Vitamin D: Current Challenges between the Laboratory and Clinical Practice
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
MH CZ-DRO [Institute of Endocrinology, 00023761]
Czech Ministry of Health
PubMed
34064098
PubMed Central
PMC8224373
DOI
10.3390/nu13061758
PII: nu13061758
Knihovny.cz E-zdroje
- Klíčová slova
- LC–MS/MS, VDR, determination, genomic effects, metabolites, non-genomic effects, vitamin D,
- MeSH
- hodnocení stavu výživy * MeSH
- klinické laboratorní techniky metody normy MeSH
- laboratoře normy MeSH
- lidé MeSH
- nedostatek vitaminu D diagnóza MeSH
- referenční hodnoty MeSH
- referenční standardy MeSH
- reprodukovatelnost výsledků MeSH
- vitamin D analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- vitamin D MeSH
Vitamin D is a micronutrient with pleiotropic effects in humans. Due to sedentary lifestyles and increasing time spent indoors, a growing body of research is revealing that vitamin D deficiency is a global problem. Despite the routine measurement of vitamin D in clinical laboratories and many years of efforts, methods of vitamin D analysis have yet to be standardized and are burdened with significant difficulties. This review summarizes several key analytical and clinical challenges that accompany the current methods for measuring vitamin D. According to an external quality assessment, methods and laboratories still produce a high degree of variability. Structurally similar metabolites are a source of significant interference. Furthermore, there is still no consensus on the normal values of vitamin D in a healthy population. These and other problems discussed herein can be a source of inconsistency in the results of research studies.
Zobrazit více v PubMed
Hewison M., Burke F., Evans K.N., Lammas D.A., Sansom D.M., Liu P., Modlin R.L., Adams J.S. Extra-renal 25-hydroxyvitamin D3-1alpha-hydroxylase in human health and disease. J. Steroid Biochem. Mol. Biol. 2007;103:316–321. doi: 10.1016/j.jsbmb.2006.12.078. PubMed DOI
Norman A.W. Minireview: Vitamin D receptor: New assignments for an already busy receptor. Endocrinology. 2006;147:5542–5548. doi: 10.1210/en.2006-0946. PubMed DOI
Strange R.C., Shipman K.E., Ramachandran S. Metabolic syndrome: A review of the role of vitamin D in mediating susceptibility and outcome. World J. Diabetes. 2015;6:896–911. doi: 10.4239/wjd.v6.i7.896. PubMed DOI PMC
Christakos S., Dhawan P., Verstuyf A., Verlinden L., Carmeliet G. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 2016;96:365–408. doi: 10.1152/physrev.00014.2015. PubMed DOI PMC
DeLuca G.C., Kimball S.M., Kolasinski J., Ramagopalan S.V., Ebers G.C. Review: The role of vitamin D in nervous system health and disease. Neuropathol. Appl. Neurobiol. 2013;39:458–484. doi: 10.1111/nan.12020. PubMed DOI
Bicikova M., Macova L., Ostatnikova D., Hanzlikova L. Vitamin D in autistic children and healthy controls. Physiol. Res. 2019;68:317–320. doi: 10.33549/physiolres.933902. PubMed DOI
Mohan M., Cherian J.J., Sharma A. Exploring links between vitamin D deficiency and COVID-19. PLoS Pathog. 2020;16:e1008874. doi: 10.1371/journal.ppat.1008874. PubMed DOI PMC
Grant W.B., Lahore H., McDonnell S.L., Baggerly C.A., French C.B., Aliano J.L., Bhattoa H.P. Evidence that vitamin d supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020;12:988. doi: 10.3390/nu12040988. PubMed DOI
Wimalawansa S.J. Non-musculoskeletal benefits of vitamin D. J. Steroid Biochem. Mol. Biol. 2018;175:60–81. doi: 10.1016/j.jsbmb.2016.09.016. PubMed DOI
