Prenatal MAM exposure raises kynurenic acid levels in the prefrontal cortex of adult rats
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Project no. PE00000006
Partnership for Research and Innovation in the Mediterranean Area
2023
FAR2023
PubMed
38789891
DOI
10.1007/s43440-024-00604-6
PII: 10.1007/s43440-024-00604-6
Knihovny.cz E-zdroje
- Klíčová slova
- AM251, Haloperidol, Kynurenine Pathway, Novel object recognition test, Peripubertal treatment, Schizophrenia,
- MeSH
- antipsychotika farmakologie MeSH
- haloperidol farmakologie MeSH
- kognitivní dysfunkce metabolismus farmakoterapie MeSH
- krysa rodu Rattus MeSH
- kyselina kynurenová * metabolismus MeSH
- methylazoxymethanolacetát * analogy a deriváty MeSH
- modely nemocí na zvířatech MeSH
- piperidiny farmakologie MeSH
- potkani Sprague-Dawley * MeSH
- prefrontální mozková kůra * metabolismus účinky léků MeSH
- pyrazoly farmakologie MeSH
- receptor kanabinoidní CB1 metabolismus MeSH
- schizofrenie * metabolismus farmakoterapie MeSH
- těhotenství MeSH
- zpožděný efekt prenatální expozice * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- AM 251 MeSH Prohlížeč
- antipsychotika MeSH
- haloperidol MeSH
- kyselina kynurenová * MeSH
- methylazoxymethanolacetát * MeSH
- piperidiny MeSH
- pyrazoly MeSH
- receptor kanabinoidní CB1 MeSH
BACKGROUND: Elevated brain levels of kynurenic acid (KYNA), a metabolite in the kynurenine pathway, are associated with cognitive dysfunctions, which are nowadays often considered as fundamental characteristics of several psychopathologies; however, the role of KYNA in mental illnesses, such as schizophrenia, is not fully elucidated. This study aimed to assess KYNA levels in the prefrontal cortex (PFC) of rats prenatally treated with methylazoxymethanol (MAM) acetate, i.e., a well-validated neurodevelopmental animal model of schizophrenia. The effects of an early pharmacological modulation of the endogenous cannabinoid system were also evaluated. METHODS: Pregnant Sprague-Dawley rats were treated with MAM (22 mg/kg, ip) or its vehicle at gestational day 17. Male offspring were treated with the cannabinoid CB1 receptor antagonist/inverse agonist AM251 (0.5 mg/kg/day, ip) or with the typical antipsychotic haloperidol (0.6 mg/kg/day, ip) from postnatal day (PND) 19 to PND39. The locomotor activity and cognitive performance were assessed in the novel object recognition test and the open field test in adulthood. KYNA levels in the PFC of prenatally MAM-treated rats were also assessed. RESULTS: A significant cognitive impairment was observed in prenatally MAM-treated rats (p < 0.01), which was associated with enhanced PFC KYNA levels (p < 0.05). The peripubertal AM251, but not haloperidol, treatment ameliorated the cognitive deficit (p < 0.05), by normalizing the PFC KYNA content in MAM rats. CONCLUSIONS: The present findings suggest that the cognitive deficit observed in MAM rats may be related to enhanced PFC KYNA levels which could be, in turn, mediated by the activation of cannabinoid CB1 receptor. These results further support the modulation of brain KYNA levels as a potential therapeutic strategy to ameliorate the cognitive dysfunctions in schizophrenia.
