Vitamin D: Current Challenges between the Laboratory and Clinical Practice

. 2021 May 21 ; 13 (6) : . [epub] 20210521

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34064098

Grantová podpora
MH CZ-DRO [Institute of Endocrinology, 00023761] Czech Ministry of Health

Vitamin D is a micronutrient with pleiotropic effects in humans. Due to sedentary lifestyles and increasing time spent indoors, a growing body of research is revealing that vitamin D deficiency is a global problem. Despite the routine measurement of vitamin D in clinical laboratories and many years of efforts, methods of vitamin D analysis have yet to be standardized and are burdened with significant difficulties. This review summarizes several key analytical and clinical challenges that accompany the current methods for measuring vitamin D. According to an external quality assessment, methods and laboratories still produce a high degree of variability. Structurally similar metabolites are a source of significant interference. Furthermore, there is still no consensus on the normal values of vitamin D in a healthy population. These and other problems discussed herein can be a source of inconsistency in the results of research studies.

Zobrazit více v PubMed

Hewison M., Burke F., Evans K.N., Lammas D.A., Sansom D.M., Liu P., Modlin R.L., Adams J.S. Extra-renal 25-hydroxyvitamin D3-1alpha-hydroxylase in human health and disease. J. Steroid Biochem. Mol. Biol. 2007;103:316–321. doi: 10.1016/j.jsbmb.2006.12.078. PubMed DOI

Norman A.W. Minireview: Vitamin D receptor: New assignments for an already busy receptor. Endocrinology. 2006;147:5542–5548. doi: 10.1210/en.2006-0946. PubMed DOI

Strange R.C., Shipman K.E., Ramachandran S. Metabolic syndrome: A review of the role of vitamin D in mediating susceptibility and outcome. World J. Diabetes. 2015;6:896–911. doi: 10.4239/wjd.v6.i7.896. PubMed DOI PMC

Christakos S., Dhawan P., Verstuyf A., Verlinden L., Carmeliet G. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 2016;96:365–408. doi: 10.1152/physrev.00014.2015. PubMed DOI PMC

DeLuca G.C., Kimball S.M., Kolasinski J., Ramagopalan S.V., Ebers G.C. Review: The role of vitamin D in nervous system health and disease. Neuropathol. Appl. Neurobiol. 2013;39:458–484. doi: 10.1111/nan.12020. PubMed DOI

Bicikova M., Macova L., Ostatnikova D., Hanzlikova L. Vitamin D in autistic children and healthy controls. Physiol. Res. 2019;68:317–320. doi: 10.33549/physiolres.933902. PubMed DOI

Mohan M., Cherian J.J., Sharma A. Exploring links between vitamin D deficiency and COVID-19. PLoS Pathog. 2020;16:e1008874. doi: 10.1371/journal.ppat.1008874. PubMed DOI PMC

Grant W.B., Lahore H., McDonnell S.L., Baggerly C.A., French C.B., Aliano J.L., Bhattoa H.P. Evidence that vitamin d supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020;12:988. doi: 10.3390/nu12040988. PubMed DOI

Wimalawansa S.J. Non-musculoskeletal benefits of vitamin D. J. Steroid Biochem. Mol. Biol. 2018;175:60–81. doi: 10.1016/j.jsbmb.2016.09.016. PubMed DOI

Tuckey R.C., Cheng C.Y.S., Slominski A.T. The serum vitamin D metabolome: What we know and what is still to discover. J. Steroid Biochem. Mol. Biol. 2019;186:4–21. doi: 10.1016/j.jsbmb.2018.09.003. PubMed DOI PMC

Jenkinson C. The vitamin D metabolome: An update on analysis and function. Cell Biochem. Funct. 2019;37:408–423. doi: 10.1002/cbf.3421. PubMed DOI

Zehnder D., Evans K.N., Kilby M.D., Bulmer J.N., Innes B.A., Stewart P.M., Hewison M. The ontogeny of 25-hydroxyvitamin D(3) 1alpha-hydroxylase expression in human placenta and decidua. Am. J. Pathol. 2002;161:105–114. doi: 10.1016/S0002-9440(10)64162-4. PubMed DOI PMC

Adams J.S., Rafison B., Witzel S., Reyes R.E., Shieh A., Chun R., Zavala K., Hewison M., Liu P.T. Regulation of the extrarenal CYP27B1-hydroxylase. J. Steroid Biochem. Mol. Biol. 2014;144:22–27. doi: 10.1016/j.jsbmb.2013.12.009. PubMed DOI PMC