Tuckey R.C., Cheng C.Y.S., Slominski A.T. The serum vitamin D metabolome: What we know and what is still to discover. J. Steroid Biochem. Mol. Biol. 2019;186:4–21. doi: 10.1016/j.jsbmb.2018.09.003. PubMed DOI PMC
Jenkinson C. The vitamin D metabolome: An update on analysis and function. Cell Biochem. Funct. 2019;37:408–423. doi: 10.1002/cbf.3421. PubMed DOI
Zehnder D., Evans K.N., Kilby M.D., Bulmer J.N., Innes B.A., Stewart P.M., Hewison M. The ontogeny of 25-hydroxyvitamin D(3) 1alpha-hydroxylase expression in human placenta and decidua. Am. J. Pathol. 2002;161:105–114. doi: 10.1016/S0002-9440(10)64162-4. PubMed DOI PMC
Adams J.S., Rafison B., Witzel S., Reyes R.E., Shieh A., Chun R., Zavala K., Hewison M., Liu P.T. Regulation of the extrarenal CYP27B1-hydroxylase. J. Steroid Biochem. Mol. Biol. 2014;144:22–27. doi: 10.1016/j.jsbmb.2013.12.009. PubMed DOI PMC
Al-Zohily B., Al-Menhali A., Gariballa S., Haq A., Shah I. Epimers of Vitamin D: A Review. Int. J. Mol. Sci. 2020;21:470. doi: 10.3390/ijms21020470. PubMed DOI PMC
Kamao M., Tatematsu S., Hatakeyama S., Sakaki T., Sawada N., Inouye K., Ozono K., Kubodera N., Reddy G.S., Okano T. C-3 epimerization of vitamin D3 metabolites and further metabolism of C-3 epimers: 25-hydroxyvitamin D3 is metabolized to 3-epi-25-hydroxyvitamin D3 and subsequently metabolized through C-1alpha or C-24 hydroxylation. J. Biol. Chem. 2004;279:15897–15907. doi: 10.1074/jbc.M311473200. PubMed DOI
Mydtskov N.D., Lykkedegn S., Fruekilde P.B.N., Nielsen J., Barington T., Christesen H.T. S-25-hydroxyvitamin D and C3-epimers in pregnancy and infancy: An Odense Child Cohort study. Clin. Biochem. 2017;50:988–996. doi: 10.1016/j.clinbiochem.2017.07.001. PubMed DOI
Singh R.J., Taylor R.L., Reddy G.S., Grebe S.K. C-3 epimers can account for a significant proportion of total circulating 25-hydroxyvitamin D in infants, complicating accurate measurement and interpretation of vitamin D status. J. Clin. Endocrinol. Metab. 2006;91:3055–3061. doi: 10.1210/jc.2006-0710. PubMed DOI
Glendenning P., Inderjeeth C.A. Controversy and consensus regarding vitamin D: Recent methodological changes and the risks and benefits of vitamin D supplementation. Crit. Rev. Clin. Lab. Sci. 2016;53:13–28. doi: 10.3109/10408363.2015.1074157. PubMed DOI
Li D., Jeffery L.E., Jenkinson C., Harrison S.R., Chun R.F., Adams J.S., Raza K., Hewison M. Serum and synovial fluid vitamin D metabolites and rheumatoid arthritis. J. Steroid Biochem. Mol. Biol. 2019;187:1–8. doi: 10.1016/j.jsbmb.2018.10.008. PubMed DOI PMC
Molnar F., Sigueiro R., Sato Y., Araujo C., Schuster I., Antony P., Peluso J., Muller C., Mourino A., Moras D., et al. 1alpha,25(OH)2-3-epi-vitamin D3, a natural physiological metabolite of vitamin D3: Its synthesis, biological activity and crystal structure with its receptor. PLoS ONE. 2011;6:e18124. doi: 10.1371/journal.pone.0018124. PubMed DOI PMC
Pauwels S., Jans I., Billen J., Heijboer A., Verstuyf A., Carmeliet G., Mathieu C., Maestro M., Waelkens E., Evenepoel P., et al. 1β,25-Dihydroxyvitamin D(3): A new vitamin D metabolite in human serum. J. Steroid Biochem. Mol. Biol. 2017;173:341–348. doi: 10.1016/j.jsbmb.2017.02.004. PubMed DOI
Wang Z., Senn T., Kalhorn T., Zheng X.E., Zheng S., Davis C.L., Hebert M.F., Lin Y.S., Thummel K.E. Simultaneous measurement of plasma vitamin D(3) metabolites, including 4β,25-dihydroxyvitamin D(3), using liquid chromatography-tandem mass spectrometry. Anal. Biochem. 2011;418:126–133. doi: 10.1016/j.ab.2011.06.043. PubMed DOI PMC
