas.1517045112. PubMed DOI PMC
Rodríguez-Muñoz M., Cortés-Montero E., Pozo-Rodrigálvarez A., Sánchez-Blázquez P., Garzón-Niño J. The ON:OFF switch, σ1R-HINT1 protein, controls GPCR-NMDA receptor cross-regulation: Implications in neurological disorders. Oncotarget. 2015;6:35458–35477. doi: 10.18632/oncotarget.6064. PubMed DOI PMC
Sánchez-Blázquez P., Rodríguez-Muñoz M., Garzón J. The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction: Implications in psychosis and schizophrenia. Front. Pharmacol. 2014;4:169. doi: 10.3389/fphar.2013.00169. PubMed DOI PMC
Rodríguez-Muñoz M., Sánchez-Blázquez P., Merlos M., Garzón-Niño J. Endocannabinoid control of glutamate NMDA receptors: The therapeutic potential and consequences of dysfunction. Oncotarget. 2016;7:55840–55862. doi: 10.18632/oncotarget.10095. PubMed DOI PMC
Chevaleyre V., Castillo P.E. Heterosynaptic LTD of hippocampal GABAergic synapses: A novel role of endocannabinoids in regulating excitability. Neuron. 2003;38:461–472. doi: 10.1016/S0896-6273(03)00235-6. PubMed DOI
Shiraishi-Yamaguchi Y., Furuichi T. The Homer family proteins. Genome Biol. 2007;8:206. doi: 10.1186/gb-2007-8-2-206. PubMed DOI PMC
Batista E.M., Doria J.G., Ferreira-Vieira T.H., Alves-Silva J., Ferguson S.S., Moreira F.A., Ribeiro F.M. Orchestrated activation of mGluR5 and CB1 promotes neuroprotection. Mol. Brain. 2016;9:80. doi: 10.1186/s13041-016-0259-6. PubMed DOI PMC
Castelli V., Brancato A., Cavallaro A., Lavanco G., Cannizzaro C. Homer2 and Alcohol: A Mutual Interaction. Front. Psychiatry. 2017;8:268. doi: 10.3389/fpsyt.2017.00268. PubMed DOI PMC
Dougherty D.M., Mathias C.W., Dawes M.A., Furr R.M., Charles N.E., Liguori A., Shannon E.E., Acheson A. Impulsivity, attention, memory, and decision-making among adolescent marijuana users. Psychopharmacology. 2013;226:307–319. doi: 10.1007/s00213-012-2908-5. PubMed DOI PMC
Jung K.M., Astarita G., Zhu C., Wallace M., Mackie K., Piomelli D. A key role for diacylglycerol lipase-alpha in metabotropic glutamate receptor-dependent endocannabinoid mobilization. Mol. Pharmacol. 2007;72:612–621. doi: 10.1124/mol.107.037796. PubMed DOI
Lu H.C., Mackie K. Review of the Endocannabinoid System. Biol. Psychiatry. Cogn. Neurosci. Neuroimaging. 2021;6:607–615. doi: 10.1016/j.bpsc.2020.07.016. PubMed DOI PMC
Scheyer A.F., Melis M., Trezza V., Manzoni O.J.J. Consequences of perinatal cannabis exposure. Trends Neurosci. 2019;42:871–884. doi: 10.1016/j.tins.2019.08.010. PubMed DOI PMC
DiNieri J.A., Hurd Y.L. Rat models of prenatal and adolescent cannabis exposure. Methods Mol. Biol. 2012;829:231–242. PubMed
Brancato A., Castelli V., Lavanco G., Marino R., Cannizzaro C. In utero Δ9-tetrahydrocannabinol exposure confers vulnerability towards cognitive impairments and alcohol drinking in the adolescent offspring: Is there a role for neuropeptide Y? J. Psychopharmacol. 2020;34:663–679. doi: 10.1177/0269881120916135. PubMed DOI
Fatemi S.H., Folsom T.D. The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr. Bull. 2009;35:528–548. doi: 10.1093/schbul/sbn187. PubMed DOI PMC