Al-Zohily B., Al-Menhali A., Gariballa S., Haq A., Shah I. Epimers of Vitamin D: A Review. Int. J. Mol. Sci. 2020;21:470. doi: 10.3390/ijms21020470. PubMed DOI PMC

Kamao M., Tatematsu S., Hatakeyama S., Sakaki T., Sawada N., Inouye K., Ozono K., Kubodera N., Reddy G.S., Okano T. C-3 epimerization of vitamin D3 metabolites and further metabolism of C-3 epimers: 25-hydroxyvitamin D3 is metabolized to 3-epi-25-hydroxyvitamin D3 and subsequently metabolized through C-1alpha or C-24 hydroxylation. J. Biol. Chem. 2004;279:15897–15907. doi: 10.1074/jbc.M311473200. PubMed DOI

Mydtskov N.D., Lykkedegn S., Fruekilde P.B.N., Nielsen J., Barington T., Christesen H.T. S-25-hydroxyvitamin D and C3-epimers in pregnancy and infancy: An Odense Child Cohort study. Clin. Biochem. 2017;50:988–996. doi: 10.1016/j.clinbiochem.2017.07.001. PubMed DOI

Singh R.J., Taylor R.L., Reddy G.S., Grebe S.K. C-3 epimers can account for a significant proportion of total circulating 25-hydroxyvitamin D in infants, complicating accurate measurement and interpretation of vitamin D status. J. Clin. Endocrinol. Metab. 2006;91:3055–3061. doi: 10.1210/jc.2006-0710. PubMed DOI

Glendenning P., Inderjeeth C.A. Controversy and consensus regarding vitamin D: Recent methodological changes and the risks and benefits of vitamin D supplementation. Crit. Rev. Clin. Lab. Sci. 2016;53:13–28. doi: 10.3109/10408363.2015.1074157. PubMed DOI

Li D., Jeffery L.E., Jenkinson C., Harrison S.R., Chun R.F., Adams J.S., Raza K., Hewison M. Serum and synovial fluid vitamin D metabolites and rheumatoid arthritis. J. Steroid Biochem. Mol. Biol. 2019;187:1–8. doi: 10.1016/j.jsbmb.2018.10.008. PubMed DOI PMC

Molnar F., Sigueiro R., Sato Y., Araujo C., Schuster I., Antony P., Peluso J., Muller C., Mourino A., Moras D., et al. 1alpha,25(OH)2-3-epi-vitamin D3, a natural physiological metabolite of vitamin D3: Its synthesis, biological activity and crystal structure with its receptor. PLoS ONE. 2011;6:e18124. doi: 10.1371/journal.pone.0018124. PubMed DOI PMC

Pauwels S., Jans I., Billen J., Heijboer A., Verstuyf A., Carmeliet G., Mathieu C., Maestro M., Waelkens E., Evenepoel P., et al. 1β,25-Dihydroxyvitamin D(3): A new vitamin D metabolite in human serum. J. Steroid Biochem. Mol. Biol. 2017;173:341–348. doi: 10.1016/j.jsbmb.2017.02.004. PubMed DOI

Wang Z., Senn T., Kalhorn T., Zheng X.E., Zheng S., Davis C.L., Hebert M.F., Lin Y.S., Thummel K.E. Simultaneous measurement of plasma vitamin D(3) metabolites, including 4β,25-dihydroxyvitamin D(3), using liquid chromatography-tandem mass spectrometry. Anal. Biochem. 2011;418:126–133. doi: 10.1016/j.ab.2011.06.043. PubMed DOI PMC

O’Brien K.O., Li S., Cao C., Kent T., Young B.V., Queenan R.A., Pressman E.K., Cooper E.M. Placental CYP27B1 and CYP24A1 expression in human placental tissue and their association with maternal and neonatal calcitropic hormones. J. Clin. Endocrinol. Metab. 2014;99:1348–1356. doi: 10.1210/jc.2013-1366. PubMed DOI PMC

Landel V., Stephan D., Cui X., Eyles D., Feron F. Differential expression of vitamin D-associated enzymes and receptors in brain cell subtypes. J. Steroid Biochem. Mol. Biol. 2018;177:129–134. doi: 10.1016/j.jsbmb.2017.09.008. PubMed DOI