O’Brien K.O., Li S., Cao C., Kent T., Young B.V., Queenan R.A., Pressman E.K., Cooper E.M. Placental CYP27B1 and CYP24A1 expression in human placental tissue and their association with maternal and neonatal calcitropic hormones. J. Clin. Endocrinol. Metab. 2014;99:1348–1356. doi: 10.1210/jc.2013-1366. PubMed DOI PMC
Landel V., Stephan D., Cui X., Eyles D., Feron F. Differential expression of vitamin D-associated enzymes and receptors in brain cell subtypes. J. Steroid Biochem. Mol. Biol. 2018;177:129–134. doi: 10.1016/j.jsbmb.2017.09.008. PubMed DOI
Jones G., Prosser D.E., Kaufmann M. 25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): Its important role in the degradation of vitamin D. Arch. Biochem. Biophys. 2012;523:9–18. doi: 10.1016/j.abb.2011.11.003. PubMed DOI
Sakaki T., Sawada N., Komai K., Shiozawa S., Yamada S., Yamamoto K., Ohyama Y., Inouye K. Dual metabolic pathway of 25-hydroxyvitamin D3 catalyzed by human CYP24. Eur. J. Biochem. 2000;267:6158–6165. doi: 10.1046/j.1432-1327.2000.01680.x. PubMed DOI
Stern P.H., Rappaport M.S., Mayer E., Norman A.W. 24-Oxo and 26,23-lactone metabolites of 1,25-dihydroxyvitamin D3 have direct bone-resorbing activity. Arch. Biochem. Biophys. 1984;230:424–429. doi: 10.1016/0003-9861(84)90422-3. PubMed DOI
Leeuwenkamp O.R., van der Wiel H.E., Lips P., van der Vijgh W.J., Barto R., Greuter H., Netelenbos J.C. Human pharmacokinetics of orally administered (24 R)-hydroxycalcidiol. Eur. J. Clin. Chem. Clin. Biochem. 1993;31:419–426. doi: 10.1515/cclm.1993.31.7.419. PubMed DOI
St-Arnaud R., Naja R.P. Vitamin D metabolism, cartilage and bone fracture repair. Mol. Cell. Endocrinol. 2011;347:48–54. doi: 10.1016/j.mce.2011.05.018. PubMed DOI
Zou M., BinHumaid F.S., Alzahrani A.S., Baitei E.Y., Al-Mohanna F.A., Meyer B.F., Shi Y. Increased CYP24A1 expression is associated with BRAF(V600E) mutation and advanced stages in papillary thyroid carcinoma. Clin. Endocrinol. 2014;81:109–116. doi: 10.1111/cen.12396. PubMed DOI
Welsh J. Function of the vitamin D endocrine system in mammary gland and breast cancer. Mol. Cell. Endocrinol. 2017;453:88–95. doi: 10.1016/j.mce.2017.04.026. PubMed DOI PMC
Dong L.M., Ulrich C.M., Hsu L., Duggan D.J., Benitez D.S., White E., Slattery M.L., Farin F.M., Makar K.W., Carlson C.S., et al. Vitamin D related genes, CYP24A1 and CYP27B1, and colon cancer risk. Cancer Epidemiol. Biomark. Prev. 2009;18:2540–2548. doi: 10.1158/1055-9965.EPI-09-0228. PubMed DOI PMC
Höbaus J., Hummel D.M., Thiem U., Fetahu I.S., Aggarwal A., Müllauer L., Heller G., Egger G., Mesteri I., Baumgartner-Parzer S., et al. Increased copy-number and not DNA hypomethylation causes overexpression of the candidate proto-oncogene CYP24A1 in colorectal cancer. Int. J. Cancer. 2013;133:1380–1388. doi: 10.1002/ijc.28143. PubMed DOI PMC
Albertson D.G., Ylstra B., Segraves R., Collins C., Dairkee S.H., Kowbel D., Kuo W.L., Gray J.W., Pinkel D. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat. Genet. 2000;25:144–146. doi: 10.1038/75985. PubMed DOI
Kríz L., Bicíková M., Hampl R. Roles of steroid sulfatase in brain and other tissues. Physiol. Res. 2008;57:657–668. doi: 10.33549/physiolres.931207. PubMed DOI
Wong T., Wang Z., Chapron B.D., Suzuki M., Claw K.G., Gao C., Foti R.S., Prasad B., Chapron A., Calamia J., et al. Polymorphic human sulfotransferase 2A1 mediates the formation of 25-Hydroxyvitamin D(3)-3-O-Sulfate, a major circulating vitamin D metabolite in humans. Drug Metab. Dispos. 2018;46:367–379. doi: 10.1124/dmd.117.078428. PubMed DOI PMC
