Consensus Paper: Strengths and Weaknesses of Animal Models of Spinocerebellar Ataxias and Their Clinical Implications
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 NS109077
NINDS NIH HHS - United States
18H02521
KAKENHI
R37NS033123
National Institutes of Health (USA)
U01NS103883
National Institutes of Health (NIH) / National Institute of Neurological Disorders and Stroke (NINDS)
JP20dm0207057
AMED
Brain/MINDS
Japan Agency for Medical Research and Development
UO1NS103883
National Institutes of Health (USA)
R01 NS197387
National Institutes of Health (NIH) / National Institute of Neurological Disorders and Stroke (NINDS)
R21NSNS103009
National Institutes of Health (USA)
R01 NS097903
NINDS NIH HHS - United States
R37 NS033123
NINDS NIH HHS - United States
U01 NS103883
NINDS NIH HHS - United States
R01NS109077
National Institutes of Health (NIH) / National Institute of Neurological Disorders and Stroke (NINDS)
Q39
Univerzita Karlova v Praze
R37NS033123
National Institutes of Health (NIH) / National Institute of Neurological Disorders and Stroke (NINDS)
CZ.02.1.01/0.0/0.0/16_019/0000787
Ministerstvo Školství, Mládeže a Tělovýchovy
R01 NS107387
NINDS NIH HHS - United States
R01NS097903
National Institutes of Health (NIH) / National Institute of Neurological Disorders and Stroke (NINDS)
R21 NS103009
NINDS NIH HHS - United States
grants R21NS103009
National Institutes of Health (NIH) / National Institute of Neurological Disorders and Stroke (NINDS)
PubMed
34378174
PubMed Central
PMC9098367
DOI
10.1007/s12311-021-01311-1
PII: 10.1007/s12311-021-01311-1
Knihovny.cz E-zdroje
- Klíčová slova
- Genetics, Models, Murine, Non-murine, Pathogenesis, Spinocerebellar ataxias, Therapies, Translational,
- MeSH
- konsensus MeSH
- kvalita života * MeSH
- modely u zvířat MeSH
- mozeček patologie MeSH
- myši MeSH
- spinocerebelární ataxie * diagnóza genetika terapie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Spinocerebellar ataxias (SCAs) represent a large group of hereditary degenerative diseases of the nervous system, in particular the cerebellum, and other systems that manifest with a variety of progressive motor, cognitive, and behavioral deficits with the leading symptom of cerebellar ataxia. SCAs often lead to severe impairments of the patient's functioning, quality of life, and life expectancy. For SCAs, there are no proven effective pharmacotherapies that improve the symptoms or substantially delay disease progress, i.e., disease-modifying therapies. To study SCA pathogenesis and potential therapies, animal models have been widely used and are an essential part of pre-clinical research. They mainly include mice, but also other vertebrates and invertebrates. Each animal model has its strengths and weaknesses arising from model animal species, type of genetic manipulation, and similarity to human diseases. The types of murine and non-murine models of SCAs, their contribution to the investigation of SCA pathogenesis, pathological phenotype, and therapeutic approaches including their advantages and disadvantages are reviewed in this paper. There is a consensus among the panel of experts that (1) animal models represent valuable tools to improve our understanding of SCAs and discover and assess novel therapies for this group of neurological disorders characterized by diverse mechanisms and differential degenerative progressions, (2) thorough phenotypic assessment of individual animal models is required for studies addressing therapeutic approaches, (3) comparative studies are needed to bring pre-clinical research closer to clinical trials, and (4) mouse models complement cellular and invertebrate models which remain limited in terms of clinical translation for complex neurological disorders such as SCAs.
Department of Neurology University of Utah 175 North Medical Drive East Salt Lake City UT 84132 USA
Service des Neurosciences Université de Mons UMons Mons Belgium
Unité des Ataxies Cérébelleuses Service de Neurologie CHU Charleroi Charleroi Belgium
Viral Vector Core Gunma University Initiative for Advanced Research Gunma 371 8511 Japan
Zobrazit více v PubMed
Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005:4:2–6. doi 10.1080/14734220510007914 PubMed DOI
Mitoma H and Manto M. The physiological basis of therapies for cerebellar ataxias. Ther Adv Neurol Disord. 2016:9:396–413. doi 10.1177/1756285616648940 PubMed DOI PMC
Mitoma H and Manto M. The Era of Cerebellar Therapy. Curr Neuropharmacol. 2019:17:3–6. doi 10.2174/1570159x1701181129111212 PubMed DOI PMC
Gandini J, Manto M, Bremova-Ertl T, Feil K and Strupp M. The neurological update: therapies for cerebellar ataxias in 2020. J Neurol. 2020:267:1211–20. doi 10.1007/s00415-020-09717-3 PubMed DOI
Manto M and Marmolino D. Animal models of human cerebellar ataxias: a cornerstone for the therapies of the twenty-first century. Cerebellum. 2009:8:137–54. doi 10.1007/s12311-009-0127-3 PubMed DOI
Cendelin J From mice to men: lessons from mutant ataxic mice. Cerebellum Ataxias. 2014:1:4. doi 10.1186/2053-8871-1-4 PubMed DOI PMC
Sullivan R, Yau WY, O’Connor E and Houlden H. Spinocerebellar ataxia: an update. J Neurol. 2019:266:533–44. doi 10.1007/s00415-018-9076-4 PubMed DOI PMC
Schmahmann JD and Sherman JC. Cerebellar cognitive affective syndrome. Int Rev Neurobiol. 1997:41:433–40. PubMed
Ruano L, Melo C, Silva MC and Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology. 2014:42:174–83. doi 10.1159/000358801 PubMed DOI
Klockgether T, Mariotti C and Paulson HL. Spinocerebellar ataxia. Nat Rev Dis Primers. 2019:5:24. doi 10.1038/s41572-019-0074-3 PubMed DOI
Coutelier M, Coarelli G, Monin ML, Konop J, Davoine CS, Tesson C, et al. A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies. Brain. 2017:140:1579–94. doi 10.1093/brain/awx081 PubMed DOI
Galatolo D, Tessa A, Filla A and Santorelli FM. Clinical application of next generation sequencing in hereditary spinocerebellar ataxia: increasing the diagnostic yield and broadening the ataxia-spasticity spectrum. A retrospective analysis. Neurogenetics. 2018:19:1–8. doi 10.1007/s10048-017-0532-6 PubMed DOI
White M, Xia G, Gao R, Wakamiya M, Sarkar PS, McFarland K, et al. Transgenic mice with SCA10 pentanucleotide repeats show motor phenotype and susceptibility to seizure: a toxic RNA gain-of-function model. J Neurosci Res. 2012:90:706–14. doi 10.1002/jnr.22786 PubMed DOI PMC
Onofre I, Mendonça N, Lopes S, Nobre R, de Melo JB, Carreira IM, et al. Fibroblasts of Machado Joseph Disease patients reveal autophagy impairment. Sci Rep. 2016:6:28220. doi 10.1038/srep28220 PubMed DOI PMC
Paul S, Dansithong W, Figueroa KP, Scoles DR and Pulst SM. Staufen1 links RNA stress granules and autophagy in a model of neurodegeneration. Nat Commun. 2018:9:3648. doi 10.1038/s41467-018-06041-3 PubMed DOI PMC
Matilla-Dueñas A, Sánchez I, Corral-Juan M, Dávalos A, Alvarez R and Latorre P. Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar ataxias. Cerebellum. 2010:9:148–66. doi 10.1007/s12311-009-0144-2 PubMed DOI
Cornelius N, Wardman JH, Hargreaves IP, Neergheen V, Bie AS, Tümer Z, et al. Evidence of oxidative stress and mitochondrial dysfunction in spinocerebellar ataxia type 2 (SCA2) patient fibroblasts: Effect of coenzyme Q10 supplementation on these parameters. Mitochondrion. 2017:34:103–14. doi 10.1016/j.mito.2017.03.001 PubMed DOI
Scoles DR, Meera P, Schneider MD, Paul S, Dansithong W, Figueroa KP, et al. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature. 2017:544:362–6. doi 10.1038/nature22044 PubMed DOI PMC
Ramachandran PS, Boudreau RL, Schaefer KA, La Spada AR and Davidson BL. Nonallele specific silencing of ataxin-7 improves disease phenotypes in a mouse model of SCA7. Mol Ther. 2014:22:1635–42. doi 10.1038/mt.2014.108 PubMed DOI PMC
Friedrich J, Kordasiewicz HB, O’Callaghan B, Handler HP, Wagener C, Duvick L, et al. Antisense oligonucleotide-mediated ataxin-1 reduction prolongs survival in SCA1 mice and reveals disease-associated transcriptome profiles. JCI Insight. 2018:3. doi 10.1172/jci.insight.123193 PubMed DOI PMC
McLoughlin HS, Moore LR, Chopra R, Komlo R, McKenzie M, Blumenstein KG, et al. Oligonucleotide therapy mitigates disease in spinocerebellar ataxia type 3 mice. Ann Neurol. 2018:84:64–77. doi 10.1002/ana.25264 PubMed DOI PMC
Ingram MA, Orr HT and Clark HB. Genetically engineered mouse models of the trinucleotide-repeat spinocerebellar ataxias. Brain Res Bull. 2012:88:33–42. doi 10.1016/j.brainresbull.2011.07.016 PubMed DOI PMC
Zu T, Duvick LA, Kaytor MD, Berlinger MS, Zoghbi HY, Clark HB, et al. Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J Neurosci. 2004:24:8853–61. doi 10.1523/jneurosci.2978-04.2004 PubMed DOI PMC
Watase K, Weeber EJ, Xu B, Antalffy B, Yuva-Paylor L, Hashimoto K, et al. A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron. 2002:34:905–19. doi 10.1016/s0896-6273(02)00733-x PubMed DOI