Germann M., Brederoo S.G., Sommer I.E.C. Abnormal synaptic pruning during adolescence underlying the development of psychotic disorders. Curr. Opin. Psychiatry. 2021;34:222–227. doi: 10.1097/YCO.0000000000000696. PubMed DOI PMC
Battaglia F.P., Benchenane K., Sirota A., Pennartz C.M., Wiener S.I. The hippocampus: Hub of brain network communication for memory. Trends Cogn. Sci. 2011;15:310–318. doi: 10.1016/j.tics.2011.05.008. PubMed DOI
Frau R., Miczán V., Traccis F., Aroni S., Pongor C.I., Saba P., Serra V., Sagheddu C., Fanni S., Congiu M., et al. Prenatal THC exposure produces a hyperdopaminergic phenotype rescued by pregnenolone. Nat. Neurosci. 2019;22:1975–1985. doi: 10.1038/s41593-019-0512-2. PubMed DOI PMC
Drazanova E., Ruda-Kucerova J., Kratka L., Stark T., Kuchar M., Maryska M., Drago F., Starcuk Z., Jr., Micale V. Different effects of prenatal MAM vs. perinatal THC exposure on regional cerebral blood perfusion detected by Arterial Spin Labelling MRI in rats. Sci. Rep. 2019;9:6062. doi: 10.1038/s41598-019-42532-z. PubMed DOI PMC
Kraeuter A.K., Guest P.C., Sarnyai Z. The Open Field Test for Measuring Locomotor Activity and Anxiety-Like Behavior. Methods Mol. Biol. 2019;1916:99–103. doi: 10.1007/978-1-4939-8994-2_9. PubMed DOI
Rodgers R.J., Dalvi A. Anxiety, defence and the elevated plus-maze. Neurosci. Biobehav. Rev. 1997;21:801–810. doi: 10.1016/S0149-7634(96)00058-9. PubMed DOI
Gawel K., Gibula E., Marszalek-Grabska M., Filarowska J., Kotlinska J.H. Assessment of spatial learning and memory in the Barnes maze task in rodents-methodological consideration. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2019;392:1–18. doi: 10.1007/s00210-018-1589-y. PubMed DOI PMC
Serchov T., van Calker D., Biber K. Sucrose Preference Test to Measure Anhedonic Behaviour in Mice. Bio-protocol. 2016;6:e1958. doi: 10.21769/BioProtoc.1958. DOI
Popoviç M., Biessels G.J., Isaacson R.L., Gispen W.H. Learning and memory in streptozotocin-induced diabetic rats in a novel spatial/object discrimination task. Behav. Brain Res. 2001;122:201–207. doi: 10.1016/S0166-4328(01)00186-3. PubMed DOI
Castelli V., Lavanco G., Brancato A., Plescia F. Targeting the Stress System During Gestation: Is Early Handling a Protective Strategy for the Offspring? Front. Behav. Neurosci. 2020;14:9. doi: 10.3389/fnbeh.2020.00009. PubMed DOI PMC
Brancato A., Castelli V., Cavallaro A., Lavanco G., Plescia F., Cannizzaro C. Pre-conceptional and Peri-Gestational Maternal Binge Alcohol Drinking Produces Inheritance of Mood Disturbances and Alcohol Vulnerability in the Adolescent Offspring. Front. Psychiatry. 2018;9:150. doi: 10.3389/fpsyt.2018.00150. PubMed DOI PMC
Brancato A., Castelli V., Lavanco G., Tringali G., Micale V., Kuchar M., D’Amico C., Pizzolanti G., Feo S., Cannizzaro C. Binge-like Alcohol Exposure in Adolescence: Behavioural, Neuroendocrine and Molecular Evidence of Abnormal Neuroplasticity…and Return. Biomedicines. 2021;9:1161. doi: 10.3390/biomedicines9091161. PubMed DOI PMC