Axelson M. 25-Hydroxyvitamin D3 3-sulphate is a major circulating form of vitamin D in man. FEBS Lett. 1985;191:171–175. doi: 10.1016/0014-5793(85)80002-8. PubMed DOI
Gomes F.P., Shaw P.N., Hewavitharana A.K. Determination of four sulfated vitamin D compounds in human biological fluids by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B. 2016;1009–1010:80–86. doi: 10.1016/j.jchromb.2015.12.014. PubMed DOI
Gao X.R., Wang C.M., Wang W.J., Han G.R., Zhang J.Q. Serum 25-hydroxyvitamin D status in pregnant women with chronic hepatitis B virus infection. J. Infect. Dev. Ctries. 2016;10:851–856. doi: 10.3855/jidc.6600. PubMed DOI
Huynh K., Kempegowda P., Tamblyn J., MW O.R., Mueller J.W., Hewison M., Jenkinson C. Development of a LC-MS/MS method to measure serum 3-sulfate and 3-glucuronide 25-hydroxyvitamin D3 metabolites; comparisons to unconjugated 25OHD in pregnancy and polycystic ovary syndrome. Steroids. 2021;169:108812. doi: 10.1016/j.steroids.2021.108812. PubMed DOI
Ogawa S., Ooki S., Shinoda K., Higashi T. Analysis of urinary vitamin D₃ metabolites by liquid chromatography/tandem mass spectrometry with ESI-enhancing and stable isotope-coded derivatization. Anal. Bioanal. Chem. 2014;406:6647–6654. doi: 10.1007/s00216-014-8095-y. PubMed DOI
Bikle D.D., Siiteri P.K., Ryzen E., Haddad J.G. Serum protein binding of 1,25-dihydroxyvitamin D: A reevaluation by direct measurement of free metabolite levels. J. Clin. Endocrinol. Metab. 1985;61:969–975. doi: 10.1210/jcem-61-5-969. PubMed DOI
Bikle D.D., Halloran B.P., Gee E., Ryzen E., Haddad J.G. Free 25-hydroxyvitamin D levels are normal in subjects with liver disease and reduced total 25-hydroxyvitamin D levels. J. Clin. Investig. 1986;78:748–752. doi: 10.1172/JCI112636. PubMed DOI PMC
Bikle D.D., Malmstroem S., Schwartz J. Current controversies: Are free vitamin metabolite levels a more accurate assessment of vitamin D status than total levels? Endocrinol. Metab. Clin. N. Am. 2017;46:901–918. doi: 10.1016/j.ecl.2017.07.013. PubMed DOI PMC
Tsuprykov O., Chen X., Hocher C.F., Skoblo R., Lianghong Y., Hocher B. Why should we measure free 25(OH) vitamin D? J. Steroid Biochem. Mol. Biol. 2018;180:87–104. doi: 10.1016/j.jsbmb.2017.11.014. PubMed DOI
Kim H.J., Ji M., Song J., Moon H.W., Hur M., Yun Y.M. Clinical utility of measurement of vitamin D-binding protein and calculation of bioavailable vitamin D in assessment of vitamin D status. Ann. Lab. Med. 2017;37:34–38. doi: 10.3343/alm.2017.37.1.34. PubMed DOI PMC
Bhan I., Powe C.E., Berg A.H., Ankers E., Wenger J.B., Karumanchi S.A., Thadhani R.I. Bioavailable vitamin D is more tightly linked to mineral metabolism than total vitamin D in incident hemodialysis patients. Kidney Int. 2012;82:84–89. doi: 10.1038/ki.2012.19. PubMed DOI PMC
Silva M.C., Furlanetto T.W. Intestinal absorption of vitamin D: A systematic review. Nutr. Rev. 2018;76:60–76. doi: 10.1093/nutrit/nux034. PubMed DOI
Borel P., Caillaud D., Cano N.J. Vitamin D bioavailability: State of the art. Crit. Rev. Food Sci. Nutr. 2015;55:1193–1205. doi: 10.1080/10408398.2012.688897. PubMed DOI
Shah I., Petroczi A., Naughton D.P. Exploring the role of vitamin D in type 1 diabetes, rheumatoid arthritis, and Alzheimer disease: New insights from accurate analysis of 10 forms. J. Clin. Endocrinol. Metab. 2014;99:808–816. doi: 10.1210/jc.2013-2872. PubMed DOI