Lorenzetti D, Watase K, Xu B, Matzuk MM, Orr HT and Zoghbi HY. Repeat instability and motor incoordination in mice with a targeted expanded CAG repeat in the Sca1 locus. Hum Mol Genet. 2000:9:779–85. doi 10.1093/hmg/9.5.779 PubMed DOI
Ramani B, Harris GM, Huang R, Seki T, Murphy GG, Costa Mdo C, et al. A knockin mouse model of spinocerebellar ataxia type 3 exhibits prominent aggregate pathology and aberrant splicing of the disease gene transcript. Hum Mol Genet. 2015:24:1211–24. doi 10.1093/hmg/ddu532 PubMed DOI PMC
Switonski PM, Szlachcic WJ, Krzyzosiak WJ and Figiel M. A new humanized ataxin-3 knock-in mouse model combines the genetic features, pathogenesis of neurons and glia and late disease onset of SCA3/MJD. Neurobiol Dis. 2015:73:174–88. doi 10.1016/j.nbd.2014.09.020 PubMed DOI
Takechi Y, Mieda T, Iizuka A, Toya S, Suto N, Takagishi K, et al. Impairment of spinal motor neurons in spinocerebellar ataxia type 1-knock-in mice. Neurosci Lett. 2013:535:67–72. doi 10.1016/j.neulet.2012.12.057 PubMed DOI
Mieda T, Suto N, Iizuka A, Matsuura S, Iizuka H, Takagishi K, et al. Mesenchymal stem cells attenuate peripheral neuronal degeneration in spinocerebellar ataxia type 1 knockin mice. J Neurosci Res. 2016:94:246–52. doi 10.1002/jnr.23698 PubMed DOI
Shuvaev AN, Hosoi N, Sato Y, Yanagihara D and Hirai H. Progressive impairment of cerebellar mGluR signalling and its therapeutic potential for cerebellar ataxia in spinocerebellar ataxia type 1 model mice. J Physiol. 2017:595:141–64. doi 10.1113/jp272950 PubMed DOI PMC
Shuvaev AN, Horiuchi H, Seki T, Goenawan H, Irie T, Iizuka A, et al. Mutant PKCγ in spinocerebellar ataxia type 14 disrupts synapse elimination and long-term depression in Purkinje cells in vivo. J Neurosci. 2011:31:14324–34. doi 10.1523/jneurosci.5530-10.2011 PubMed DOI PMC
Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016:34:204–9. doi 10.1038/nbt.3440 PubMed DOI PMC
Shinohara Y, Konno A, Nitta K, Matsuzaki Y, Yasui H, Suwa J, et al. Effects of Neutralizing Antibody Production on AAV-PHP.B-Mediated Transduction of the Mouse Central Nervous System. Mol Neurobiol. 2019:56:4203–14. doi 10.1007/s12035-018-1366-4 PubMed DOI
Watanave M, Hoshino C, Konno A, Fukuzaki Y, Matsuzaki Y, Ishitani T, et al. Pharmacological enhancement of retinoid-related orphan receptor α function mitigates spinocerebellar ataxia type 3 pathology. Neurobiol Dis. 2019:121:263–73. doi 10.1016/j.nbd.2018.10.014 PubMed DOI
Serra HG, Duvick L, Zu T, Carlson K, Stevens S, Jorgensen N, et al. RORalpha-mediated Purkinje cell development determines disease severity in adult SCA1 mice. Cell. 2006:127:697–708. doi 10.1016/j.cell.2006.09.036 PubMed DOI
Konno A, Shuvaev AN, Miyake N, Miyake K, Iizuka A, Matsuura S, et al. Mutant ataxin-3 with an abnormally expanded polyglutamine chain disrupts dendritic development and metabotropic glutamate receptor signaling in mouse cerebellar Purkinje cells. Cerebellum. 2014:13:29–41. doi 10.1007/s12311-013-0516-5 PubMed DOI
Hirai H and Kano M. Type 1 metabotropic glutamate receptor and its signaling molecules as therapeutic targets for the treatment of cerebellar disorders. Curr Opin Pharmacol. 2018:38:51–8. doi 10.1016/j.coph.2018.02.002 PubMed DOI
Yasui H, Matsuzaki Y, Konno A and Hirai H. Global Knockdown of Retinoid-related Orphan Receptor α in Mature Purkinje Cells Reveals Aberrant Cerebellar Phenotypes of Spinocerebellar Ataxia. Neuroscience. 2020. doi 10.1016/j.neuroscience.2020.04.004 PubMed DOI
Seki T, Yoshino KI, Tanaka S, Dohi E, Onji T, Yamamoto K, et al. Establishment of a novel fluorescence-based method to evaluate chaperone-mediated autophagy in a single neuron. PLoS One. 2012:7:e31232. doi 10.1371/journal.pone.0031232 PubMed DOI PMC
Seki T, Sato M, Kibe Y, Ohta T, Oshima M, Konno A, et al. Lysosomal dysfunction and early glial activation are involved in the pathogenesis of spinocerebellar ataxia type 21 caused by mutant transmembrane protein 240. Neurobiol Dis. 2018:120:34–50. doi 10.1016/j.nbd.2018.08.022 PubMed DOI
Sato M, Ohta T, Morikawa Y, Konno A, Hirai H, Kurauchi Y, et al. Ataxic phenotype and neurodegeneration are triggered by the impairment of chaperone-mediated autophagy in cerebellar neurons. Neuropathol Appl Neurobiol. 2021:47:198–209. doi 10.1111/nan.12649 PubMed DOI
Ma Y, Zhang L and Huang X. Genome modification by CRISPR/Cas9. Febs j. 2014:281:5186–93. doi 10.1111/febs.13110 PubMed DOI
Fernandez-Funez P, Nino-Rosales ML, de Gouyon B, She WC, Luchak JM, Martinez P, et al. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature. 2000:408:101–6. doi 10.1038/35040584 PubMed DOI
Bakthavachalu B, Huelsmeier J, Sudhakaran IP, Hillebrand J, Singh A, Petrauskas A, et al. RNP-Granule Assembly via Ataxin-2 Disordered Domains Is Required for Long-Term Memory and Neurodegeneration. Neuron. 2018:98:754–66.e4. doi 10.1016/j.neuron.2018.04.032 PubMed DOI
Warrick JM, Paulson HL, Gray-Board GL, Bui QT, Fischbeck KH, Pittman RN, et al. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell. 1998:93:939–49. doi 10.1016/s0092-8674(00)81200-3 PubMed DOI
Li LB, Yu Z, Teng X and Bonini NM. RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature. 2008:453:1107–11. doi 10.1038/nature06909 PubMed DOI PMC
Wu YL, Chang JC, Lin WY, Li CC, Hsieh M, Chen HW, et al. Treatment with Caffeic Acid and Resveratrol Alleviates Oxidative Stress Induced Neurotoxicity in Cell and Drosophila Models of Spinocerebellar Ataxia Type3. Sci Rep. 2017:7:11641. doi 10.1038/s41598-017-11839-0 PubMed DOI PMC
Wu YL, Chang JC, Lin WY, Li CC, Hsieh M, Chen HW, et al. Caffeic acid and resveratrol ameliorate cellular damage in cell and Drosophila models of spinocerebellar ataxia type 3 through upregulation of Nrf2 pathway. Free Radical Biology & Medicine. 2018:115:309–17. doi 10.1016/j.freeradbiomed.2017.12.011 PubMed DOI
Watchon M, Yuan KC, Mackovski N, Svahn AJ, Cole NJ, Goldsbury C, et al. Calpain Inhibition Is Protective in Machado-Joseph Disease Zebrafish Due to Induction of Autophagy. J Neurosci. 2017:37:7782–94. doi 10.1523/jneurosci.1142-17.2017 PubMed DOI PMC
Acosta JR, Watchon M, Yuan KC, Fifita JA, Svahn AJ, Don EK, et al. Neuronal cell culture from transgenic zebrafish models of neurodegenerative disease. Biol Open. 2018:7. doi 10.1242/bio.036475 PubMed DOI PMC
Christie NT, Lee AL, Fay HG, Gray AA and Kikis EA. Novel polyglutamine model uncouples proteotoxicity from aging. PLoS One. 2014:9:e96835. doi 10.1371/journal.pone.0096835 PubMed DOI PMC
Visentin C, Pellistri F, Natalello A, Vertemara J, Bonanomi M, Gatta E, et al. Epigallocatechin-3-gallate and related phenol compounds redirect the amyloidogenic aggregation pathway of ataxin-3 towards non-toxic aggregates and prevent toxicity in neural cells and Caenorhabditis elegans animal model. Hum Mol Genet. 2017:26:3271–84. doi 10.1093/hmg/ddx211 PubMed DOI
Fardghassemi Y, Tauffenberger A, Gosselin S and Parker JA. Rescue of ATXN3 neuronal toxicity in Caenorhabditiselegans by chemical modification of endoplasmic reticulum stress. Dis Model Mech. 2017:10:1465–80. doi 10.1242/dmm.029736 PubMed DOI PMC
Teixeira-Castro A, Jalles A, Esteves S, Kang S, da Silva Santos L, Silva-Fernandes A, et al. Serotonergic signalling suppresses ataxin 3 aggregation and neurotoxicity in animal models of Machado-Joseph disease. Brain. 2015:138:3221–37. doi 10.1093/brain/awv262 PubMed DOI PMC
Tomioka I, Nagai Y and Seki K. Generation of Common Marmoset Model Lines of Spinocerebellar Ataxia Type 3. Front Neurosci. 2020:14:548002. doi 10.3389/fnins.2020.548002 PubMed DOI PMC
Tsou WL, Hosking RR, Burr AA, Sutton JR, Ouyang M, Du X, et al. DnaJ-1 and karyopherin α3 suppress degeneration in a new Drosophila model of Spinocerebellar Ataxia Type 6. Hum Mol Genet. 2015:24:4385–96. doi 10.1093/hmg/ddv174 PubMed DOI PMC
Jackson SM, Whitworth AJ, Greene JC, Libby RT, Baccam SL, Pallanck LJ, et al. A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage. Gene. 2005:347:35–41. doi 10.1016/j.gene.2004.12.008 PubMed DOI
Latouche M, Lasbleiz C, Martin E, Monnier V, Debeir T, Mouatt-Prigent A, et al. A conditional pan-neuronal Drosophila model of spinocerebellar ataxia 7 with a reversible adult phenotype suitable for identifying modifier genes. J Neurosci. 2007:27:2483–92. doi 10.1523/jneurosci.5453-06.2007 PubMed DOI PMC
Yanicostas C, Barbieri E, Hibi M, Brice A, Stevanin G and Soussi-Yanicostas N. Requirement for zebrafish ataxin-7 in differentiation of photoreceptors and cerebellar neurons. PLoS One. 2012:7:e50705. doi 10.1371/journal.pone.0050705 PubMed DOI PMC
Mutsuddi M, Marshall CM, Benzow KA, Koob MD and Rebay I. The spinocerebellar ataxia 8 noncoding RNA causes neurodegeneration and associates with staufen in Drosophila. Curr Biol. 2004:14:302–8. doi 10.1016/j.cub.2004.01.034 PubMed DOI