Department Emotion Research Max Planck Institute of Psychiatry 80807 Munich Germany
Department of Biomedical and Biotechnological Sciences University of Catania 95123 Catania Italy
Department of Pharmacology Faculty of Medicine Masaryk University Brno Czech Republic
LTTA Centre University of Ferrara Ferrara Italy
Psychiatric Department School of Medicine University of Maryland Baltimore MD USA
Zobrazit více v PubMed
Ferraro L, Tomasini MC, Beggiato S, Gaetani S, Cassano T, Cuomo V, et al. Short- and long-term consequences of prenatal exposure to the cannabinoid agonist WIN55,212-2 on rat glutamate transmission and cognitive functions. J Neural Transm (Vienna). 2009;116:1017–27. PubMed DOI
Higuera-Matas A, Ucha M, Ambrosio E. Long-term consequences of perinatal and adolescent cannabinoid exposure on neural and psychological processes. Neurosci Biobehav Rev. 2015;55:119–46. PubMed DOI
Drazanova E, Ruda-Kucerova J, Kratka L, Stark T, Kuchar M, Maryska M, Drago F, et al. Different effects of prenatal MAM vs. perinatal THC exposure on regional cerebral blood perfusion detected by arterial spin labelling MRI in rats. Sci Rep. 2019;9:6062. PubMed DOI PMC
Hurd YL, Manzoni OJ, Pletnikov MV, Lee FS, Bhattacharyya S, Melis M. Cannabis and the developing brain: insights into its long-lasting effects. J Neurosci. 2019;39:8250–8. PubMed DOI PMC
Bara A, Ferland JN, Rompala G, Szutorisz H, Hurd YL. Cannabis and synaptic reprogramming of the developing brain. Nat Rev Neurosci. 2021;22:423–38. PubMed DOI PMC
Nashed MG, Hardy DB, Laviolette SR. Prenatal cannabinoid exposure: emerging evidence of physiological and neuropsychiatric abnormalities. Front Psychiatry. 2021;11:624275. PubMed DOI PMC
Di Bartolomeo M, Stark T, Di Martino S, Iannotti FA, Ruda-Kucerova J, Romano GL, et al. The effects of Peripubertal THC exposure in neurodevelopmental rat models of psychopathology. Int J Mol Sci. 2023;24:3907. PubMed DOI PMC
Lin A, Dent GL, Davies S, Dominguez ZM, Cioffredi LA, McLemore GL, et al. Prenatal cannabinoid exposure: why expecting individuals should take a pregnancy pause from using cannabinoid products. Front Pediatr. 2023;11:1278227. PubMed DOI PMC
Beggiato S, Ieraci A, Tomasini MC, Schwarcz R, Ferraro L. Prenatal THC exposure raises kynurenic acid levels in the prefrontal cortex of adult rats. Prog Neuropsychopharmacol Biol Psychiatry. 2020;100:109883. PubMed DOI PMC
Beggiato S, Ieraci A, Zuccarini M, Di Iorio P, Schwarcz R, Ferraro L. Alterations in rat prefrontal cortex kynurenic acid levels are involved in the enduring cognitive dysfunctions induced by tetrahydrocannabinol exposure during the adolescence. Front Psychiatry. 2022;13:996406. PubMed DOI PMC
Mereu G, Fà M, Ferraro L, Cagiano R, Antonelli T, Tattoli M, et al. Prenatal exposure to a cannabinoid agonist produces memory deficits linked to dysfunction in hippocampal long-term potentiation and glutamate release. Proc Natl Acad Sci USA. 2003;100:4915–20. PubMed DOI PMC
Beggiato S, Borelli AC, Tomasini MC, Morgano L, Antonelli T, Tanganelli S, et al. Long-lasting alterations of hippocampal GABAergic neurotransmission in adult rats following perinatal ∆9-THC exposure. Neurobiol Learn Mem. 2017;139:135–43. PubMed DOI
Pinky PD, Bloemer J, Smith WD, Moore T, Hong H, Suppiramaniam V, et al. Prenatal cannabinoid exposure and altered neurotransmission. Neuropharmacology. 2019;149:181–94. PubMed DOI
Stark T, Di Martino S, Drago F, Wotjak CT, Micale V. Phytocannabinoids and schizophrenia: focus on adolescence as a critical window of enhanced vulnerability and opportunity for treatment. Pharmacol Res. 2021;174:105938. PubMed DOI
Schwarcz R, Bruno JP, Muchowski PJ, Wu H-Q. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012;13:465–77. PubMed DOI PMC