Wagner D., Hanwell H.E., Schnabl K., Yazdanpanah M., Kimball S., Fu L., Sidhom G., Rousseau D., Cole D.E., Vieth R. The ratio of serum 24,25-dihydroxyvitamin D(3) to 25-hydroxyvitamin D(3) is predictive of 25-hydroxyvitamin D(3) response to vitamin D(3) supplementation. J. Steroid Biochem. Mol. Biol. 2011;126:72–77. doi: 10.1016/j.jsbmb.2011.05.003. PubMed DOI
Lipkie T.E., Janasch A., Cooper B.R., Hohman E.E., Weaver C.M., Ferruzzi M.G. Quantification of vitamin D and 25-hydroxyvitamin D in soft tissues by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B. 2013;932:6–11. doi: 10.1016/j.jchromb.2013.05.029. PubMed DOI PMC
Fu X., Dolnikowski G.G., Patterson W.B., Dawson-Hughes B., Zheng T., Morris M.C., Holland T.M., Booth S.L. Determination of vitamin D and its metabolites in human brain using an ultra-pressure lc-tandem mass spectra method. Curr. Dev. Nutr. 2019;3:nzz074. doi: 10.1093/cdn/nzz074. PubMed DOI PMC
Kiely M., O’Donovan S.M., Kenny L.C., Hourihane J.O., Irvine A.D., Murray D.M. Vitamin D metabolite concentrations in umbilical cord blood serum and associations with clinical characteristics in a large prospective mother-infant cohort in Ireland. J. Steroid Biochem. Mol. Biol. 2017;167:162–168. doi: 10.1016/j.jsbmb.2016.12.006. PubMed DOI
Wierzejska R., Jarosz M., Sawicki W., Bachanek M., Siuba-Strzelińska M. Vitamin D concentration in maternal and umbilical cord blood by season. Int. J. Environ. Res. Public Health. 2017;14:1121. doi: 10.3390/ijerph14101121. PubMed DOI PMC
Sogawa E., Kaji T., Nakayama S., Yoshida A., Yonetani N., Maeda K., Yasui T., Irahara M. Seasonal variation of serum 25(OH) vitamin D levels in maternal and umbilical cord blood in Japanese women. J. Med. Investig. 2019;66:128–133. doi: 10.2152/jmi.66.128. PubMed DOI
Le J., Yuan T.F., Geng J.Q., Wang S.T., Li Y., Zhang B.H. Acylation derivatization based LC-MS analysis of 25-hydroxyvitamin D from finger-prick blood. J. Lipid Res. 2019;60:1058–1064. doi: 10.1194/jlr.D092197. PubMed DOI PMC
Ron M., Menczel J., Schwartz L., Palti Z., Kidroni G. Vitamin D3 metabolites in amniotic fluid in relation with maternal and fetal sera in term pregnancies. J. Perinat. Med. 1987;15:282–290. doi: 10.1515/jpme.1987.15.3.282. PubMed DOI
Le J., Yuan T.F., Zhang Y., Wang S.T., Li Y. New LC-MS/MS method with single-step pretreatment analyzes fat-soluble vitamins in plasma and amniotic fluid. J. Lipid Res. 2018;59:1783–1790. doi: 10.1194/jlr.D087569. PubMed DOI PMC
Balabanova S., Richter H.P., Antoniadis G., Homoki J., Kremmer N., Hanle J., Teller W.M. 25-Hydroxyvitamin D, 24, 25-dihydroxyvitamin D and 1,25-dihydroxyvitamin D in human cerebrospinal fluid. Klin. Wochenschr. 1984;62:1086–1090. doi: 10.1007/BF01711378. PubMed DOI
Kaufmann M., Gallagher J.C., Peacock M., Schlingmann K.P., Konrad M., DeLuca H.F., Sigueiro R., Lopez B., Mourino A., Maestro M., et al. Clinical utility of simultaneous quantitation of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D by LC-MS/MS involving derivatization with DMEQ-TAD. J. Clin. Endocrinol. Metab. 2014;99:2567–2574. doi: 10.1210/jc.2013-4388. PubMed DOI PMC
Yu S., Zhou W., Wang D., Yin Y., Cheng Q., Xie S., Sun D., Li H., Cheng X., Qiu L. Rapid liquid chromatography-tandem mass spectrometry method for determination of 24,25(OH)(2)D and 25OHD with efficient separation of 3-epi analogs. J. Steroid Biochem. Mol. Biol. 2019;187:146–151. doi: 10.1016/j.jsbmb.2018.11.012. PubMed DOI