Namikawa K, Dorigo A and Köster RW. Neurological Disease Modelling for Spinocerebellar Ataxia Using Zebrafish. J Exp Neurosci. 2019:13:1179069519880515. doi 10.1177/1179069519880515 PubMed DOI PMC
Namikawa K, Dorigo A, Zagrebelsky M, Russo G, Kirmann T, Fahr W, et al. Modeling Neurodegenerative Spinocerebellar Ataxia Type 13 in Zebrafish Using a Purkinje Neuron Specific Tunable Coexpression System. J Neurosci. 2019:39:3948–69. doi 10.1523/jneurosci.1862-18.2019 PubMed DOI PMC
Ren J, Jegga AG, Zhang M, Deng J, Liu J, Gordon CB, et al. A Drosophila model of the neurodegenerative disease SCA17 reveals a role of RBP-J/Su(H) in modulating the pathological outcome. Hum Mol Genet. 2011:20:3424–36. doi 10.1093/hmg/ddr251 PubMed DOI PMC
Kelp A, Koeppen AH, Petrasch-Parwez E, Calaminus C, Bauer C, Portal E, et al. A novel transgenic rat model for spinocerebellar ataxia type 17 recapitulates neuropathological changes and supplies in vivo imaging biomarkers. J Neurosci. 2013:33:9068–81. doi 10.1523/jneurosci.5622-12.2013 PubMed DOI PMC
Ishiguro T, Sato N, Ueyama M, Fujikake N, Sellier C, Kanegami A, et al. Regulatory Role of RNA Chaperone TDP-43 for RNA Misfolding and Repeat-Associated Translation in SCA31. Neuron. 2017:94:108–24.e7. doi 10.1016/j.neuron.2017.02.046 PubMed DOI PMC
Ishikawa K and Nagai Y. Molecular Mechanisms and Future Therapeutics for Spinocerebellar Ataxia Type 31 (SCA31). Neurotherapeutics. 2019:16:1106–14. doi 10.1007/s13311-019-00804-6 PubMed DOI PMC
Akita K, Arai S, Ohta T, Hanaya T and Fukuda S. Suppressed Nna1 gene expression in the brain of ataxic Syrian hamsters. J Neurogenet. 2007:21:19–29. doi 10.1080/01677060600843316 PubMed DOI
Akita K and Arai S. The ataxic Syrian hamster: an animal model homologous to the pcd mutant mouse? Cerebellum. 2009:8:202–10. doi 10.1007/s12311-009-0113-9 PubMed DOI
Veenstra GJ, Weeks DL and Wolffe AP. Distinct roles for TBP and TBP-like factor in early embryonic gene transcription in Xenopus. Science. 2000:290:2312–5. doi 10.1126/science.290.5500.2312 PubMed DOI
Gazulla J and Tintoré MA. The P/Q-type voltage-dependent calcium channel as pharmacological target in spinocerebellar ataxia type 6: gabapentin and pregabalin may be of therapeutic benefit. Med Hypotheses. 2007:68:131–6. doi 10.1016/j.mehy.2006.06.014 PubMed DOI
Koon AC and Chan HY. Drosophila melanogaster As a Model Organism to Study RNA Toxicity of Repeat Expansion-Associated Neurodegenerative and Neuromuscular Diseases. Front Cell Neurosci. 2017:11:70. doi 10.3389/fncel.2017.00070 PubMed DOI PMC
Johnson SL, Blount JR, Libohova K, Ranxhi B, Paulson HL, Tsou WL, et al. Differential toxicity of ataxin-3 isoforms in Drosophila models of Spinocerebellar Ataxia Type 3. Neurobiol Dis. 2019:132:104535. doi 10.1016/j.nbd.2019.104535 PubMed DOI PMC
Wu S, Tan KJ, Govindarajan LN, Stewart JC, Gu L, Ho JWH, et al. Fully automated leg tracking of Drosophila neurodegeneration models reveals distinct conserved movement signatures. PLoS Biol. 2019:17:e3000346. doi 10.1371/journal.pbio.3000346 PubMed DOI PMC
Del Castillo U, Gnazzo MM, Sorensen Turpin CG, Nguyen KCQ, Semaya E, Lam Y, et al. Conserved role for Ataxin-2 in mediating endoplasmic reticulum dynamics. Traffic. 2019:20:436–47. doi 10.1111/tra.12647 PubMed DOI PMC
Rodrigues AJ, Coppola G, Santos C, Costa Mdo C, Ailion M, Sequeiros J, et al. Functional genomics and biochemical characterization of the C. elegans orthologue of the Machado-Joseph disease protein ataxin-3. Faseb j. 2007:21:1126–36. doi 10.1096/fj.06-7002com PubMed DOI
Herzog LK, Kevei É, Marchante R, Böttcher C, Bindesbøll C, Lystad AH, et al. The Machado-Joseph disease deubiquitylase ataxin-3 interacts with LC3C/GABARAP and promotes autophagy. Aging Cell. 2020:19:e13051. doi 10.1111/acel.13051 PubMed DOI PMC
Matilla A, Roberson ED, Banfi S, Morales J, Armstrong DL, Burright EN, et al. Mice lacking ataxin-1 display learning deficits and decreased hippocampal paired-pulse facilitation. J Neurosci. 1998:18:5508–16. doi 10.1523/jneurosci.18-14-05508.1998 PubMed DOI PMC
Crespo-Barreto J, Fryer JD, Shaw CA, Orr HT and Zoghbi HY. Partial loss of ataxin-1 function contributes to transcriptional dysregulation in spinocerebellar ataxia type 1 pathogenesis. PLoS Genet. 2010:6:e1001021. doi 10.1371/journal.pgen.1001021 PubMed DOI PMC
Lim J, Crespo-Barreto J, Jafar-Nejad P, Bowman AB, Richman R, Hill DE, et al. Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature. 2008:452:713–8. doi 10.1038/nature06731 PubMed DOI PMC
Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB, et al. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell. 1998:95:41–53. doi 10.1016/s0092-8674(00)81781-x PubMed DOI
Irwin S, Vandelft M, Pinchev D, Howell JL, Graczyk J, Orr HT, et al. RNA association and nucleocytoplasmic shuttling by ataxin-1. J Cell Sci. 2005:118:233–42. doi 10.1242/jcs.01611 PubMed DOI
Zhang S, Williamson NA, Duvick L, Lee A, Orr HT, Korlin-Downs A, et al. The ataxin-1 interactome reveals direct connection with multiple disrupted nuclear transport pathways. Nat Commun. 2020:11:3343. doi 10.1038/s41467-020-17145-0 PubMed DOI PMC
Emamian ES, Kaytor MD, Duvick LA, Zu T, Tousey SK, Zoghbi HY, et al. Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice. Neuron. 2003:38:375–87. doi 10.1016/s0896-6273(03)00258-7 PubMed DOI
Duvick L, Barnes J, Ebner B, Agrawal S, Andresen M, Lim J, et al. SCA1-like disease in mice expressing wild-type ataxin-1 with a serine to aspartic acid replacement at residue 776. Neuron. 2010:67:929–35. doi 10.1016/j.neuron.2010.08.022 PubMed DOI PMC
Chen HK, Fernandez-Funez P, Acevedo SF, Lam YC, Kaytor MD, Fernandez MH, et al. Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell. 2003:113:457–68. doi 10.1016/s0092-8674(03)00349-0 PubMed DOI
Lai S, O’Callaghan B, Zoghbi HY and Orr HT. 14-3-3 Binding to ataxin-1(ATXN1) regulates its dephosphorylation at Ser-776 and transport to the nucleus. J Biol Chem. 2011:286:34606–16. doi 10.1074/jbc.M111.238527 PubMed DOI PMC
Tsuda H, Jafar-Nejad H, Patel AJ, Sun Y, Chen HK, Rose MF, et al. The AXH domain of Ataxin-1 mediates neurodegeneration through its interaction with Gfi-1/Senseless proteins. Cell. 2005:122:633–44. doi 10.1016/j.cell.2005.06.012 PubMed DOI
Fryer JD, Yu P, Kang H, Mandel-Brehm C, Carter AN, Crespo-Barreto J, et al. Exercise and genetic rescue of SCA1 via the transcriptional repressor Capicua. Science. 2011:334:690–3. doi 10.1126/science.1212673 PubMed DOI PMC
Gandelman M, Dansithong W, Figueroa KP, Paul S, Scoles DR and Pulst SM. Staufen 1 amplifies proapoptotic activation of the unfolded protein response. Cell Death Differ. 2020:27:2942–51. doi 10.1038/s41418-020-0553-9 PubMed DOI PMC
Neuenschwander AG, Thai KK, Figueroa KP and Pulst SM. Amyotrophic lateral sclerosis risk for spinocerebellar ataxia type 2 ATXN2 CAG repeat alleles: a meta-analysis. JAMA Neurol. 2014:71:1529–34. doi 10.1001/jamaneurol.2014.2082 PubMed DOI PMC
Scoles DR, Dansithong W, Pflieger LT, Paul S, Gandelman M, Figueroa KP, et al. ALS-associated genes in SCA2 mouse spinal cord transcriptomes. Hum Mol Genet. 2020:29:1658–72. doi 10.1093/hmg/ddaa072 PubMed DOI PMC
ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04494256. Accessed 26 October 2020
Meera P, Pulst S and Otis T. A positive feedback loop linking enhanced mGluR function and basal calcium in spinocerebellar ataxia type 2. Elife. 2017:6. doi 10.7554/eLife.26377 PubMed DOI PMC
Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci. 2009:29:9148–62. doi 10.1523/jneurosci.0660-09.2009 PubMed DOI PMC
Schmitt I, Linden M, Khazneh H, Evert BO, Breuer P, Klockgether T, et al. Inactivation of the mouse Atxn3 (ataxin-3) gene increases protein ubiquitination. Biochem Biophys Res Commun. 2007:362:734–9. doi 10.1016/j.bbrc.2007.08.062 PubMed DOI
Niewiadomska-Cimicka A, Hache A and Trottier Y. Gene Deregulation and Underlying Mechanisms in Spinocerebellar Ataxias With Polyglutamine Expansion. Front Neurosci. 2020:14:571. doi 10.3389/fnins.2020.00571 PubMed DOI PMC
McLoughlin HS, Moore LR and Paulson HL. Pathogenesis of SCA3 and implications for other polyglutamine diseases. Neurobiol Dis. 2020:134:104635. doi 10.1016/j.nbd.2019.104635 PubMed DOI PMC
Ramani B, Panwar B, Moore LR, Wang B, Huang R, Guan Y, et al. Comparison of spinocerebellar ataxia type 3 mouse models identifies early gain-of-function, cell-autonomous transcriptional changes in oligodendrocytes. Hum Mol Genet. 2017:26:3362–74. doi 10.1093/hmg/ddx224 PubMed DOI PMC
Bichelmeier U, Schmidt T, Hübener J, Boy J, Rüttiger L, Häbig K, et al. Nuclear localization of ataxin-3 is required for the manifestation of symptoms in SCA3: in vivo evidence. J Neurosci. 2007:27:7418–28. doi 10.1523/jneurosci.4540-06.2007 PubMed DOI PMC