Plescia F., Sardo P., Rizzo V., Cacace S., Marino R.A., Brancato A., Ferraro G., Carletti F., Cannizzaro C. Pregnenolone sulphate enhances spatial orientation and object discrimination in adult male rats: Evidence from a behavioural and electrophysiological study. Behav. Brain Res. 2014;258:193–201. doi: 10.1016/j.bbr.2013.10.026. PubMed DOI
Sweatt J.D. Chapter 4—Rodent Behavioral Learning and Memory Models. In: Sweatt J.D., editor. Mechanisms of Memory. 2nd ed. Academic Press; London, UK: 2010. pp. 76–103. DOI
Gibula-Tarlowska E., Wydra K., Kotlinska J.H. Deleterious Effects of Ethanol, Δ(9)-Tetrahydrocannabinol (THC), and Their Combination on the Spatial Memory and Cognitive Flexibility in Adolescent and Adult Male Rats in the Barnes Maze Task. Pharmaceutics. 2020;12:654. doi: 10.3390/pharmaceutics12070654. PubMed DOI PMC
Chomczynski P., Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: Twenty-something years on. Nat. Protoc. 2006;1:581–585. doi: 10.1038/nprot.2006.83. PubMed DOI
Volkow N.D., Han B., Compton W.M., McCance-Katz E.F. Self-reported Medical and Nonmedical Cannabis Use Among Pregnant Women in the United States. JAMA. 2019;322:167–169. doi: 10.1001/jama.2019.7982. PubMed DOI PMC
de Salas-Quiroga A., García-Rincón D., Gómez-Domínguez D., Valero M., Simón-Sánchez S., Paraíso-Luna J., Aguareles J., Pujadas M., Muguruza C., Callado L.F., et al. Long-term hippocampal interneuronopathy drives sex-dimorphic spatial memory impairment induced by prenatal THC exposure. Neuropsychopharmacology. 2020;45:877–886. doi: 10.1038/s41386-020-0621-3. PubMed DOI PMC
Bara A., Manduca A., Bernabeu A., Borsoi M., Serviado M., Lassalle O., Murphy M., Wager-Miller J., Mackie K., Pelissier-Alicot A.L., et al. Sex-dependent effects of in utero cannabinoid exposure on cortical function. eLife. 2018;7:e36234. doi: 10.7554/eLife.36234. PubMed DOI PMC
Mereu G., Fà M., Ferraro L., Cagiano R., Antonelli T., Tattoli M., Ghiglieri V., Tanganelli S., Gessa G.L., Cuomo V. Prenatal exposure to a cannabinoid agonist produces memory deficits linked to dysfunction in hippocampal long-term potentiation and glutamate release. Proc. Natl. Acad. Sci. USA. 2003;100:4915–4920. doi: 10.1073/pnas.0537849100. PubMed DOI PMC
Jacobs L.F., Schenk F. Unpacking the cognitive map: The parallel map theory of hippocampal function. Psychol. Rev. 2003;110:285–315. doi: 10.1037/0033-295X.110.2.285. PubMed DOI
Shrager Y., Bayley P.J., Bontempi B., Hopkins R.O., Squire L.R. Spatial memory and the human hippocampus. Proc. Natl. Acad. Sci. USA. 2007;104:2961–2966. doi: 10.1073/pnas.0611233104. PubMed DOI PMC
Schiller D., Eichenbaum H., Buffalo E.A., Davachi L., Foster D.J., Leutgeb S., Ranganath C. Memory and space: Towards an understanding of the cognitive map. J. Neurosci. 2015;35:13904–13911. doi: 10.1523/JNEUROSCI.2618-15.2015. PubMed DOI PMC
Wise L.E., Thorpe A.J., Lichtman A.H. Hippocampal CB(1) receptors mediate the memory impairing effects of Delta(9)-tetrahydrocannabinol. Neuropsychopharmacology. 2009;34:2072–2080. doi: 10.1038/npp.2009.31. PubMed DOI PMC