Bailey D., Veljkovic K., Yazdanpanah M., Adeli K. Analytical measurement and clinical relevance of vitamin D(3) C3-epimer. Clin. Biochem. 2013;46:190–196. doi: 10.1016/j.clinbiochem.2012.10.037. PubMed DOI
Rhodes C.J., Claridge P.A., Trafford D.J., Makin H.L. An evaluation of the use of Sep-Pak C18 cartridges for the extraction of vitamin D3 and some of its metabolites from plasma and urine. J. Steroid Biochem. 1983;19:1349–1354. doi: 10.1016/0022-4731(83)90162-0. PubMed DOI
Alvarez J.C., De Mazancourt P. Rapid and sensitive high-performance liquid chromatographic method for simultaneous determination of retinol, alpha-tocopherol, 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human plasma with photodiode-array ultraviolet detection. J. Chromatogr. B. 2001;755:129–135. doi: 10.1016/S0378-4347(01)00047-0. PubMed DOI
Jafri L., Khan A.H., Siddiqui A.A., Mushtaq S., Iqbal R., Ghani F., Siddiqui I. Comparison of high performance liquid chromatography, radio immunoassay and electrochemiluminescence immunoassay for quantification of serum 25 hydroxy vitamin D. Clin. Biochem. 2011;44:864–868. doi: 10.1016/j.clinbiochem.2011.04.020. PubMed DOI
Hymøller L., Jensen S.K. Vitamin D analysis in plasma by high performance liquid chromatography (HPLC) with C(30) reversed phase column and UV detection—easy and acetonitrile-free. J. Chromatogr. A. 2011;1218:1835–1841. doi: 10.1016/j.chroma.2011.02.004. PubMed DOI
Stepman H.C., Vanderroost A., Van Uytfanghe K., Thienpont L.M. Candidate reference measurement procedures for serum 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 by using isotope-dilution liquid chromatography-tandem mass spectrometry. Clin. Chem. 2011;57:441–448. doi: 10.1373/clinchem.2010.152553. PubMed DOI
Tai S.S., Bedner M., Phinney K.W. Development of a candidate reference measurement procedure for the determination of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal. Chem. 2010;82:1942–1948. doi: 10.1021/ac9026862. PubMed DOI PMC
Franke A.A., Morrison C.M., Custer L.J., Li X., Lai J.F. Simultaneous analysis of circulating 25-hydroxy-vitamin D3, 25-hydroxy-vitamin D2, retinol, tocopherols, carotenoids, and oxidized and reduced coenzyme Q10 by high performance liquid chromatography with photo diode-array detection using C18 and C30 columns alone or in combination. J. Chromatogr. A. 2013;1301:1–9. doi: 10.1016/j.chroma.2013.05.027. PubMed DOI PMC
Yazdanpanah M., Bailey D., Walsh W., Wan B., Adeli K. Analytical measurement of serum 25-OH-vitamin D₃, 25-OH-vitamin D₂ and their C3-epimers by LC-MS/MS in infant and pediatric specimens. Clin. Biochem. 2013;46:1264–1271. doi: 10.1016/j.clinbiochem.2012.11.030. PubMed DOI
Geib T., Meier F., Schorr P., Lammert F., Stokes C.S., Volmer D.A. A simple micro-extraction plate assay for automated LC-MS/MS analysis of human serum 25-hydroxyvitamin D levels. J. Mass Spectrom. 2015;50:275–279. doi: 10.1002/jms.3522. PubMed DOI
Rola R., Kowalski K., Bieńkowski T., Kołodyńska-Goworek A., Studzińska S. Development of a method for multiple vitamin D metabolite measurements by liquid chromatography coupled with tandem mass spectrometry in dried blood spots. Analyst. 2018;144:299–309. doi: 10.1039/C8AN01422A. PubMed DOI
Binkley N., Krueger D., Cowgill C.S., Plum L., Lake E., Hansen K.E., DeLuca H.F., Drezner M.K. Assay variation confounds the diagnosis of hypovitaminosis D: A call for standardization. J. Clin. Endocrinol. Metab. 2004;89:3152–3157. doi: 10.1210/jc.2003-031979. PubMed DOI