Jones G., Prosser D.E., Kaufmann M. 25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): Its important role in the degradation of vitamin D. Arch. Biochem. Biophys. 2012;523:9–18. doi: 10.1016/j.abb.2011.11.003. PubMed DOI

Sakaki T., Sawada N., Komai K., Shiozawa S., Yamada S., Yamamoto K., Ohyama Y., Inouye K. Dual metabolic pathway of 25-hydroxyvitamin D3 catalyzed by human CYP24. Eur. J. Biochem. 2000;267:6158–6165. doi: 10.1046/j.1432-1327.2000.01680.x. PubMed DOI

Stern P.H., Rappaport M.S., Mayer E., Norman A.W. 24-Oxo and 26,23-lactone metabolites of 1,25-dihydroxyvitamin D3 have direct bone-resorbing activity. Arch. Biochem. Biophys. 1984;230:424–429. doi: 10.1016/0003-9861(84)90422-3. PubMed DOI

Leeuwenkamp O.R., van der Wiel H.E., Lips P., van der Vijgh W.J., Barto R., Greuter H., Netelenbos J.C. Human pharmacokinetics of orally administered (24 R)-hydroxycalcidiol. Eur. J. Clin. Chem. Clin. Biochem. 1993;31:419–426. doi: 10.1515/cclm.1993.31.7.419. PubMed DOI

St-Arnaud R., Naja R.P. Vitamin D metabolism, cartilage and bone fracture repair. Mol. Cell. Endocrinol. 2011;347:48–54. doi: 10.1016/j.mce.2011.05.018. PubMed DOI

Zou M., BinHumaid F.S., Alzahrani A.S., Baitei E.Y., Al-Mohanna F.A., Meyer B.F., Shi Y. Increased CYP24A1 expression is associated with BRAF(V600E) mutation and advanced stages in papillary thyroid carcinoma. Clin. Endocrinol. 2014;81:109–116. doi: 10.1111/cen.12396. PubMed DOI

Welsh J. Function of the vitamin D endocrine system in mammary gland and breast cancer. Mol. Cell. Endocrinol. 2017;453:88–95. doi: 10.1016/j.mce.2017.04.026. PubMed DOI PMC

Dong L.M., Ulrich C.M., Hsu L., Duggan D.J., Benitez D.S., White E., Slattery M.L., Farin F.M., Makar K.W., Carlson C.S., et al. Vitamin D related genes, CYP24A1 and CYP27B1, and colon cancer risk. Cancer Epidemiol. Biomark. Prev. 2009;18:2540–2548. doi: 10.1158/1055-9965.EPI-09-0228. PubMed DOI PMC

Höbaus J., Hummel D.M., Thiem U., Fetahu I.S., Aggarwal A., Müllauer L., Heller G., Egger G., Mesteri I., Baumgartner-Parzer S., et al. Increased copy-number and not DNA hypomethylation causes overexpression of the candidate proto-oncogene CYP24A1 in colorectal cancer. Int. J. Cancer. 2013;133:1380–1388. doi: 10.1002/ijc.28143. PubMed DOI PMC

Albertson D.G., Ylstra B., Segraves R., Collins C., Dairkee S.H., Kowbel D., Kuo W.L., Gray J.W., Pinkel D. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat. Genet. 2000;25:144–146. doi: 10.1038/75985. PubMed DOI

Kríz L., Bicíková M., Hampl R. Roles of steroid sulfatase in brain and other tissues. Physiol. Res. 2008;57:657–668. doi: 10.33549/physiolres.931207. PubMed DOI

Wong T., Wang Z., Chapron B.D., Suzuki M., Claw K.G., Gao C., Foti R.S., Prasad B., Chapron A., Calamia J., et al. Polymorphic human sulfotransferase 2A1 mediates the formation of 25-Hydroxyvitamin D(3)-3-O-Sulfate, a major circulating vitamin D metabolite in humans. Drug Metab. Dispos. 2018;46:367–379. doi: 10.1124/dmd.117.078428. PubMed DOI PMC

Axelson M. 25-Hydroxyvitamin D3 3-sulphate is a major circulating form of vitamin D in man. FEBS Lett. 1985;191:171–175. doi: 10.1016/0014-5793(85)80002-8. PubMed DOI

Gomes F.P., Shaw P.N., Hewavitharana A.K. Determination of four sulfated vitamin D compounds in human biological fluids by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B. 2016;1009–1010:80–86. doi: 10.1016/j.jchromb.2015.12.014. PubMed DOI