Cannich A., Wotjak C.T., Kamprath K., Hermann H., Lutz B., Marsicano G. CB1 cannabinoid receptors modulate kinase and phosphatase activity during extinction of conditioned fear in mice. Learn. Mem. 2004;11:625–632. doi: 10.1101/lm.77904. PubMed DOI PMC
de Oliveira Alvares L., de Oliveira L.F., Camboim C., Diehl F., Genro B.P., Lanziotti V.B., Quillfeldt J.A. Amnestic effect of intrahippocampal AM251, a CB1-selective blocker, in the inhibitory avoidance, but not in the open field habituation task, in rats. Neurobiol. Learn. Mem. 2005;83:119–124. doi: 10.1016/j.nlm.2004.10.002. PubMed DOI
Wilson W.H., Ellinwood E.H., Mathew R.J., Johnson K. Effects of marijuana on performance of a computerized cognitive-neuromotor test battery. Psychiatry Res. 1994;51:115–125. doi: 10.1016/0165-1781(94)90031-0. PubMed DOI
D’Souza D.C., Perry E., MacDougall L., Ammerman Y., Cooper T., Wu Y.T., Braley G., Gueorguieva R., Krystal J.H. The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: Implications for psychosis. Neuropsychopharmacology. 2004;29:1558–1572. doi: 10.1038/sj.npp.1300496. PubMed DOI
Goldschmidt L., Day N.L., Richardson G.A. Effects of prenatal marijuana exposure on child behavior problems at age 10. Neurotoxicol. Teratol. 2000;22:325–336. doi: 10.1016/S0892-0362(00)00066-0. PubMed DOI
Pope H.G., Yurgelun-Todd D. The residual cognitive effects of heavy marijuana use in college students. JAMA. 1996;275:521–527. doi: 10.1001/jama.1996.03530310027028. PubMed DOI
Lallai V., Manca L., Sherafat Y., Fowler C.D. Effects of Prenatal Nicotine, THC, or Co-Exposure on Cognitive Behaviors in Adolescent Male and Female Rats. Nicotine Tob. Res. 2022;24:1150–1160. doi: 10.1093/ntr/ntac018. PubMed DOI PMC
Meunier M., Bachevalier J., Mishkin M., Murray E.A. Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex inrhesus monkeys. J. Neurosci. 1993;13:5418–5432. doi: 10.1523/JNEUROSCI.13-12-05418.1993. PubMed DOI PMC
Eacott M.J., Machin P.E., Gaffan E.A. Elemental and configural visual discrimina-tion learning following lesions to perirhinal cortex in the rat. Behav. Brain Res. 2001;124:55–70. doi: 10.1016/S0166-4328(01)00234-0. PubMed DOI
Higuchi S., Miyashita Y. Formation of mnemonic neuronal responses to visualpaired associates in inferotemporal cortex is impaired by perirhinal andentorhinal lesions. Proc. Natl. Acad. Sci. USA. 1996;93:739–743. doi: 10.1073/pnas.93.2.739. PubMed DOI PMC
Naber P.A., Witter M.P., Lopez da Silva F.H. Perirhinal cortex input to the hippocampus in the rat: Evidence for parallel pathways, both direct and indirect. A combined physiological and anatomical study. Eur. J. Neurosci. 1999;11:4119–4133. doi: 10.1046/j.1460-9568.1999.00835.x. PubMed DOI
Canning K.J., Leung L.S. Lateral entorhinal, perirhinal, and amygdala-entorhinal transition projections to hippocampal CA1 and dentate gyrus in the rat: A current source density study. Hippocampus. 1997;7:643–655. doi: 10.1002/(SICI)1098-1063(1997)7:6<643::AID-HIPO6>3.0.CO;2-F. PubMed DOI