Sklan D., Budowski P. Simple separation of vitamins D from sterols and retinol by argentation thin-layer chromatography. Anal. Chem. 1973;45:200–201. doi: 10.1021/ac60323a045. PubMed DOI
Eisman J.A., Shepard R.M., DeLuca H.F. Determination of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in human plasma using high-pressure liquid chromatography. Anal. Biochem. 1977;80:298–305. doi: 10.1016/0003-2697(77)90648-0. PubMed DOI
Müller M.J., Volmer D.A. Mass spectrometric profiling of vitamin D metabolites beyond 25-hydroxyvitamin D. Clin. Chem. 2015;61:1033–1048. doi: 10.1373/clinchem.2015.241430. PubMed DOI
Jones G., Kaufmann M. Vitamin D metabolite profiling using liquid chromatography-tandem mass spectrometry (LC-MS/MS) J. Steroid Biochem. Mol. Biol. 2016;164:110–114. doi: 10.1016/j.jsbmb.2015.09.026. PubMed DOI
Wan D., Yang J., Barnych B., Hwang S.H., Lee K.S., Cui Y., Niu J., Watsky M.A., Hammock B.D. A new sensitive LC/MS/MS analysis of vitamin D metabolites using a click derivatization reagent, 2-nitrosopyridine. J. Lipid Res. 2017;58:798–808. doi: 10.1194/jlr.D073536. PubMed DOI PMC
Mineva E.M., Schleicher R.L., Chaudhary-Webb M., Maw K.L., Botelho J.C., Vesper H.W., Pfeiffer C.M. A candidate reference measurement procedure for quantifying serum concentrations of 25-hydroxyvitamin D₃ and 25-hydroxyvitamin D₂ using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2015;407:5615–5624. doi: 10.1007/s00216-015-8733-z. PubMed DOI PMC
Tai S.S., Nelson M.A. Candidate reference measurement procedure for the determination of (24R),25-Dihydroxyvitamin D3 in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal. Chem. 2015;87:7964–7970. doi: 10.1021/acs.analchem.5b01861. PubMed DOI
Cashman K.D., Kiely M., Kinsella M., Durazo-Arvizu R.A., Tian L., Zhang Y., Lucey A., Flynn A., Gibney M.J., Vesper H.W., et al. Evaluation of vitamin D Standardization Program protocols for standardizing serum 25-hydroxyvitamin D data: A case study of the program’s potential for national nutrition and health surveys. Am. J. Clin. Nutr. 2013;97:1235–1242. doi: 10.3945/ajcn.112.057182. PubMed DOI PMC
Tian L., Durazo-Arvizu R.A., Myers G., Brooks S., Sarafin K., Sempos C.T. The estimation of calibration equations for variables with heteroscedastic measurement errors. Stat. Med. 2014;33:4420–4436. doi: 10.1002/sim.6235. PubMed DOI
Binkley N., Dawson-Hughes B., Durazo-Arvizu R., Thamm M., Tian L., Merkel J.M., Jones J.C., Carter G.D., Sempos C.T. Vitamin D measurement standardization: The way out of the chaos. J. Steroid Biochem. Mol. Biol. 2017;173:117–121. doi: 10.1016/j.jsbmb.2016.12.002. PubMed DOI
Burdette C.Q., Camara J.E., Nalin F., Pritchett J., Sander L.C., Carter G.D., Jones J., Betz J.M., Sempos C.T., Wise S.A. Establishing an accuracy basis for the vitamin D External Quality Assessment Scheme (DEQAS) J. AOAC Int. 2017;100:1277–1287. doi: 10.5740/jaoacint.17-0306. PubMed DOI
Carter G.D., Berry J., Durazo-Arvizu R., Gunter E., Jones G., Jones J., Makin H.L.J., Pattni P., Phinney K.W., Sempos C.T., et al. Quality assessment of vitamin D metabolite assays used by clinical and research laboratories. J. Steroid Biochem. Mol. Biol. 2017;173:100–104. doi: 10.1016/j.jsbmb.2017.03.010. PubMed DOI
DEQAS. [(accessed on 12 February 2021)]; Available online: http://www.deqas.org.
NIST. [(accessed on 12 February 2021)]; Available online: https://www.nist.gov/programs-projects/vitamin-d-metabolites-quality-assurance-program.
SEKK. [(accessed on 21 March 2021)]; Available online: www.sekk.cz.