Schwarcz R, Stone TW. The kynurenine pathway and the brain: challenges, controversies and promises. Neuropharmacology. 2017;112:237–47. PubMed DOI
Erhardt S, Blennow K, Nordin C, Skogh E, Lindstrom LH, Engberg G. Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett. 2001;313:96–8. PubMed DOI
Schwarcz R, Rassoulpour A, Wu HQ, Medoff D, Tamminga CA, Roberts RC. Increased cortical kynurenate content in schizophrenia. Biol Psychiatry. 2001;50:521–30. PubMed DOI
Sathyasaikumar KV, Stachowski EK, Wonodi I, Roberts RC, Rassoulpour A, McMahon RP, et al. Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia. Schizophr Bull. 2011;37:1147–56. PubMed DOI
Linderholm KR, Skogh E, Olsson SK, Dahl ML, Holtze M, Engberg G, et al. Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr Bull. 2012;38:426–32. PubMed DOI
Kindler J, Lim CK, Weickert CS, Boerrigter D, Galletly C, Liu D, et al. Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Mol Psychiatry. 2020;25:2860–72. PubMed DOI
Sapienza J, Spangaro M, Guillemin GJ, Comai S, Bosia M. Importance of the dysregulation of the kynurenine pathway on cognition in schizophrenia: a systematic review of clinical studies. Eur Arch Psychiatry Clin Neurosci. 2023;273:1317–28. PubMed DOI
Moore H, Jentsch JD, Ghajarnia M, Geyer MA, Grace AA. A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on e17: implications for the neuropathology of schizophrenia. Biol Psychiatry. 2006;60:253–64. PubMed DOI PMC
Micale V, Kucerova J, Sulcova A. Leading compounds for the validation of animal models of psychopathology. Cell Tissue Res. 2013;354:309–30. PubMed DOI
Stark T, Di Bartolomeo M, Di Marco R, Drazanova E, Platania CBM, Iannotti FA, et al. Altered dopamine D3 receptor gene expression in MAM model of schizophrenia is reversed by peripubertal cannabidiol treatment. Biochem Pharmacol. 2020;177:114004. PubMed DOI
Stark T, Ruda-Kucerova J, Iannotti FA, D’Addario C, Di Marco R, Pekarik V, et al. Peripubertal cannabidiol treatment rescues behavioral and neurochemical abnormalities in the MAM model of schizophrenia. Neuropharmacology. 2019;146:212–21. PubMed DOI
Stark T, Iannotti FA, Di Martino S, Di Bartolomeo M, Ruda-Kucerova J, Piscitelli F, et al. Early Blockade of CB1 Receptors ameliorates Schizophrenia-like alterations in the neurodevelopmental MAM Model of Schizophrenia. Biomolecules. 2022;12:108. PubMed DOI PMC
Ruda-Kucerova J, Babinska Z, Amchova P, Stark T, Drago F, Sulcova A, et al. Reactivity to addictive drugs in the methylazoxymethanol (MAM) model of schizophrenia in male and female rats. World J Biol Psychiatry. 2017;18:129–42. PubMed DOI
Večeřa J, Bártová E, Krejčí J, Legartová S, Komůrková D, Rudá-Kučerová J, et al. HDAC1 and HDAC3 underlie dynamic H3K9 acetylation during embryonic neurogenesis and in schizophrenia-like animals. J Cell Physiol. 2018;233:530–48. PubMed DOI
Kucera J, Horska K, Hruska P, Kuruczova D, Micale V, Ruda-Kucerova J, et al. Interacting effects of the MAM model of schizophrenia and antipsychotic treatment: untargeted proteomics approach in adipose tissue. Prog Neuropsychopharmacol Biol Psychiatry. 2021;108:110165. PubMed DOI
Horska K, Skrede S, Kucera J, Kuzminova G, Suchy P, Micale V, Ruda-Kucerova J. Olanzapine, but not haloperidol, exerts pronounced acute metabolic effects in the methylazoxymethanol rat model. CNS Neurosci Ther. 2024;30:e14565. PubMed DOI PMC
Di Bartolomeo M, Stark T, Maurel OM, Iannotti FA, Kuchar M, Ruda-Kucerova J, et al. Crosstalk between the transcriptional regulation of dopamine D2 and cannabinoid CB1 receptors in schizophrenia: analyses in patients and in perinatal ∆9-tetrahydrocannabinol-exposed rats. Pharmacol Res. 2021;164:105357. PubMed DOI
Valenti O, Cifelli P, Gill KM, Grace AA. Antipsychotic drugs rapidly induce dopamine neuron depolarization block in a developmental rat model of schizophrenia. J Neurosci. 2011;12330–8.