Gao X.R., Wang C.M., Wang W.J., Han G.R., Zhang J.Q. Serum 25-hydroxyvitamin D status in pregnant women with chronic hepatitis B virus infection. J. Infect. Dev. Ctries. 2016;10:851–856. doi: 10.3855/jidc.6600. PubMed DOI

Huynh K., Kempegowda P., Tamblyn J., MW O.R., Mueller J.W., Hewison M., Jenkinson C. Development of a LC-MS/MS method to measure serum 3-sulfate and 3-glucuronide 25-hydroxyvitamin D3 metabolites; comparisons to unconjugated 25OHD in pregnancy and polycystic ovary syndrome. Steroids. 2021;169:108812. doi: 10.1016/j.steroids.2021.108812. PubMed DOI

Ogawa S., Ooki S., Shinoda K., Higashi T. Analysis of urinary vitamin D₃ metabolites by liquid chromatography/tandem mass spectrometry with ESI-enhancing and stable isotope-coded derivatization. Anal. Bioanal. Chem. 2014;406:6647–6654. doi: 10.1007/s00216-014-8095-y. PubMed DOI

Bikle D.D., Siiteri P.K., Ryzen E., Haddad J.G. Serum protein binding of 1,25-dihydroxyvitamin D: A reevaluation by direct measurement of free metabolite levels. J. Clin. Endocrinol. Metab. 1985;61:969–975. doi: 10.1210/jcem-61-5-969. PubMed DOI

Bikle D.D., Halloran B.P., Gee E., Ryzen E., Haddad J.G. Free 25-hydroxyvitamin D levels are normal in subjects with liver disease and reduced total 25-hydroxyvitamin D levels. J. Clin. Investig. 1986;78:748–752. doi: 10.1172/JCI112636. PubMed DOI PMC

Bikle D.D., Malmstroem S., Schwartz J. Current controversies: Are free vitamin metabolite levels a more accurate assessment of vitamin D status than total levels? Endocrinol. Metab. Clin. N. Am. 2017;46:901–918. doi: 10.1016/j.ecl.2017.07.013. PubMed DOI PMC

Tsuprykov O., Chen X., Hocher C.F., Skoblo R., Lianghong Y., Hocher B. Why should we measure free 25(OH) vitamin D? J. Steroid Biochem. Mol. Biol. 2018;180:87–104. doi: 10.1016/j.jsbmb.2017.11.014. PubMed DOI

Kim H.J., Ji M., Song J., Moon H.W., Hur M., Yun Y.M. Clinical utility of measurement of vitamin D-binding protein and calculation of bioavailable vitamin D in assessment of vitamin D status. Ann. Lab. Med. 2017;37:34–38. doi: 10.3343/alm.2017.37.1.34. PubMed DOI PMC

Bhan I., Powe C.E., Berg A.H., Ankers E., Wenger J.B., Karumanchi S.A., Thadhani R.I. Bioavailable vitamin D is more tightly linked to mineral metabolism than total vitamin D in incident hemodialysis patients. Kidney Int. 2012;82:84–89. doi: 10.1038/ki.2012.19. PubMed DOI PMC

Silva M.C., Furlanetto T.W. Intestinal absorption of vitamin D: A systematic review. Nutr. Rev. 2018;76:60–76. doi: 10.1093/nutrit/nux034. PubMed DOI

Borel P., Caillaud D., Cano N.J. Vitamin D bioavailability: State of the art. Crit. Rev. Food Sci. Nutr. 2015;55:1193–1205. doi: 10.1080/10408398.2012.688897. PubMed DOI

Shah I., Petroczi A., Naughton D.P. Exploring the role of vitamin D in type 1 diabetes, rheumatoid arthritis, and Alzheimer disease: New insights from accurate analysis of 10 forms. J. Clin. Endocrinol. Metab. 2014;99:808–816. doi: 10.1210/jc.2013-2872. PubMed DOI

Wagner D., Hanwell H.E., Schnabl K., Yazdanpanah M., Kimball S., Fu L., Sidhom G., Rousseau D., Cole D.E., Vieth R. The ratio of serum 24,25-dihydroxyvitamin D(3) to 25-hydroxyvitamin D(3) is predictive of 25-hydroxyvitamin D(3) response to vitamin D(3) supplementation. J. Steroid Biochem. Mol. Biol. 2011;126:72–77. doi: 10.1016/j.jsbmb.2011.05.003. PubMed DOI