Du X, Wang J, Zhu H, Rinaldo L, Lamar KM, Palmenberg AC, et al. Second cistron in CACNA1A gene encodes a transcription factor mediating cerebellar development and SCA6. Cell. 2013:154:118–33. doi 10.1016/j.cell.2013.05.059 PubMed DOI PMC
Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet. 1997:15:62–9. doi 10.1038/ng0197-62 PubMed DOI
Saegusa H, Wakamori M, Matsuda Y, Wang J, Mori Y, Zong S, et al. Properties of human Cav2.1 channel with a spinocerebellar ataxia type 6 mutation expressed in Purkinje cells. Mol Cell Neurosci. 2007:34:261–70. doi 10.1016/j.mcn.2006.11.006 PubMed DOI
Watase K, Barrett CF, Miyazaki T, Ishiguro T, Ishikawa K, Hu Y, et al. Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels. Proc Natl Acad Sci U S A. 2008:105:11987–92. doi 10.1073/pnas.0804350105 PubMed DOI PMC
Mark MD, Krause M, Boele HJ, Kruse W, Pollok S, Kuner T, et al. Spinocerebellar ataxia type 6 protein aggregates cause deficits in motor learning and cerebellar plasticity. J Neurosci. 2015:35:8882–95. doi 10.1523/jneurosci.0891-15.2015 PubMed DOI PMC
Miyazaki Y, Du X, Muramatsu S and Gomez CM. An miRNA-mediated therapy for SCA6 blocks IRES-driven translation of the CACNA1A second cistron. Sci Transl Med. 2016:8:347ra94. doi 10.1126/scitranslmed.aaf5660 PubMed DOI PMC
Yoo SY, Pennesi ME, Weeber EJ, Xu B, Atkinson R, Chen S, et al. SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7 in neurons and abnormalities in short-term plasticity. Neuron. 2003:37:383–401. doi 10.1016/s0896-6273(02)01190-x PubMed DOI
Yvert G, Lindenberg KS, Devys D, Helmlinger D, Landwehrmeyer GB and Mandel JL. SCA7 mouse models show selective stabilization of mutant ataxin-7 and similar cellular responses in different neuronal cell types. Hum Mol Genet. 2001:10:1679–92. doi 10.1093/hmg/10.16.1679 PubMed DOI
Guyenet SJ, Mookerjee SS, Lin A, Custer SK, Chen SF, Sopher BL, et al. Proteolytic cleavage of ataxin-7 promotes SCA7 retinal degeneration and neurological dysfunction. Hum Mol Genet. 2015:24:3908–17. doi 10.1093/hmg/ddv121 PubMed DOI PMC
Chou AH, Chen CY, Chen SY, Chen WJ, Chen YL, Weng YS, et al. Polyglutamine-expanded ataxin-7 causes cerebellar dysfunction by inducing transcriptional dysregulation. Neurochem Int. 2010:56:329–39. doi 10.1016/j.neuint.2009.11.003 PubMed DOI
Burright EN, Clark HB, Servadio A, Matilla T, Feddersen RM, Yunis WS, et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell. 1995:82:937–48. doi 10.1016/0092-8674(95)90273-2 PubMed DOI
Cvetanovic M, Ingram M, Orr H and Opal P. Early activation of microglia and astrocytes in mouse models of spinocerebellar ataxia type 1. Neuroscience. 2015:289:289–99. doi 10.1016/j.neuroscience.2015.01.003 PubMed DOI PMC
Clark HB, Burright EN, Yunis WS, Larson S, Wilcox C, Hartman B, et al. Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and histological alterations. J Neurosci. 1997:17:7385–95. doi 10.1523/jneurosci.17-19-07385.1997 PubMed DOI PMC
Asher M, Rosa JG, Rainwater O, Duvick L, Bennyworth M, Lai RY, et al. Cerebellar contribution to the cognitive alterations in SCA1: evidence from mouse models. Hum Mol Genet. 2020:29:117–31. doi 10.1093/hmg/ddz265 PubMed DOI PMC
Tichanek F, Salomova M, Jedlicka J, Kuncova J, Pitule P, Macanova T, et al. Hippocampal mitochondrial dysfunction and psychiatric-relevant behavioral deficits in spinocerebellar ataxia 1 mouse model. Sci Rep. 2020:10:5418. doi 10.1038/s41598-020-62308-0 PubMed DOI PMC
Orengo JP, van der Heijden ME, Hao S, Tang J, Orr HT and Zoghbi HY. Motor neuron degeneration correlates with respiratory dysfunction in SCA1. Dis Model Mech. 2018:11. doi 10.1242/dmm.032623 PubMed DOI PMC
Suh J, Romano DM, Nitschke L, Herrick SP, DiMarzio BA, Dzhala V, et al. Loss of Ataxin-1 Potentiates Alzheimer’s Pathogenesis by Elevating Cerebral BACE1 Transcription. Cell. 2019:178:1159–75.e17. doi 10.1016/j.cell.2019.07.043 PubMed DOI PMC
Cvetanovic M, Patel JM, Marti HH, Kini AR and Opal P. Vascular endothelial growth factor ameliorates the ataxic phenotype in a mouse model of spinocerebellar ataxia type 1. Nat Med. 2011:17:1445–7. doi 10.1038/nm.2494 PubMed DOI PMC
Watase K, Gatchel JR, Sun Y, Emamian E, Atkinson R, Richman R, et al. Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model. PLoS Med. 2007:4:e182. doi 10.1371/journal.pmed.0040182 PubMed DOI PMC
Dansithong W, Paul S, Figueroa KP, Rinehart MD, Wiest S, Pflieger LT, et al. Ataxin-2 regulates RGS8 translation in a new BAC-SCA2 transgenic mouse model. PLoS Genet. 2015:11:e1005182. doi 10.1371/journal.pgen.1005182 PubMed DOI PMC
Hansen ST, Meera P, Otis TS and Pulst SM. Changes in Purkinje cell firing and gene expression precede behavioral pathology in a mouse model of SCA2. Hum Mol Genet. 2013:22:271–83. doi 10.1093/hmg/dds427 PubMed DOI PMC
Huynh DP, Figueroa K, Hoang N and Pulst SM. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet. 2000:26:44–50. doi 10.1038/79162 PubMed DOI
Aguiar J, Fernández J, Aguilar A, Mendoza Y, Vázquez M, Suárez J, et al. Ubiquitous expression of human SCA2 gene under the regulation of the SCA2 self promoter cause specific Purkinje cell degeneration in transgenic mice. Neurosci Lett. 2006:392:202–6. doi 10.1016/j.neulet.2005.09.020 PubMed DOI
Damrath E, Heck MV, Gispert S, Azizov M, Nowock J, Seifried C, et al. ATXN2-CAG42 sequesters PABPC1 into insolubility and induces FBXW8 in cerebellum of old ataxic knock-in mice. PLoS Genet. 2012:8:e1002920. doi 10.1371/journal.pgen.1002920 PubMed DOI PMC
Cemal CK, Carroll CJ, Lawrence L, Lowrie MB, Ruddle P, Al-Mahdawi S, et al. YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit. Hum Mol Genet. 2002:11:1075–94. doi 10.1093/hmg/11.9.1075 PubMed DOI
Chen X, Tang TS, Tu H, Nelson O, Pook M, Hammer R, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci. 2008:28:12713–24. doi 10.1523/jneurosci.3909-08.2008 PubMed DOI PMC
Goti D, Katzen SM, Mez J, Kurtis N, Kiluk J, Ben-Haïem L, et al. A mutant ataxin-3 putative-cleavage fragment in brains of Machado-Joseph disease patients and transgenic mice is cytotoxic above a critical concentration. J Neurosci. 2004:24:10266–79. doi 10.1523/jneurosci.2734-04.2004 PubMed DOI PMC
Chou AH, Yeh TH, Ouyang P, Chen YL, Chen SY and Wang HL. Polyglutamine-expanded ataxin-3 causes cerebellar dysfunction of SCA3 transgenic mice by inducing transcriptional dysregulation. Neurobiol Dis. 2008:31:89–101. doi 10.1016/j.nbd.2008.03.011 PubMed DOI
Boy J, Schmidt T, Wolburg H, Mack A, Nuber S, Bottcher M, et al. Reversibility of symptoms in a conditional mouse model of spinocerebellar ataxia type 3. Hum Mol Genet. 2009:18:4282–95. doi 10.1093/hmg/ddp381 PubMed DOI
Boy J, Schmidt T, Schumann U, Grasshoff U, Unser S, Holzmann C, et al. A transgenic mouse model of spinocerebellar ataxia type 3 resembling late disease onset and gender-specific instability of CAG repeats. Neurobiol Dis. 2010:37:284–93. doi 10.1016/j.nbd.2009.08.002 PubMed DOI
Silva-Fernandes A, Costa Mdo C, Duarte-Silva S, Oliveira P, Botelho CM, Martins L, et al. Motor uncoordination and neuropathology in a transgenic mouse model of Machado-Joseph disease lacking intranuclear inclusions and ataxin-3 cleavage products. Neurobiol Dis. 2010:40:163–76. doi 10.1016/j.nbd.2010.05.021 PubMed DOI
Haas E, Incebacak RD, Hentrich T, Maringer Y, Schmidt T, Zimmermann F, et al. A novel Ataxin-3 knock-in mouse model mimics the human SCA3 disease phenotype including neuropathological, behavioral, and transcriptional abnormalities. bioRxiv. 2020:2020.02.28.968024. doi 10.1101/2020.02.28.968024 PubMed DOI PMC
Perkins EM, Clarkson YL, Sabatier N, Longhurst DM, Millward CP, Jack J, et al. Loss of beta-III spectrin leads to Purkinje cell dysfunction recapitulating the behavior and neuropathology of spinocerebellar ataxia type 5 in humans. J Neurosci. 2010:30:4857–67. doi 10.1523/jneurosci.6065-09.2010 PubMed DOI PMC
Armbrust KR, Wang X, Hathorn TJ, Cramer SW, Chen G, Zu T, et al. Mutant β-III spectrin causes mGluR1α mislocalization and functional deficits in a mouse model of spinocerebellar ataxia type 5. J Neurosci. 2014:34:9891–904. doi 10.1523/jneurosci.0876-14.2014 PubMed DOI PMC
Jayabal S, Ljungberg L, Erwes T, Cormier A, Quilez S, El Jaouhari S, et al. Rapid Onset of Motor Deficits in a Mouse Model of Spinocerebellar Ataxia Type 6 Precedes Late Cerebellar Degeneration. eNeuro. 2015:2. doi 10.1523/eneuro.0094-15.2015 PubMed DOI PMC
Unno T, Wakamori M, Koike M, Uchiyama Y, Ishikawa K, Kubota H, et al. Development of Purkinje cell degeneration in a knockin mouse model reveals lysosomal involvement in the pathogenesis of SCA6. Proc Natl Acad Sci U S A. 2012:109:17693–8. doi 10.1073/pnas.1212786109 PubMed DOI PMC