Bivona G., Agnello L., Ciaccio M. Vitamin D and immunomodulation: Is it time to change the reference values? Ann. Clin. Lab. Sci. 2017;47:508–510. PubMed
von Hurst P.R., Stonehouse W., Coad J. Vitamin D supplementation reduces insulin resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D deficient—A randomised, placebo-controlled trial. Br. J. Nutr. 2010;103:549–555. doi: 10.1017/S0007114509992017. PubMed DOI
Boucher B.J. Why do so many trials of vitamin D supplementation fail? Endocr. Connect. 2020;9:R195–R206. doi: 10.1530/EC-20-0274. PubMed DOI PMC
Hollis B.W., Wagner C.L. New insights into the vitamin D requirements during pregnancy. Bone Res. 2017;5:17030. doi: 10.1038/boneres.2017.30. PubMed DOI PMC
Jones G. Pharmacokinetics of vitamin D toxicity. Am. J. Clin. Nutr. 2008;88:582s–586s. doi: 10.1093/ajcn/88.2.582S. PubMed DOI
Webb A.R., Kline L., Holick M.F. Influence of season and latitude on the cutaneous synthesis of vitamin D3: Exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J. Clin. Endocrinol. Metab. 1988;67:373–378. doi: 10.1210/jcem-67-2-373. PubMed DOI
Hyppönen E., Power C. Hypovitaminosis D in British adults at age 45 y: Nationwide cohort study of dietary and lifestyle predictors. Am. J. Clin. Nutr. 2007;85:860–868. doi: 10.1093/ajcn/85.3.860. PubMed DOI
Institute of Medicine Committee to Review Dietary Reference Intakes for Vitamin, D and Calcium . In: Dietary Reference Intakes for Calcium and Vitamin D. Ross A.C., Taylor C.L., Yaktine A.L., Del Valle H.B., editors. National Academies Press (US); Washington, DC, USA: 2011. The National Academies Collection, Reports funded by National Institutes of Health. PubMed
Holick M.F., Binkley N.C., Bischoff-Ferrari H.A., Gordon C.M., Hanley D.A., Heaney R.P., Murad M.H., Weaver C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011;96:1911–1930. doi: 10.1210/jc.2011-0385. PubMed DOI
Dawson-Hughes B., Harris S.S., Dallal G.E. Plasma calcidiol, season, and serum parathyroid hormone concentrations in healthy elderly men and women. Am. J. Clin. Nutr. 1997;65:67–71. doi: 10.1093/ajcn/65.1.67. PubMed DOI
Mizwicki M.T., Norman A.W. The vitamin D sterol-vitamin D receptor ensemble model offers unique insights into both genomic and rapid-response signaling. Sci. Signal. 2009;2:re4. doi: 10.1126/scisignal.275re4. PubMed DOI
Haussler M.R., Jurutka P.W., Mizwicki M., Norman A.W. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)₂vitamin D₃: Genomic and non-genomic mechanisms. Best Pr. Res. Clin. Endocrinol. Metab. 2011;25:543–559. doi: 10.1016/j.beem.2011.05.010. PubMed DOI
Norman A.W., Okamura W.H., Hammond M.W., Bishop J.E., Dormanen M.C., Bouillon R., van Baelen H., Ridall A.L., Daane E., Khoury R., et al. Comparison of 6-s-cis- and 6-s-trans-locked analogs of 1alpha,25-dihydroxyvitamin D3 indicates that the 6-s-cis conformation is preferred for rapid nongenomic biological responses and that neither 6-s-cis- nor 6-s-trans-locked analogs are preferred for genomic biological responses. Mol. Endocrinol. 1997;11:1518–1531. doi: 10.1210/mend.11.10.9993. PubMed DOI
Anderson P.H., Lam N.N., Turner A.G., Davey R.A., Kogawa M., Atkins G.J., Morris H.A. The pleiotropic effects of vitamin D in bone. J. Steroid Biochem. Mol. Biol. 2013;136:190–194. doi: 10.1016/j.jsbmb.2012.08.008. PubMed DOI
Nguyen H.H., Eiden-Plach A., Hannemann F., Malunowicz E.M., Hartmann M.F., Wudy S.A., Bernhardt R. Phenotypic, metabolic, and molecular genetic characterization of six patients with congenital adrenal hyperplasia caused by novel mutations in the CYP11B1 gene. J. Steroid Biochem. Mol. Biol. 2016;155:126–134. doi: 10.1016/j.jsbmb.2015.10.011. PubMed DOI
Schweitzer S., Kunz M., Kurlbaum M., Vey J., Kendl S., Deutschbein T., Hahner S., Fassnacht M., Dandekar T., Kroiss M. Plasma steroid metabolome profiling for the diagnosis of adrenocortical carcinoma. Eur. J. Endocrinol. 2019;180:117–125. doi: 10.1530/EJE-18-0782. PubMed DOI