Lipkie T.E., Janasch A., Cooper B.R., Hohman E.E., Weaver C.M., Ferruzzi M.G. Quantification of vitamin D and 25-hydroxyvitamin D in soft tissues by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B. 2013;932:6–11. doi: 10.1016/j.jchromb.2013.05.029. PubMed DOI PMC

Fu X., Dolnikowski G.G., Patterson W.B., Dawson-Hughes B., Zheng T., Morris M.C., Holland T.M., Booth S.L. Determination of vitamin D and its metabolites in human brain using an ultra-pressure lc-tandem mass spectra method. Curr. Dev. Nutr. 2019;3:nzz074. doi: 10.1093/cdn/nzz074. PubMed DOI PMC

Kiely M., O’Donovan S.M., Kenny L.C., Hourihane J.O., Irvine A.D., Murray D.M. Vitamin D metabolite concentrations in umbilical cord blood serum and associations with clinical characteristics in a large prospective mother-infant cohort in Ireland. J. Steroid Biochem. Mol. Biol. 2017;167:162–168. doi: 10.1016/j.jsbmb.2016.12.006. PubMed DOI

Wierzejska R., Jarosz M., Sawicki W., Bachanek M., Siuba-Strzelińska M. Vitamin D concentration in maternal and umbilical cord blood by season. Int. J. Environ. Res. Public Health. 2017;14:1121. doi: 10.3390/ijerph14101121. PubMed DOI PMC

Sogawa E., Kaji T., Nakayama S., Yoshida A., Yonetani N., Maeda K., Yasui T., Irahara M. Seasonal variation of serum 25(OH) vitamin D levels in maternal and umbilical cord blood in Japanese women. J. Med. Investig. 2019;66:128–133. doi: 10.2152/jmi.66.128. PubMed DOI

Le J., Yuan T.F., Geng J.Q., Wang S.T., Li Y., Zhang B.H. Acylation derivatization based LC-MS analysis of 25-hydroxyvitamin D from finger-prick blood. J. Lipid Res. 2019;60:1058–1064. doi: 10.1194/jlr.D092197. PubMed DOI PMC

Ron M., Menczel J., Schwartz L., Palti Z., Kidroni G. Vitamin D3 metabolites in amniotic fluid in relation with maternal and fetal sera in term pregnancies. J. Perinat. Med. 1987;15:282–290. doi: 10.1515/jpme.1987.15.3.282. PubMed DOI

Le J., Yuan T.F., Zhang Y., Wang S.T., Li Y. New LC-MS/MS method with single-step pretreatment analyzes fat-soluble vitamins in plasma and amniotic fluid. J. Lipid Res. 2018;59:1783–1790. doi: 10.1194/jlr.D087569. PubMed DOI PMC

Balabanova S., Richter H.P., Antoniadis G., Homoki J., Kremmer N., Hanle J., Teller W.M. 25-Hydroxyvitamin D, 24, 25-dihydroxyvitamin D and 1,25-dihydroxyvitamin D in human cerebrospinal fluid. Klin. Wochenschr. 1984;62:1086–1090. doi: 10.1007/BF01711378. PubMed DOI

Kaufmann M., Gallagher J.C., Peacock M., Schlingmann K.P., Konrad M., DeLuca H.F., Sigueiro R., Lopez B., Mourino A., Maestro M., et al. Clinical utility of simultaneous quantitation of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D by LC-MS/MS involving derivatization with DMEQ-TAD. J. Clin. Endocrinol. Metab. 2014;99:2567–2574. doi: 10.1210/jc.2013-4388. PubMed DOI PMC

Yu S., Zhou W., Wang D., Yin Y., Cheng Q., Xie S., Sun D., Li H., Cheng X., Qiu L. Rapid liquid chromatography-tandem mass spectrometry method for determination of 24,25(OH)(2)D and 25OHD with efficient separation of 3-epi analogs. J. Steroid Biochem. Mol. Biol. 2019;187:146–151. doi: 10.1016/j.jsbmb.2018.11.012. PubMed DOI

Bailey D., Veljkovic K., Yazdanpanah M., Adeli K. Analytical measurement and clinical relevance of vitamin D(3) C3-epimer. Clin. Biochem. 2013;46:190–196. doi: 10.1016/j.clinbiochem.2012.10.037. PubMed DOI