Garden GA, Libby RT, Fu YH, Kinoshita Y, Huang J, Possin DE, et al. Polyglutamine-expanded ataxin-7 promotes non-cell-autonomous purkinje cell degeneration and displays proteolytic cleavage in ataxic transgenic mice. J Neurosci. 2002:22:4897–905. doi 10.1523/jneurosci.22-12-04897.2002 PubMed DOI PMC
La Spada AR, Fu YH, Sopher BL, Libby RT, Wang X, Li LY, et al. Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7. Neuron. 2001:31:913–27. doi 10.1016/s0896-6273(01)00422-6 PubMed DOI
Fusco AF, Pucci L, McCall AL, Dhindsa J, Kahn A, Switonski P, et al. Respiratory Dysfunction in a Mouse Model of Spinocerebellar Ataxia 7. The FASEB Journal. 2020:34:1-. doi 10.1096/fasebj.2020.34.s1.05924 PubMed DOI PMC
Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK, Daughters RS, et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet. 2006:38:758–69. doi 10.1038/ng1827 PubMed DOI
Ho CS, Grange RW and Joho RH. Pleiotropic effects of a disrupted K+ channel gene: reduced body weight, impaired motor skill and muscle contraction, but no seizures. Proc Natl Acad Sci U S A. 1997:94:1533–8. doi 10.1073/pnas.94.4.1533 PubMed DOI PMC
Espinosa F, McMahon A, Chan E, Wang S, Ho CS, Heintz N, et al. Alcohol hypersensitivity, increased locomotion, and spontaneous myoclonus in mice lacking the potassium channels Kv3.1 and Kv3.3. J Neurosci. 2001:21:6657–65. doi 10.1523/jneurosci.21-17-06657.2001 PubMed DOI PMC
Joho RH, Street C, Matsushita S and Knöpfel T. Behavioral motor dysfunction in Kv3-type potassium channel-deficient mice. Genes Brain Behav. 2006:5:472–82. doi 10.1111/j.1601-183X.2005.00184.x PubMed DOI
Zhang Y, Snider A, Willard L, Takemoto DJ and Lin D. Loss of Purkinje cells in the PKCgamma H101Y transgenic mouse. Biochem Biophys Res Commun. 2009:378:524–8. doi 10.1016/j.bbrc.2008.11.082 PubMed DOI PMC
Ji J, Hassler ML, Shimobayashi E, Paka N, Streit R and Kapfhammer JP. Increased protein kinase C gamma activity induces Purkinje cell pathology in a mouse model of spinocerebellar ataxia 14. Neurobiol Dis. 2014:70:1–11. doi 10.1016/j.nbd.2014.06.002 PubMed DOI
Matsumoto M, Nakagawa T, Inoue T, Nagata E, Tanaka K, Takano H, et al. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature. 1996:379:168–71. doi 10.1038/379168a0 PubMed DOI
Street VA, Bosma MM, Demas VP, Regan MR, Lin DD, Robinson LC, et al. The type 1 inositol 1,4,5-trisphosphate receptor gene is altered in the opisthotonos mouse. J Neurosci. 1997:17:635–45. doi 10.1523/jneurosci.17-02-00635.1997 PubMed DOI PMC
van de Leemput J, Chandran J, Knight MA, Holtzclaw LA, Scholz S, Cookson MR, et al. Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet. 2007:3:e108. doi 10.1371/journal.pgen.0030108 PubMed DOI PMC
Friedman MJ, Shah AG, Fang ZH, Ward EG, Warren ST, Li S, et al. Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration. Nat Neurosci. 2007:10:1519–28. doi 10.1038/nn2011 PubMed DOI
Portal E, Riess O and Nguyen HP. Automated home cage assessment shows behavioral changes in a transgenic mouse model of spinocerebellar ataxia type 17. Behav Brain Res. 2013:250:157–65. doi 10.1016/j.bbr.2013.04.042 PubMed DOI
Chang YC, Lin CY, Hsu CM, Lin HC, Chen YH, Lee-Chen GJ, et al. Neuroprotective effects of granulocyte-colony stimulating factor in a novel transgenic mouse model of SCA17. J Neurochem. 2011:118:288–303. doi 10.1111/j.1471-4159.2011.07304.x PubMed DOI
Huang S, Ling JJ, Yang S, Li XJ and Li S. Neuronal expression of TATA box-binding protein containing expanded polyglutamine in knock-in mice reduces chaperone protein response by impairing the function of nuclear factor-Y transcription factor. Brain. 2011:134:1943–58. doi 10.1093/brain/awr146 PubMed DOI PMC
Yang S, Huang S, Gaertig MA, Li XJ and Li S. Age-dependent decrease in chaperone activity impairs MANF expression, leading to Purkinje cell degeneration in inducible SCA17 mice. Neuron. 2014:81:349–65. doi 10.1016/j.neuron.2013.12.002 PubMed DOI PMC
Huang S, Yang S, Guo J, Yan S, Gaertig MA, Li S, et al. Large Polyglutamine Repeats Cause Muscle Degeneration in SCA17 Mice. Cell Rep. 2015:13:196–208. doi 10.1016/j.celrep.2015.08.060 PubMed DOI PMC
Smeets CJ, Jezierska J, Watanabe H, Duarri A, Fokkens MR, Meijer M, et al. Elevated mutant dynorphin A causes Purkinje cell loss and motor dysfunction in spinocerebellar ataxia type 23. Brain. 2015:138:2537–52. doi 10.1093/brain/awv195 PubMed DOI
Wang Q, Bardgett ME, Wong M, Wozniak DF, Lou J, McNeil BD, et al. Ataxia and paroxysmal dyskinesia in mice lacking axonally transported FGF14. Neuron. 2002:35:25–38. doi 10.1016/s0896-6273(02)00744-4 PubMed DOI
Wozniak DF, Xiao M, Xu L, Yamada KA and Ornitz DM. Impaired spatial learning and defective theta burst induced LTP in mice lacking fibroblast growth factor 14. Neurobiol Dis. 2007:26:14–26. doi 10.1016/j.nbd.2006.11.014 PubMed DOI PMC
Maltecca F, Magnoni R, Cerri F, Cox GA, Quattrini A and Casari G. Haploinsufficiency of AFG3L2, the gene responsible for spinocerebellar ataxia type 28, causes mitochondria-mediated Purkinje cell dark degeneration. J Neurosci. 2009:29:9244–54. doi 10.1523/jneurosci.1532-09.2009 PubMed DOI PMC
Maltecca F, Aghaie A, Schroeder DG, Cassina L, Taylor BA, Phillips SJ, et al. The mitochondrial protease AFG3L2 is essential for axonal development. J Neurosci. 2008:28:2827–36. doi 10.1523/jneurosci.4677-07.2008 PubMed DOI PMC
Hashiguchi S, Doi H, Kunii M, Nakamura Y, Shimuta M, Suzuki E, et al. Ataxic phenotype with altered Ca(V)3.1 channel property in a mouse model for spinocerebellar ataxia 42. Neurobiol Dis. 2019:130:104516. doi 10.1016/j.nbd.2019.104516 PubMed DOI
Cook AA, Fields E and Watt AJ. Losing the Beat: Contribution of Purkinje Cell Firing Dysfunction to Disease, and Its Reversal. Neuroscience. 2020. doi 10.1016/j.neuroscience.2020.06.008 PubMed DOI
Lalonde R and Strazielle C. Motor Performances of Spontaneous and Genetically Modified Mutants with Cerebellar Atrophy. Cerebellum. 2019:18:615–34. doi 10.1007/s12311-019-01017-5 PubMed DOI
Cui Y, Yang S, Li XJ and Li S. Genetically modified rodent models of SCA17. J Neurosci Res. 2017:95:1540–7. doi 10.1002/jnr.23984 PubMed DOI PMC
Colomer Gould VF. Mouse models of spinocerebellar ataxia type 3 (Machado-Joseph disease). Neurotherapeutics. 2012:9:285–96. doi 10.1007/s13311-012-0117-x PubMed DOI PMC
Alves-Cruzeiro JM, Mendonça L, Pereira de Almeida L and Nóbrega C. Motor Dysfunctions and Neuropathology in Mouse Models of Spinocerebellar Ataxia Type 2: A Comprehensive Review. Front Neurosci. 2016:10:572. doi 10.3389/fnins.2016.00572 PubMed DOI PMC
Bouskila M, Esoof N, Gay L, Fang EH, Deak M, Begley MJ, et al. TTBK2 kinase substrate specificity and the impact of spinocerebellar-ataxia-causing mutations on expression, activity, localization and development. Biochem J. 2011:437:157–67. doi 10.1042/bj20110276 PubMed DOI PMC
Hurlock EC, McMahon A and Joho RH. Purkinje-cell-restricted restoration of Kv3.3 function restores complex spikes and rescues motor coordination in Kcnc3 mutants. J Neurosci. 2008:28:4640–8. doi 10.1523/jneurosci.5486-07.2008 PubMed DOI PMC
Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet. 2000:26:191–4. doi 10.1038/79911 PubMed DOI
Diallo A, Jacobi H, Cook A, Labrum R, Durr A, Brice A, et al. Survival in patients with spinocerebellar ataxia types 1, 2, 3, and 6 (EUROSCA): a longitudinal cohort study. Lancet Neurol. 2018:17:327–34. doi 10.1016/s1474-4422(18)30042-5 PubMed DOI
McMurtray AM, Clark DG, Flood MK, Perlman S and Mendez MF. Depressive and memory symptoms as presenting features of spinocerebellar ataxia. Journal of Neuropsychiatry & Clinical Neurosciences. 2006:18:420–2. doi 10.1176/jnp.2006.18.3.420 PubMed DOI
Fancellu R, Paridi D, Tomasello C, Panzeri M, Castaldo A, Genitrini S, et al. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J Neurol. 2013:260:3134–43. doi 10.1007/s00415-013-7138-1 PubMed DOI
Lo RY, Figueroa KP, Pulst SM, Perlman S, Wilmot G, Gomez C, et al. Depression and clinical progression in spinocerebellar ataxias. Parkinsonism Relat Disord. 2016:22:87–92. doi 10.1016/j.parkreldis.2015.11.021 PubMed DOI PMC
Asher M, Johnson A, Zecevic B, Pease D and Cvetanovic M. Ataxin-1 regulates proliferation of hippocampal neural precursors. Neuroscience. 2016:322:54–65. doi 10.1016/j.neuroscience.2016.02.011 PubMed DOI
Cvetanovic M, Hu YS and Opal P. Mutant Ataxin-1 Inhibits Neural Progenitor Cell Proliferation in SCA1. Cerebellum. 2017:16:340–7. doi 10.1007/s12311-016-0794-9 PubMed DOI PMC
Hatanaka Y, Watase K, Wada K and Nagai Y. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1. Sci Rep. 2015:5:16102. doi 10.1038/srep16102 PubMed DOI PMC
Paucar M, Lundin J, Alshammari T, Bergendal Å, Lindefeldt M, Alshammari M, et al. Broader phenotypic traits and widespread brain hypometabolism in spinocerebellar ataxia 27. J Intern Med. 2020:288:103–15. doi 10.1111/joim.13052 PubMed DOI PMC