Park S.B., Lim H.Y., Lee E.Y., Yoo S.W., Jung H.S., Lee E., Sun W., Lee I. The fasciola cinereum subregion of the hippocampus is important for the acquisition of visual contextual memory. Prog. Neurobiol. 2022;210:102217. doi: 10.1016/j.pneurobio.2022.102217. PubMed DOI
Silver H., Feldman P. Evidence for sustained attention and working memory in schizophrenia sharing a common mechanism. J. Neuropsychiatry Clin. Neurosci. 2005;17:391–398. doi: 10.1176/jnp.17.3.391. PubMed DOI
Genaro G., Schmidek W.R. Exploratory activity of rats in three different environments. Ethology. 2000;106:849–859. doi: 10.1046/j.1439-0310.2000.00605.x. DOI
Azrin N.H., Hutchinson R.R., Hake D.F. Attack, avoidance, and escape reactions to aversive shock. J. Exp. Anal. Behav. 1967;10:131–148. doi: 10.1901/jeab.1967.10-131. PubMed DOI PMC
Evans D.A., Stempel A.V., Vale R., Branco T. Cognitive Control of Escape Behaviour. Trends Cogn. Sci. 2019;23:334–348. doi: 10.1016/j.tics.2019.01.012. PubMed DOI PMC
Harrison F.E., Hosseini A.H., McDonald M.P. Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks. Behav. Brain Res. 2009;198:247–251. doi: 10.1016/j.bbr.2008.10.015. PubMed DOI PMC
McHail D.G., Valibeigi N., Dumas T.C. A Barnes maze for juvenile rats delineates the emergence of spatial navigation ability. Learn. Mem. 2018;25:138–146. doi: 10.1101/lm.046300.117. PubMed DOI PMC
Antonelli T., Tanganelli S., Tomasini M.C., Finetti S., Trabace L., Steardo L., Sabino V., Carratu M.R., Cuomo V., Ferraro L. Long-term effects on cortical glutamate release induced by prenatal exposure to the cannabinoid receptor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinyl-methyl)pyrrolo [1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone: An in vivo microdialysis study in the awake rat. Neuroscience. 2004;124:367–375. PubMed
Castaldo P., Magi S., Gaetani S., Cassano T., Ferraro L., Antonelli T., Amoroso S., Cuomo V. Prenatal exposure to the cannabinoid receptor agonist WIN 55,212-2 increases glutamate uptake through overexpression of GLT1 and EAAC1 glutamate transporter subtypes in rat frontal cerebral cortex. Neuropharmacology. 2007;53:369–378. doi: 10.1016/j.neuropharm.2007.05.019. PubMed DOI
Cull-Candy S., Brickley S., Farrant M. NMDA receptor subunits: Diversity, development and disease. Curr. Opin. Neurobiol. 2001;11:327–335. doi: 10.1016/S0959-4388(00)00215-4. PubMed DOI
Flores-Soto M.E., Chaparro-Huerta V., Escoto-Delgadillo M., Vazquez-Valls E., González-Castañeda R.E., Beas-Zarate C. Estructura y función de las subunidades del receptor a glutamato tipo NMDA [Structure and function of NMDA-type glutamate receptor subunits] Neurologia. 2012;27:301–310. doi: 10.1016/j.nrl.2011.10.014. PubMed DOI
Rebola N., Srikumar B.N., Mulle C. Activity-dependent synaptic plasticity of NMDA receptors. Pt 1J. Physiol. 2010;588:93–99. doi: 10.1113/jphysiol.2009.179382. PubMed DOI PMC
Pérez-Otaño I., Ehlers M.D. Learning from NMDA receptor trafficking: Clues to the development and maturation of glutamatergic synapses. Neuro-Signals. 2004;13:175–189. doi: 10.1159/000077524. PubMed DOI