Rhodes C.J., Claridge P.A., Trafford D.J., Makin H.L. An evaluation of the use of Sep-Pak C18 cartridges for the extraction of vitamin D3 and some of its metabolites from plasma and urine. J. Steroid Biochem. 1983;19:1349–1354. doi: 10.1016/0022-4731(83)90162-0. PubMed DOI

Alvarez J.C., De Mazancourt P. Rapid and sensitive high-performance liquid chromatographic method for simultaneous determination of retinol, alpha-tocopherol, 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human plasma with photodiode-array ultraviolet detection. J. Chromatogr. B. 2001;755:129–135. doi: 10.1016/S0378-4347(01)00047-0. PubMed DOI

Jafri L., Khan A.H., Siddiqui A.A., Mushtaq S., Iqbal R., Ghani F., Siddiqui I. Comparison of high performance liquid chromatography, radio immunoassay and electrochemiluminescence immunoassay for quantification of serum 25 hydroxy vitamin D. Clin. Biochem. 2011;44:864–868. doi: 10.1016/j.clinbiochem.2011.04.020. PubMed DOI

Hymøller L., Jensen S.K. Vitamin D analysis in plasma by high performance liquid chromatography (HPLC) with C(30) reversed phase column and UV detection—easy and acetonitrile-free. J. Chromatogr. A. 2011;1218:1835–1841. doi: 10.1016/j.chroma.2011.02.004. PubMed DOI

Stepman H.C., Vanderroost A., Van Uytfanghe K., Thienpont L.M. Candidate reference measurement procedures for serum 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 by using isotope-dilution liquid chromatography-tandem mass spectrometry. Clin. Chem. 2011;57:441–448. doi: 10.1373/clinchem.2010.152553. PubMed DOI

Tai S.S., Bedner M., Phinney K.W. Development of a candidate reference measurement procedure for the determination of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal. Chem. 2010;82:1942–1948. doi: 10.1021/ac9026862. PubMed DOI PMC

Franke A.A., Morrison C.M., Custer L.J., Li X., Lai J.F. Simultaneous analysis of circulating 25-hydroxy-vitamin D3, 25-hydroxy-vitamin D2, retinol, tocopherols, carotenoids, and oxidized and reduced coenzyme Q10 by high performance liquid chromatography with photo diode-array detection using C18 and C30 columns alone or in combination. J. Chromatogr. A. 2013;1301:1–9. doi: 10.1016/j.chroma.2013.05.027. PubMed DOI PMC

Yazdanpanah M., Bailey D., Walsh W., Wan B., Adeli K. Analytical measurement of serum 25-OH-vitamin D₃, 25-OH-vitamin D₂ and their C3-epimers by LC-MS/MS in infant and pediatric specimens. Clin. Biochem. 2013;46:1264–1271. doi: 10.1016/j.clinbiochem.2012.11.030. PubMed DOI

Geib T., Meier F., Schorr P., Lammert F., Stokes C.S., Volmer D.A. A simple micro-extraction plate assay for automated LC-MS/MS analysis of human serum 25-hydroxyvitamin D levels. J. Mass Spectrom. 2015;50:275–279. doi: 10.1002/jms.3522. PubMed DOI

Rola R., Kowalski K., Bieńkowski T., Kołodyńska-Goworek A., Studzińska S. Development of a method for multiple vitamin D metabolite measurements by liquid chromatography coupled with tandem mass spectrometry in dried blood spots. Analyst. 2018;144:299–309. doi: 10.1039/C8AN01422A. PubMed DOI

Binkley N., Krueger D., Cowgill C.S., Plum L., Lake E., Hansen K.E., DeLuca H.F., Drezner M.K. Assay variation confounds the diagnosis of hypovitaminosis D: A call for standardization. J. Clin. Endocrinol. Metab. 2004;89:3152–3157. doi: 10.1210/jc.2003-031979. PubMed DOI

Sklan D., Budowski P. Simple separation of vitamins D from sterols and retinol by argentation thin-layer chromatography. Anal. Chem. 1973;45:200–201. doi: 10.1021/ac60323a045. PubMed DOI

Eisman J.A., Shepard R.M., DeLuca H.F. Determination of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in human plasma using high-pressure liquid chromatography. Anal. Biochem. 1977;80:298–305. doi: 10.1016/0003-2697(77)90648-0. PubMed DOI