Moriarty A, Cook A, Hunt H, Adams ME, Cipolotti L and Giunti P. A longitudinal investigation into cognition and disease progression in spinocerebellar ataxia types 1, 2, 3, 6, and 7. Orphanet J Rare Dis. 2016:11:82. doi 10.1186/s13023-016-0447-6 PubMed DOI PMC
Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, et al. Consensus Paper: Revisiting the Symptoms and Signs of Cerebellar Syndrome. Cerebellum. 2016:15:369–91. doi 10.1007/s12311-015-0687-3 PubMed DOI PMC
Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014:13:151–77. doi 10.1007/s12311-013-0511-x PubMed DOI PMC
Amokrane N, Viswanathan A, Freedman S, Yang CY, Desai NA, Pan MK, et al. Impulsivity in Cerebellar Ataxias: Testing the Cerebellar Reward Hypothesis in Humans. Mov Disord. 2020:35:1491–3. doi 10.1002/mds.28121 PubMed DOI PMC
Cendelin J and Tichanek F. Cerebellar degeneration averts blindness-induced despaired behavior during spatial task in mice. Neurosci Lett. 2020:722:134854. doi 10.1016/j.neulet.2020.134854 PubMed DOI
Tuma J, Kolinko Y, Vozeh F and Cendelin J. Mutation-related differences in exploratory, spatial, and depressive-like behavior in pcd and Lurcher cerebellar mutant mice. Front Behav Neurosci. 2015:9:116. doi 10.3389/fnbeh.2015.00116 PubMed DOI PMC
Asher M, Rosa JG and Cvetanovic M. Mood alterations in mouse models of Spinocerebellar Ataxia type 1. Sci Rep. 2021:11:713. doi 10.1038/s41598-020-80664-9 PubMed DOI PMC
Argyropoulos GPD, van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, et al. The Cerebellar Cognitive Affective/Schmahmann Syndrome: a Task Force Paper. Cerebellum. 2020:19:102–25. doi 10.1007/s12311-019-01068-8 PubMed DOI PMC
Yamamoto M, Kim M, Imai H, Itakura Y and Ohtsuki G. Microglia-Triggered Plasticity of Intrinsic Excitability Modulates Psychomotor Behaviors in Acute Cerebellar Inflammation. Cell Rep. 2019:28:2923–38.e8. doi 10.1016/j.celrep.2019.07.078 PubMed DOI
Perez-Lloret S, van de Warrenburg B, Rossi M, Rodríguez-Blázquez C, Zesiewicz T, Saute JAM, et al. Assessment of Ataxia Rating Scales and Cerebellar Functional Tests: Critique and Recommendations. Mov Disord. 2021:36:283–97. doi 10.1002/mds.28313 PubMed DOI
Schmahmann JD, Gardner R, MacMore J and Vangel MG. Development of a brief ataxia rating scale (BARS) based on a modified form of the ICARS. Mov Disord. 2009:24:1820–8. doi 10.1002/mds.22681 PubMed DOI PMC
Schmitz-Hübsch T, Coudert M, Bauer P, Giunti P, Globas C, Baliko L, et al. Spinocerebellar ataxia types 1, 2, 3, and 6: disease severity and nonataxia symptoms. Neurology. 2008:71:982–9. doi 10.1212/01.wnl.0000325057.33666.72 PubMed DOI
Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006:66:1717–20. doi 10.1212/01.wnl.0000219042.60538.92 PubMed DOI
Kieling C, Rieder CR, Silva AC, Saute JA, Cecchin CR, Monte TL, et al. A neurological examination score for the assessment of spinocerebellar ataxia 3 (SCA3). Eur J Neurol. 2008:15:371–6. doi 10.1111/j.1468-1331.2008.02078.x PubMed DOI
Assadi M, Leone P, Veloski JJ, Schwartzman RJ, Janson CG and Campellone JV. Validating an Ataxia Functional Composite Scale in spinocerebellar ataxia. J Neurol Sci. 2008:268:136–9. doi 10.1016/j.jns.2007.11.016 PubMed DOI
Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci. 1997:145:205–11. doi 10.1016/s0022-510x(96)00231-6 PubMed DOI
Zesiewicz TA, Wilmot G, Kuo SH, Perlman S, Greenstein PE, Ying SH, et al. Comprehensive systematic review summary: Treatment of cerebellar motor dysfunction and ataxia: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018:90:464–71. doi 10.1212/wnl.0000000000005055 PubMed DOI PMC
Manto M, Gandini J, Feil K and Strupp M. Cerebellar ataxias: an update. Curr Opin Neurol. 2020:33:150–60. doi 10.1097/wco.0000000000000774 PubMed DOI
Feil K, Adrion C, Teufel J, Bösch S, Claassen J, Giordano I, et al. Effects of acetyl-DL-leucine on cerebellar ataxia (ALCAT trial): study protocol for a multicenter, multinational, randomized, double-blind, placebo-controlled, crossover phase III trial. BMC Neurol. 2017:17:7. doi 10.1186/s12883-016-0786-x PubMed DOI PMC
Fields T, Patterson M, Bremova-Ertl T, Belcher G, Billington I, Churchill GC, et al. A master protocol to investigate a novel therapy acetyl-L-leucine for three ultra-rare neurodegenerative diseases: Niemann-Pick type C, the GM2 gangliosidoses, and ataxia telangiectasia. Trials. 2021:22:84. doi 10.1186/s13063-020-05009-3 PubMed DOI PMC
Grobe-Einsler M, Vogt IR, Schaprian T, Hurlemann R, Klockgether T and Kaut O. Effects of Rivastigmine on Patients with Spinocerebellar Ataxia Type 3: A Case Series of Five Patients. Neurodegener Dis. 2020:20:104–9. doi 10.1159/000510057 PubMed DOI
Bremova-Ertl T, Platt F and Strupp M. Sandhoff Disease: Improvement of Gait by Acetyl-DL-Leucine: A Case Report. Neuropediatrics. 2020:51:450–2. doi 10.1055/s-0040-1715486 PubMed DOI
Ilg W, Synofzik M, Brötz D, Burkard S, Giese MA and Schöls L. Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology. 2009:73:1823–30. doi 10.1212/WNL.0b013e3181c33adf PubMed DOI
Miyai I, Ito M, Hattori N, Mihara M, Hatakenaka M, Yagura H, et al. Cerebellar ataxia rehabilitation trial in degenerative cerebellar diseases. Neurorehabilitation & Neural Repair. 2012:26:515–22. doi 10.1177/1545968311425918 PubMed DOI
Chuang CS, Chang JC, Soong BW, Chuang SF, Lin TT, Cheng WL, et al. Treadmill training increases the motor activity and neuron survival of the cerebellum in a mouse model of spinocerebellar ataxia type 1. Kaohsiung J Med Sci. 2019:35:679–85. doi 10.1002/kjm2.12106 PubMed DOI
Salomova M, Tichanek F, Jelinkova D and Cendelin J. Forced activity and environmental enrichment mildly improve manifestation of rapid cerebellar degeneration in mice. Behav Brain Res. 2021:401:113060. doi 10.1016/j.bbr.2020.113060 PubMed DOI
Romano S, Coarelli G, Marcotulli C, Leonardi L, Piccolo F, Spadaro M, et al. Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2015:14:985–91. doi 10.1016/s1474-4422(15)00201-x PubMed DOI
Nag N, Tarlac V and Storey E. Assessing the efficacy of specific cerebellomodulatory drugs for use as therapy for spinocerebellar ataxia type 1. Cerebellum. 2013:12:74–82. doi 10.1007/s12311-012-0399-x PubMed DOI
Schmidt J, Schmidt T, Golla M, Lehmann L, Weber JJ, Hübener-Schmid J, et al. In vivo assessment of riluzole as a potential therapeutic drug for spinocerebellar ataxia type 3. J Neurochem. 2016:138:150–62. doi 10.1111/jnc.13606 PubMed DOI
Zesiewicz TA, Greenstein PE, Sullivan KL, Wecker L, Miller A, Jahan I, et al. A randomized trial of varenicline (Chantix) for the treatment of spinocerebellar ataxia type 3. Neurology. 2012:78:545–50. doi 10.1212/WNL.0b013e318247cc7a PubMed DOI
Connolly BS, Prashanth LK, Shah BB, Marras C and Lang AE. A randomized trial of varenicline (chantix) for the treatment of spinocerebellar ataxia type 3. Neurology. 2012:79:2218. doi 10.1212/WNL.0b013e318278a059 PubMed DOI
Filla A, Sacca F and De Michele G. A randomized trial of varenicline (Chantix) for the treatment of spinocerebellar ataxia type 3. Neurology. 2012:78:1538. doi 10.1212/WNL.0b013e318257ea5d PubMed DOI
Mendonça N, França MC Jr., Gonçalves AF and Januário C. Clinical Features of Machado-Joseph Disease. Adv Exp Med Biol. 2018:1049:255–73. doi 10.1007/978-3-319-71779-1_13 PubMed DOI
Wecker L, Engberg ME, Philpot RM, Lambert CS, Kang CW, Antilla JC, et al. Neuronal nicotinic receptor agonists improve gait and balance in olivocerebellar ataxia. Neuropharmacology. 2013:73:75–86. doi 10.1016/j.neuropharm.2013.05.016 PubMed DOI PMC
ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01970098. Accessed 9 January 2021
ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01970098. Accessed 9 January 2021
Nishizawa M, Onodera O, Hirakawa A, Shimizu Y and Yamada M. Effect of rovatirelin in patients with cerebellar ataxia: two randomised double-blind placebo-controlled phase 3 trials. J Neurol Neurosurg Psychiatry. 2020:91:254–62. doi 10.1136/jnnp-2019-322168 PubMed DOI PMC
Nakamura T, Honda M, Kimura S, Tanabe M, Oda S and Ono H. Taltirelin improves motor ataxia independently of monoamine levels in rolling mouse nagoya, a model of spinocerebellar atrophy. Biol Pharm Bull. 2005:28:2244–7. doi 10.1248/bpb.28.2244 PubMed DOI
Ijiro T, Yaguchi A, Yokoyama A, Abe Y and Kiguchi S. Ameliorating effect of rovatirelin on the ataxia in rolling mouse Nagoya. Eur J Pharmacol. 2020:882:173271. doi 10.1016/j.ejphar.2020.173271 PubMed DOI
Chen G, Zeng WZ, Yuan PX, Huang LD, Jiang YM, Zhao ZH, et al. The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J Neurochem. 1999:72:879–82. doi 10.1046/j.1471-4159.1999.720879.x PubMed DOI
Perroud B, Jafar-Nejad P, Wikoff WR, Gatchel JR, Wang L, Barupal DK, et al. Pharmacometabolomic signature of ataxia SCA1 mouse model and lithium effects. PLoS One. 2013:8:e70610. doi 10.1371/journal.pone.0070610 PubMed DOI PMC