Uttl L, Szczurowska E, Hájková K, Horsley RR, Štefková K, Hložek T, et al. Behavioral and pharmacokinetic Profile of Indole-Derived Synthetic cannabinoids JWH-073 and JWH-210 as compared to the Phytocannabinoid ∆9-THC in rats. Front Neurosci. 2018;12:703. PubMed DOI PMC
Ieraci A, Beggiato S, Ferraro L, Barbieri SS, Popoli M. Kynurenine pathway is altered in BDNF Val66Met knock-in mice: Effect of physical exercise. Brain Behav Immun. 2020;89:440–50. PubMed DOI
Wright CJ, Rentschler KM, Wagner NTJ, Lewis AM, Beggiato S, Pocivavsek A. Time of day-dependent alterations in hippocampal kynurenic acid, glutamate, and GABA in adult rats exposed to elevated Kynurenic Acid during Neurodevelopment. Front Psychiatry. 2021;12:734984. PubMed DOI PMC
Mar AC, Nilsson SRO, Gamallo-Lana B, Lei M, Dourado T, Alsiö J, et al. MAM-E17 rat model impairments on a novel continuous performance task: effects of potential cognitive enhancing drugs. Psychopharmacology. 2017;234:2837–57. PubMed DOI PMC
Ratajczak P, Wozniak A, Nowakowska E. Animal models of schizophrenia: developmental preparation in rats. Acta Neurobiol Exp (Wars). 2013;73:472–84. PubMed DOI
Volk DW, Lewis DA. The role of Endocannabinoid Signaling in cortical inhibitory neuron dysfunction in Schizophrenia. Biol Psychiatry. 2016;79:595–603. PubMed DOI
Fakhoury M. Role of the Endocannabinoid System in the pathophysiology of Schizophrenia. Mol Neurobiol. 2017;54:768–78. PubMed DOI
Garani R, Watts JJ, Mizrahi R. Endocannabinoid system in psychotic and mood disorders, a review of human studies. Prog Neuropsychopharmacol Biol Psychiatry. 2021;106:110096. PubMed DOI
Gomes FV, Guimarães FS, Grace AA. Effects of pubertal cannabinoid administration on attentional set-shifting and dopaminergic hyper-responsivity in a developmental disruption model of schizophrenia. Int J Neuropsychopharmacol. 2014;18:pyu018. PubMed
Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res. 1988;31:47–59. PubMed DOI
Young JW, Zhou X, Geyer MA. Animal models of schizophrenia. Curr Top Behav Neurosci. 2010;4:391–433. PubMed DOI
Liu XC, Holtze M, Powell SB, Terrando N, Larsson MK, Persson A, et al. Behavioral disturbances in adult mice following neonatal virus infection or kynurenine treatment–role of brain kynurenic acid. Brain Behav Immun. 2014;36:80–9. PubMed DOI
DeAngeli NE, Todd TP, Chang SE, Yeh HH, Yeh PW, Bucci DJ. Exposure to Kynurenic Acid during Adolescence increases sign-tracking and impairs long-term potentiation in Adulthood. Front Behav Neurosci. 2015;8:451. PubMed DOI PMC
Notarangelo FM, Pocivavsek A. Elevated kynurenine pathway metabolism during neurodevelopment: implications for brain and behavior. Neuropharmacology. 2017;112:275–85. PubMed DOI