Müller M.J., Volmer D.A. Mass spectrometric profiling of vitamin D metabolites beyond 25-hydroxyvitamin D. Clin. Chem. 2015;61:1033–1048. doi: 10.1373/clinchem.2015.241430. PubMed DOI

Jones G., Kaufmann M. Vitamin D metabolite profiling using liquid chromatography-tandem mass spectrometry (LC-MS/MS) J. Steroid Biochem. Mol. Biol. 2016;164:110–114. doi: 10.1016/j.jsbmb.2015.09.026. PubMed DOI

Wan D., Yang J., Barnych B., Hwang S.H., Lee K.S., Cui Y., Niu J., Watsky M.A., Hammock B.D. A new sensitive LC/MS/MS analysis of vitamin D metabolites using a click derivatization reagent, 2-nitrosopyridine. J. Lipid Res. 2017;58:798–808. doi: 10.1194/jlr.D073536. PubMed DOI PMC

Mineva E.M., Schleicher R.L., Chaudhary-Webb M., Maw K.L., Botelho J.C., Vesper H.W., Pfeiffer C.M. A candidate reference measurement procedure for quantifying serum concentrations of 25-hydroxyvitamin D₃ and 25-hydroxyvitamin D₂ using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2015;407:5615–5624. doi: 10.1007/s00216-015-8733-z. PubMed DOI PMC

Tai S.S., Nelson M.A. Candidate reference measurement procedure for the determination of (24R),25-Dihydroxyvitamin D3 in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal. Chem. 2015;87:7964–7970. doi: 10.1021/acs.analchem.5b01861. PubMed DOI

Cashman K.D., Kiely M., Kinsella M., Durazo-Arvizu R.A., Tian L., Zhang Y., Lucey A., Flynn A., Gibney M.J., Vesper H.W., et al. Evaluation of vitamin D Standardization Program protocols for standardizing serum 25-hydroxyvitamin D data: A case study of the program’s potential for national nutrition and health surveys. Am. J. Clin. Nutr. 2013;97:1235–1242. doi: 10.3945/ajcn.112.057182. PubMed DOI PMC

Tian L., Durazo-Arvizu R.A., Myers G., Brooks S., Sarafin K., Sempos C.T. The estimation of calibration equations for variables with heteroscedastic measurement errors. Stat. Med. 2014;33:4420–4436. doi: 10.1002/sim.6235. PubMed DOI

Binkley N., Dawson-Hughes B., Durazo-Arvizu R., Thamm M., Tian L., Merkel J.M., Jones J.C., Carter G.D., Sempos C.T. Vitamin D measurement standardization: The way out of the chaos. J. Steroid Biochem. Mol. Biol. 2017;173:117–121. doi: 10.1016/j.jsbmb.2016.12.002. PubMed DOI

Burdette C.Q., Camara J.E., Nalin F., Pritchett J., Sander L.C., Carter G.D., Jones J., Betz J.M., Sempos C.T., Wise S.A. Establishing an accuracy basis for the vitamin D External Quality Assessment Scheme (DEQAS) J. AOAC Int. 2017;100:1277–1287. doi: 10.5740/jaoacint.17-0306. PubMed DOI

Carter G.D., Berry J., Durazo-Arvizu R., Gunter E., Jones G., Jones J., Makin H.L.J., Pattni P., Phinney K.W., Sempos C.T., et al. Quality assessment of vitamin D metabolite assays used by clinical and research laboratories. J. Steroid Biochem. Mol. Biol. 2017;173:100–104. doi: 10.1016/j.jsbmb.2017.03.010. PubMed DOI

DEQAS. [(accessed on 12 February 2021)]; Available online: http://www.deqas.org.

NIST. [(accessed on 12 February 2021)]; Available online: https://www.nist.gov/programs-projects/vitamin-d-metabolites-quality-assurance-program.

SEKK. [(accessed on 21 March 2021)]; Available online: www.sekk.cz.