Saute JA, de Castilhos RM, Monte TL, Schumacher-Schuh AF, Donis KC, D’Ávila R, et al. A randomized, phase 2 clinical trial of lithium carbonate in Machado-Joseph disease. Mov Disord. 2014:29:568–73. doi 10.1002/mds.25803 PubMed DOI
Duarte-Silva S, Neves-Carvalho A, Soares-Cunha C, Teixeira-Castro A, Oliveira P, Silva-Fernandes A, et al. Lithium chloride therapy fails to improve motor function in a transgenic mouse model of Machado-Joseph disease. Cerebellum. 2014:13:713–27. doi 10.1007/s12311-014-0589-9 PubMed DOI
Duarte-Silva S, Silva-Fernandes A, Neves-Carvalho A, Soares-Cunha C, Teixeira-Castro A and Maciel P. Combined therapy with m-TOR-dependent and -independent autophagy inducers causes neurotoxicity in a mouse model of Machado-Joseph disease. Neuroscience. 2016:313:162–73. doi 10.1016/j.neuroscience.2015.11.030 PubMed DOI
Awaad Y, Sansaricq C, Moroney J, Fish I, Kyriakakos A and Snyderman SE. Baclofen in the treatment of polymyoclonus and ataxia in a patient with homocystinuria. J Child Neurol. 1995:10:294–6. doi 10.1177/088307389501000408 PubMed DOI
Bushart DD, Chopra R, Singh V, Murphy GG, Wulff H and Shakkottai VG. Targeting potassium channels to treat cerebellar ataxia. Ann Clin Transl Neurol. 2018:5:297–314. doi 10.1002/acn3.527 PubMed DOI PMC
Bushart DD, Huang H, Man LJ, Morrison LM and Shakkottai VG. A Chlorzoxazone-Baclofen Combination Improves Cerebellar Impairment in Spinocerebellar Ataxia Type 1. Mov Disord. 2020. doi 10.1002/mds.28355 PubMed DOI PMC
Chopra R, Bushart DD and Shakkottai VG. Dendritic potassium channel dysfunction may contribute to dendrite degeneration in spinocerebellar ataxia type 1. PLoS One. 2018:13:e0198040. doi 10.1371/journal.pone.0198040 PubMed DOI PMC
Ashizawa T, Öz G and Paulson HL. Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol. 2018:14:590–605. doi 10.1038/s41582-018-0051-6 PubMed DOI PMC
Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med. 2004:10:816–20. doi 10.1038/nm1076 PubMed DOI
Keiser MS, Boudreau RL and Davidson BL. Broad therapeutic benefit after RNAi expression vector delivery to deep cerebellar nuclei: implications for spinocerebellar ataxia type 1 therapy. Mol Ther. 2014:22:588–95. doi 10.1038/mt.2013.279 PubMed DOI PMC
Silva AC, Lobo DD, Martins IM, Lopes SM, Henriques C, Duarte SP, et al. Antisense oligonucleotide therapeutics in neurodegenerative diseases: the case of polyglutamine disorders. Brain. 2020:143:407–29. doi 10.1093/brain/awz328 PubMed DOI
Scoles DR and Pulst SM. Oligonucleotide therapeutics in neurodegenerative diseases. RNA Biol. 2018:15:707–14. doi 10.1080/15476286.2018.1454812 PubMed DOI PMC
Niu C, Prakash TP, Kim A, Quach JL, Huryn LA, Yang Y, et al. Antisense oligonucleotides targeting mutant Ataxin-7 restore visual function in a mouse model of spinocerebellar ataxia type 7. Sci Transl Med. 2018:10. doi 10.1126/scitranslmed.aap8677 PubMed DOI PMC
Hosp F, Vossfeldt H, Heinig M, Vasiljevic D, Arumughan A, Wyler E, et al. Quantitative interaction proteomics of neurodegenerative disease proteins. Cell Rep. 2015:11:1134–46. doi 10.1016/j.celrep.2015.04.030 PubMed DOI PMC
Rousseaux MWC, Tschumperlin T, Lu HC, Lackey EP, Bondar VV, Wan YW, et al. ATXN1-CIC Complex Is the Primary Driver of Cerebellar Pathology in Spinocerebellar Ataxia Type 1 through a Gain-of-Function Mechanism. Neuron. 2018:97:1235–43.e5. doi 10.1016/j.neuron.2018.02.013 PubMed DOI PMC
Nóbrega C, Mendonça L, Marcelo A, Lamazière A, Tomé S, Despres G, et al. Restoring brain cholesterol turnover improves autophagy and has therapeutic potential in mouse models of spinocerebellar ataxia. Acta Neuropathol. 2019:138:837–58. doi 10.1007/s00401-019-02019-7 PubMed DOI
Ashkenazi A, Bento CF, Ricketts T, Vicinanza M, Siddiqi F, Pavel M, et al. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature. 2017:545:108–11. doi 10.1038/nature22078 PubMed DOI PMC
Mookerjee S, Papanikolaou T, Guyenet SJ, Sampath V, Lin A, Vitelli C, et al. Posttranslational modification of ataxin-7 at lysine 257 prevents autophagy-mediated turnover of an N-terminal caspase-7 cleavage fragment. J Neurosci. 2009:29:15134–44. doi 10.1523/jneurosci.4720-09.2009 PubMed DOI PMC
Kasumu A and Bezprozvanny I. Deranged calcium signaling in Purkinje cells and pathogenesis in spinocerebellar ataxia 2 (SCA2) and other ataxias. Cerebellum. 2012:11:630–9. doi 10.1007/s12311-010-0182-9 PubMed DOI PMC
Hekman KE and Gomez CM. The autosomal dominant spinocerebellar ataxias: emerging mechanistic themes suggest pervasive Purkinje cell vulnerability. J Neurol Neurosurg Psychiatry. 2015:86:554–61. doi 10.1136/jnnp-2014-308421 PubMed DOI PMC
Meera P, Pulst SM and Otis TS. Cellular and circuit mechanisms underlying spinocerebellar ataxias. J Physiol. 2016:594:4653–60. doi 10.1113/jp271897 PubMed DOI PMC
Bushart DD and Shakkottai VG. Ion channel dysfunction in cerebellar ataxia. Neurosci Lett. 2019:688:41–8. doi 10.1016/j.neulet.2018.02.005 PubMed DOI PMC
Edamakanti CR, Do J, Didonna A, Martina M and Opal P. Mutant ataxin1 disrupts cerebellar development in spinocerebellar ataxia type 1. J Clin Invest. 2018:128:2252–65. doi 10.1172/jci96765 PubMed DOI PMC
Figueroa KP, Minassian NA, Stevanin G, Waters M, Garibyan V, Forlani S, et al. KCNC3: phenotype, mutations, channel biophysics-a study of 260 familial ataxia patients. Hum Mutat. 2010:31:191–6. doi 10.1002/humu.21165 PubMed DOI PMC
Pulst SM and Otis TS. Repolarization matters: mutations in the Kv4.3 potassium channel cause SCA19/22. Ann Neurol. 2012:72:829–31. doi 10.1002/ana.23803 PubMed DOI
Lee YC, Durr A, Majczenko K, Huang YH, Liu YC, Lien CC, et al. Mutations in KCND3 cause spinocerebellar ataxia type 22. Ann Neurol. 2012:72:859–69. doi 10.1002/ana.23701 PubMed DOI PMC
Hsieh JY, Ulrich BN, Issa FA, Lin MA, Brown B and Papazian DM. Infant and adult SCA13 mutations differentially affect Purkinje cell excitability, maturation, and viability in vivo. Elife. 2020:9. doi 10.7554/eLife.57358 PubMed DOI PMC
Dell’Orco JM, Wasserman AH, Chopra R, Ingram MA, Hu YS, Singh V, et al. Neuronal Atrophy Early in Degenerative Ataxia Is a Compensatory Mechanism to Regulate Membrane Excitability. J Neurosci. 2015:35:11292–307. doi 10.1523/jneurosci.1357-15.2015 PubMed DOI PMC
Egorova PA, Zakharova OA, Vlasova OL and Bezprozvanny IB. In vivo analysis of cerebellar Purkinje cell activity in SCA2 transgenic mouse model. J Neurophysiol. 2016:115:2840–51. doi 10.1152/jn.00913.2015 PubMed DOI PMC
Kasumu AW, Liang X, Egorova P, Vorontsova D and Bezprozvanny I. Chronic suppression of inositol 1,4,5-triphosphate receptor-mediated calcium signaling in cerebellar purkinje cells alleviates pathological phenotype in spinocerebellar ataxia 2 mice. J Neurosci. 2012:32:12786–96. doi 10.1523/jneurosci.1643-12.2012 PubMed DOI PMC
Stucki DM, Ruegsegger C, Steiner S, Radecke J, Murphy MP, Zuber B, et al. Mitochondrial impairments contribute to Spinocerebellar ataxia type 1 progression and can be ameliorated by the mitochondria-targeted antioxidant MitoQ. Free Radical Biology & Medicine. 2016:97:427–40. doi 10.1016/j.freeradbiomed.2016.07.005 PubMed DOI
Ferro A, Carbone E, Zhang J, Marzouk E, Villegas M, Siegel A, et al. Short-term succinic acid treatment mitigates cerebellar mitochondrial OXPHOS dysfunction, neurodegeneration and ataxia in a Purkinje-specific spinocerebellar ataxia type 1 (SCA1) mouse model. PLoS One. 2017:12:e0188425. doi 10.1371/journal.pone.0188425 PubMed DOI PMC
Harmuth T, Prell-Schicker C, Weber JJ, Gellerich F, Funke C, Drießen S, et al. Mitochondrial Morphology, Function and Homeostasis Are Impaired by Expression of an N-terminal Calpain Cleavage Fragment of Ataxin-3. Front Mol Neurosci. 2018:11:368. doi 10.3389/fnmol.2018.00368 PubMed DOI PMC
Ward JM, Stoyas CA, Switonski PM, Ichou F, Fan W, Collins B, et al. Metabolic and Organelle Morphology Defects in Mice and Human Patients Define Spinocerebellar Ataxia Type 7 as a Mitochondrial Disease. Cell Rep. 2019:26:1189–202.e6. doi 10.1016/j.celrep.2019.01.028 PubMed DOI PMC
Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, Stevens MP, et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci. 2016:19:504–16. doi 10.1038/nn.4222 PubMed DOI PMC
Boisvert MM, Erikson GA, Shokhirev MN and Allen NJ. The Aging Astrocyte Transcriptome from Multiple Regions of the Mouse Brain. Cell Rep. 2018:22:269–85. doi 10.1016/j.celrep.2017.12.039 PubMed DOI PMC
Custer SK, Garden GA, Gill N, Rueb U, Libby RT, Schultz C, et al. Bergmann glia expression of polyglutamine-expanded ataxin-7 produces neurodegeneration by impairing glutamate transport. Nat Neurosci. 2006:9:1302–11. doi 10.1038/nn1750 PubMed DOI
Lattke M, Reichel SN, Magnutzki A, Abaei A, Rasche V, Walther P, et al. Transient IKK2 activation in astrocytes initiates selective non-cell-autonomous neurodegeneration. Mol Neurodegener. 2017:12:16. doi 10.1186/s13024-017-0157-0 PubMed DOI PMC