Yashiro K., Philpot B.D. Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology. 2008;55:1081–1094. doi: 10.1016/j.neuropharm.2008.07.046. PubMed DOI PMC
Sanz-Clemente A., Nicoll R.A., Roche K.W. Diversity in NMDA receptor composition: Many regulators, many consequences. Neuroscientist. 2013;19:62–75. doi: 10.1177/1073858411435129. PubMed DOI PMC
Zhou L., Duan J. The C-terminus of NMDAR GluN1-1a Subunit Translocates to Nucleus and Regulates Synaptic Function. Front. Cell Neurosci. 2018;12:334. doi: 10.3389/fncel.2018.00334. PubMed DOI PMC
Guilarte T.R., McGlothan J.L. Hippocampal NMDA receptor mRNA undergoes subunit specific changes during developmental lead exposure. Brain Res. 1998;790:98–107. doi: 10.1016/S0006-8993(98)00054-7. PubMed DOI
Fumagalli F., Caffino L., Vogt M.A., Frasca A., Racagni G., Sprengel R., Gass P., Riva M.A. AMPA GluR-A receptor subunit mediates hippocampal responsiveness in mice exposed to stress. Hippocampus. 2011;21:1028–1035. doi: 10.1002/hipo.20817. PubMed DOI
Laurie D.J., Seeburg P.H. Ligand affinities at recombinant N-methyl-D-aspartate receptors depend on subunit composition. Eur. J. Pharmacol. 1994;268:335–345. doi: 10.1016/0922-4106(94)90058-2. PubMed DOI
Di Bartolomeo M., Stark T., Maurel O.M., Iannotti F.A., Kuchar M., Ruda-Kucerova J., Piscitelli F., Laudani S., Pekarik V., Salomone S., et al. Crosstalk between the transcriptional regulation of dopamine D2 and cannabinoid CB1 receptors in schizophrenia: Analyses in patients and in perinatal Δ9-tetrahydrocannabinol-exposed rats. Pharmacol. Res. 2021;164:105357. doi: 10.1016/j.phrs.2020.105357. PubMed DOI
García-Gil L., Romero J., Ramos J.A., Fernández-Ruiz J.J. Cannabinoid receptor binding and mRNA levels in several brain regions of adult male and female rats perinatally exposed to delta9-tetrahydrocannabinol. Drug Alcohol Depend. 1999;55:127–136. doi: 10.1016/S0376-8716(98)00189-6. PubMed DOI
Keimpema E., Mackie K., Harkany T. Molecular model of cannabis sensitivity in developing neuronal circuits. Trends Pharmacol. Sci. 2011;32:551–561. doi: 10.1016/j.tips.2011.05.004. PubMed DOI PMC
Berghuis P., Rajnicek A.M., Morozov Y.M., Ross R.A., Mulder J., Urbán G.M., Monory K., Marsicano G., Matteoli M., Canty A., et al. Hardwiring the brain: Endocannabinoids shape neuronal connectivity. Science. 2007;316:1212–1216. doi: 10.1126/science.1137406. PubMed DOI
Vargish G.A., Pelkey K.A., Yuan X., Chittajallu R., Collins D., Fang C., McBain C.J. Persistent inhibitory circuit defects and disrupted social behaviour following in utero exogenous cannabinoid exposure. Mol. Psychiatry. 2017;22:56–67. doi: 10.1038/mp.2016.17. PubMed DOI PMC
Vicente-Sánchez A., Sánchez-Blázquez P., Rodríguez-Muñoz M., Garzón J. HINT1 protein cooperates with cannabinoid 1 receptor to negatively regulate glutamate NMDA receptor activity. Mol. Brain Res. 2013;6:42. doi: 10.1186/1756-6606-6-42. PubMed DOI PMC
Koussounadis A., Langdon S., Um I., Harrison D.J., Smith V.A. Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci. Rep. 2015;5:10775. doi: 10.1038/srep10775. PubMed DOI PMC