Bivona G., Agnello L., Ciaccio M. Vitamin D and immunomodulation: Is it time to change the reference values? Ann. Clin. Lab. Sci. 2017;47:508–510. PubMed

von Hurst P.R., Stonehouse W., Coad J. Vitamin D supplementation reduces insulin resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D deficient—A randomised, placebo-controlled trial. Br. J. Nutr. 2010;103:549–555. doi: 10.1017/S0007114509992017. PubMed DOI

Boucher B.J. Why do so many trials of vitamin D supplementation fail? Endocr. Connect. 2020;9:R195–R206. doi: 10.1530/EC-20-0274. PubMed DOI PMC

Hollis B.W., Wagner C.L. New insights into the vitamin D requirements during pregnancy. Bone Res. 2017;5:17030. doi: 10.1038/boneres.2017.30. PubMed DOI PMC

Jones G. Pharmacokinetics of vitamin D toxicity. Am. J. Clin. Nutr. 2008;88:582s–586s. doi: 10.1093/ajcn/88.2.582S. PubMed DOI

Webb A.R., Kline L., Holick M.F. Influence of season and latitude on the cutaneous synthesis of vitamin D3: Exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J. Clin. Endocrinol. Metab. 1988;67:373–378. doi: 10.1210/jcem-67-2-373. PubMed DOI

Hyppönen E., Power C. Hypovitaminosis D in British adults at age 45 y: Nationwide cohort study of dietary and lifestyle predictors. Am. J. Clin. Nutr. 2007;85:860–868. doi: 10.1093/ajcn/85.3.860. PubMed DOI

Institute of Medicine Committee to Review Dietary Reference Intakes for Vitamin, D and Calcium . In: Dietary Reference Intakes for Calcium and Vitamin D. Ross A.C., Taylor C.L., Yaktine A.L., Del Valle H.B., editors. National Academies Press (US); Washington, DC, USA: 2011. The National Academies Collection, Reports funded by National Institutes of Health. PubMed

Holick M.F., Binkley N.C., Bischoff-Ferrari H.A., Gordon C.M., Hanley D.A., Heaney R.P., Murad M.H., Weaver C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011;96:1911–1930. doi: 10.1210/jc.2011-0385. PubMed DOI

Dawson-Hughes B., Harris S.S., Dallal G.E. Plasma calcidiol, season, and serum parathyroid hormone concentrations in healthy elderly men and women. Am. J. Clin. Nutr. 1997;65:67–71. doi: 10.1093/ajcn/65.1.67. PubMed DOI

Mizwicki M.T., Norman A.W. The vitamin D sterol-vitamin D receptor ensemble model offers unique insights into both genomic and rapid-response signaling. Sci. Signal. 2009;2:re4. doi: 10.1126/scisignal.275re4. PubMed DOI

Haussler M.R., Jurutka P.W., Mizwicki M., Norman A.W. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)₂vitamin D₃: Genomic and non-genomic mechanisms. Best Pr. Res. Clin. Endocrinol. Metab. 2011;25:543–559. doi: 10.1016/j.beem.2011.05.010. PubMed DOI

Norman A.W., Okamura W.H., Hammond M.W., Bishop J.E., Dormanen M.C., Bouillon R., van Baelen H., Ridall A.L., Daane E., Khoury R., et al. Comparison of 6-s-cis- and 6-s-trans-locked analogs of 1alpha,25-dihydroxyvitamin D3 indicates that the 6-s-cis conformation is preferred for rapid nongenomic biological responses and that neither 6-s-cis- nor 6-s-trans-locked analogs are preferred for genomic biological responses. Mol. Endocrinol. 1997;11:1518–1531. doi: 10.1210/mend.11.10.9993. PubMed DOI

Anderson P.H., Lam N.N., Turner A.G., Davey R.A., Kogawa M., Atkins G.J., Morris H.A. The pleiotropic effects of vitamin D in bone. J. Steroid Biochem. Mol. Biol. 2013;136:190–194. doi: 10.1016/j.jsbmb.2012.08.008. PubMed DOI

Nguyen H.H., Eiden-Plach A., Hannemann F., Malunowicz E.M., Hartmann M.F., Wudy S.A., Bernhardt R. Phenotypic, metabolic, and molecular genetic characterization of six patients with congenital adrenal hyperplasia caused by novel mutations in the CYP11B1 gene. J. Steroid Biochem. Mol. Biol. 2016;155:126–134. doi: 10.1016/j.jsbmb.2015.10.011. PubMed DOI

Schweitzer S., Kunz M., Kurlbaum M., Vey J., Kendl S., Deutschbein T., Hahner S., Fassnacht M., Dandekar T., Kroiss M. Plasma steroid metabolome profiling for the diagnosis of adrenocortical carcinoma. Eur. J. Endocrinol. 2019;180:117–125. doi: 10.1530/EJE-18-0782. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...