Pocivavsek A, Elmer GI, Schwarcz R. Inhibition of kynurenine aminotransferase II attenuates hippocampus-dependent memory deficit in adult rats treated prenatally with kynurenine. Hippocampus. 2019;29:73–7. PubMed DOI
Milosavljevic S, Smith AK, Wright CJ, Valafar H, Pocivavsek A. Kynurenine aminotransferase II inhibition promotes sleep and rescues impairments induced by neurodevelopmental insult. Transl Psychiatry. 2023;13:106. PubMed DOI PMC
Zádor F, Nagy-Grócz G, Dvorácskó S, Bohár Z, Cseh EK, Zádori D, Párdutz Á, et al. Long-term systemic administration of kynurenic acid brain region specifically elevates the abundance of functional CB(1) receptors in rats. Neurochem Int. 2020;138:104752. PubMed DOI
Zádor F, Nagy-Grócz G, Kekesi G, Dvorácskó S, Szűcs E, Tömböly C, et al. Kynurenines and the Endocannabinoid System in Schizophrenia: common points and potential interactions. Molecules. 2019;24:3709. PubMed DOI PMC
Young JW, Powell SB, Risbrough V, Marston HM, Geyer MA. Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol Ther. 2009;122:150–202. PubMed DOI PMC
Baldez DP, Biazus TB, Rabelo-da-Ponte FD, Nogaro GP, Martins DS, Signori JPS et al. Haloperidol versus second-generation antipsychotics on the cognitive performance of individuals with schizophrenia and related disorders: pairwise meta-analysis of randomized controlled trials. Trends Psychiatry Psychother. 2023;Jul 25.
Brown JW, Whitehead CA, Basso AM, Rueter LE, Zhang M. Preclinical evaluation of non-imidazole histamine H3 receptor antagonists in comparison to atypical antipsychotics for the treatment of cognitive deficits associated with schizophrenia. Int J Neuropsychopharmacol. 2013;16(4):889–904. PubMed DOI
Pratt JA, Winchester C, Egerton A, Cochran SM, Morris BJ. Modelling prefrontal cortex deficits in schizophrenia: implications for treatment. Br J Pharmacol. 2008;153(Suppl 1):S465–70. PubMed PMC
Baldez DP, Biazus TB, Rabelo-da-Ponte FD, Nogaro GP, Martins DS, Kunz M, et al. The effect of antipsychotics on the cognitive performance of individuals with psychotic disorders: Network meta-analyses of randomized controlled trials. Neurosci Biobehav Rev. 2021;126:265–75. PubMed DOI
Erhardt S, Schwieler L, Emanuelsson C, Geyer M. Endogenous kynurenic acid disrupts prepulse inhibition. Biol Psychiatry. 2004;56:255–60. PubMed DOI
Hilmas C, Pereira EFR, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX. The Brain Metabolite Kynurenic Acid inhibits α7 nicotinic receptor activity and increases Non-α7 nicotinic receptor expression: physiopathological implications. J Neurosci. 2001;21:7463–73. PubMed DOI PMC
Parsons CG, Danysz W, Quack G, Hartmann S, Lorenz B, Wollenburg C, et al. Novel systemically active antagonists of the glycine site of the N-methyl-D-aspartate receptor: electrophysiological, biochemical and behavioral characterization. J Pharmacol Exp Ther. 1997;283:1264–75. PubMed