Aikawa T, Mogushi K, Iijima-Tsutsui K, Ishikawa K, Sakurai M, Tanaka H, et al. Loss of MyD88 alters neuroinflammatory response and attenuates early Purkinje cell loss in a spinocerebellar ataxia type 6 mouse model. Hum Mol Genet. 2015:24:4780–91. doi 10.1093/hmg/ddv202 PubMed DOI PMC
Kim JH, Lukowicz A, Qu W, Johnson A and Cvetanovic M. Astroglia contribute to the pathogenesis of spinocerebellar ataxia Type 1 (SCA1) in a biphasic, stage-of-disease specific manner. Glia. 2018:66:1972–87. doi 10.1002/glia.23451 PubMed DOI PMC
Qu W, Johnson A, Kim JH, Lukowicz A, Svedberg D and Cvetanovic M. Inhibition of colony-stimulating factor 1 receptor early in disease ameliorates motor deficits in SCA1 mice. J Neuroinflammation. 2017:14:107. doi 10.1186/s12974-017-0880-z PubMed DOI PMC
Cendelin J, Buffo A, Hirai H, Magrassi L, Mitoma H, Sherrard R, et al. Task Force Paper On Cerebellar Transplantation: Are We Ready to Treat Cerebellar Disorders with Cell Therapy? Cerebellum. 2019:18:575–92. doi 10.1007/s12311-018-0999-1 PubMed DOI
Dongmei H, Jing L, Mei X, Ling Z, Hongmin Y, Zhidong W, et al. Clinical analysis of the treatment of spinocerebellar ataxia and multiple system atrophy-cerebellar type with umbilical cord mesenchymal stromal cells. Cytotherapy. 2011:13:913–7. doi 10.3109/14653249.2011.579958 PubMed DOI
Tsai YA, Liu RS, Lirng JF, Yang BH, Chang CH, Wang YC, et al. Treatment of Spinocerebellar Ataxia With Mesenchymal Stem Cells: A Phase I/IIa Clinical Study. Cell Transplant. 2017:26:503–12. doi 10.3727/096368916x694373 PubMed DOI PMC
Sotelo C and Alvarado-Mallart RM. Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum. Nature. 1987:327:421–3. doi 10.1038/327421a0 PubMed DOI
Sotelo C and Alvarado-Mallart RM. Reconstruction of the defective cerebellar circuitry in adult Purkinje cell degeneration mutant mice by Purkinje cell replacement through transplantation of solid embryonic implants. Neuroscience. 1987:20:1–22. PubMed
Takayama H, Kohsaka S, Shinozaki T, Inoue H, Toya S, Ueda T, et al. Immunohistochemical studies on synapse formation by embryonic cerebellar tissue transplanted into the cerebellum of the weaver mutant mouse. Neurosci Lett. 1987:79:246–50. PubMed
Tomey DA and Heckroth JA. Transplantation of normal embryonic cerebellar cell suspensions into the cerebellum of lurcher mutant mice. Exp Neurol. 1993:122:165–70. doi 10.1006/exnr.1993.1117 PubMed DOI
Triarhou LC, Zhang W and Lee WH. Graft-induced restoration of function in hereditary cerebellar ataxia. Neuroreport. 1995:6:1827–32. PubMed
Triarhou LC, Zhang W and Lee WH. Amelioration of the behavioral phenotype in genetically ataxic mice through bilateral intracerebellar grafting of fetal Purkinje cells. Cell Transplant. 1996:5:269–77. PubMed
Li J, Imitola J, Snyder EY and Sidman RL. Neural stem cells rescue nervous purkinje neurons by restoring molecular homeostasis of tissue plasminogen activator and downstream targets. J Neurosci. 2006:26:7839–48. doi 10.1523/jneurosci.1624-06.2006 PubMed DOI PMC
Kaemmerer WF and Low WC. Cerebellar allografts survive and transiently alleviate ataxia in a transgenic model of spinocerebellar ataxia type-1. Exp Neurol. 1999:158:301–11. doi 10.1006/exnr.1999.7099 PubMed DOI
Chang YK, Chen MH, Chiang YH, Chen YF, Ma WH, Tseng CY, et al. Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells. J Biomed Sci. 2011:18:54. doi 10.1186/1423-0127-18-54 PubMed DOI PMC
Matsuura S, Shuvaev AN, Iizuka A, Nakamura K and Hirai H. Mesenchymal stem cells ameliorate cerebellar pathology in a mouse model of spinocerebellar ataxia type 1. Cerebellum. 2014:13:323–30. doi 10.1007/s12311-013-0536-1 PubMed DOI
Mendonca LS, Nobrega C, Hirai H, Kaspar BK and Pereira de Almeida L. Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice. Brain. 2015:138:320–35. doi 10.1093/brain/awu352 PubMed DOI
Purkartova Z, Tuma J, Pesta M, Kulda V, Hajkova L, Sebesta O, et al. Morphological analysis of embryonic cerebellar grafts in SCA2 mice. Neurosci Lett. 2014:558:154–8. doi 10.1016/j.neulet.2013.11.020 PubMed DOI
Cendelin J, Mitoma H and Manto M. Neurotransplantation Therapy and Cerebellar Reserve. CNS Neurol Disord Drug Targets. 2018:17:172–83. doi 10.2174/1871527316666170810114559 PubMed DOI
Li T, Liu Y, Yu L, Lao J, Zhang M, Jin J, et al. Human Umbilical Cord Mesenchymal Stem Cells Protect Against SCA3 by Modulating the Level of 70 kD Heat Shock Protein. Cell Mol Neurobiol. 2018:38:641–55. doi 10.1007/s10571-017-0513-1 PubMed DOI
Jones J, Jaramillo-Merchan J, Bueno C, Pastor D, Viso-Leon M and Martinez S. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis. 2010:40:415–23. doi 10.1016/j.nbd.2010.07.001 PubMed DOI
Chen KA, Cruz PE, Lanuto DJ, Flotte TR, Borchelt DR, Srivastava A, et al. Cellular fusion for gene delivery to SCA1 affected Purkinje neurons. Mol Cell Neurosci. 2011:47:61–70. doi 10.1016/j.mcn.2011.03.003 PubMed DOI PMC
Huda F, Fan Y, Suzuki M, Konno A, Matsuzaki Y, Takahashi N, et al. Fusion of Human Fetal Mesenchymal Stem Cells with “Degenerating” Cerebellar Neurons in Spinocerebellar Ataxia Type 1 Model Mice. PLoS One. 2016:11:e0164202. doi 10.1371/journal.pone.0164202 PubMed DOI PMC
Chintawar S, Hourez R, Ravella A, Gall D, Orduz D, Rai M, et al. Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model. J Neurosci. 2009:29:13126–35. doi 10.1523/jneurosci.0647-09.2009 PubMed DOI PMC
Hsieh J, Liu JW, Harn HJ, Hsueh KW, Rajamani K, Deng YC, et al. Human Olfactory Ensheathing Cell Transplantation Improves Motor Function in a Mouse Model of Type 3 Spinocerebellar Ataxia. Cell Transplant. 2017:26:1611–21. doi 10.1177/0963689717732578 PubMed DOI PMC
Babuska V, Houdek Z, Tuma J, Purkartova Z, Tumova J, Kralickova M, et al. Transplantation of Embryonic Cerebellar Grafts Improves Gait Parameters in Ataxic Lurcher Mice. Cerebellum. 2015:14:632–41. doi 10.1007/s12311-015-0656-x PubMed DOI
Fuca E, Guglielmotto M, Boda E, Rossi F, Leto K and Buffo A. Preventive motor training but not progenitor grafting ameliorates cerebellar ataxia and deregulated autophagy in tambaleante mice. Neurobiol Dis. 2017:102:49–59. doi 10.1016/j.nbd.2017.02.005 PubMed DOI
Cendelin J, Purkartova Z, Kubik J, Ulbricht E, Tichanek F and Kolinko Y. Long-Term Development of Embryonic Cerebellar Grafts in Two Strains of Lurcher Mice. Cerebellum. 2018:17:428–37. doi 10.1007/s12311-018-0928-3 PubMed DOI
Purkartova Z, Tichanek F, Kolinko Y and Cendelin J. Embryonic Cerebellar Graft Morphology Differs in Two Mouse Models of Cerebellar Degeneration. Cerebellum. 2019:18:855–65. doi 10.1007/s12311-019-01067-9 PubMed DOI
Houdek Z, Cendelin J, Kulda V, Babuska V, Cedikova M, Kralickova M, et al. Intracerebellar application of P19-derived neuroprogenitor and naive stem cells to Lurcher mutant and wild type B6CBA mice. Med Sci Monit. 2012:18:Br174–80. PubMed PMC
Mullen RJ, Eicher EM and Sidman RL. Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci U S A. 1976:73:208–12. PubMed PMC
Caddy KW and Biscoe TJ. Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos Trans R Soc Lond B Biol Sci. 1979:287:167–201. PubMed
Berezniuk I and Fricker LD. A defect in cytosolic carboxypeptidase 1 (Nna1) causes autophagy in Purkinje cell degeneration mouse brain. Autophagy. 2010:6:558–9. doi 10.4161/auto.6.4.11813 PubMed DOI PMC
Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ and Heintz N. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature. 1997:388:769–73. doi 10.1038/42009 PubMed DOI
Koch P, Breuer P, Peitz M, Jungverdorben J, Kesavan J, Poppe D, et al. Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature. 2011:480:543–6. doi 10.1038/nature10671 PubMed DOI
Wong MMK, Hoekstra SD, Vowles J, Watson LM, Fuller G, Németh AH, et al. Neurodegeneration in SCA14 is associated with increased PKCγ kinase activity, mislocalization and aggregation. Acta Neuropathol Commun. 2018:6:99. doi 10.1186/s40478-018-0600-7 PubMed DOI PMC
Chuang CY, Yang CC, Soong BW, Yu CY, Chen SH, Huang HP, et al. Modeling spinocerebellar ataxias 2 and 3 with iPSCs reveals a role for glutamate in disease pathology. Sci Rep. 2019:9:1166. doi 10.1038/s41598-018-37774-2 PubMed DOI PMC
Schmahmann JD, Weilburg JB and Sherman JC. The neuropsychiatry of the cerebellum - insights from the clinic. Cerebellum. 2007:6:254–67. doi 10.1080/14734220701490995 PubMed DOI
Mariën P and Beaton A. The enigmatic linguistic cerebellum: clinical relevance and unanswered questions on nonmotor speech and language deficits in cerebellar disorders. Cerebellum Ataxias. 2014:1:12. doi 10.1186/2053-8871-1-12 PubMed DOI PMC
Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Ivry RB, et al. Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum. 2015:14:197–220. doi 10.1007/s12311-014-0627-7 PubMed DOI PMC
Moro A, Moscovich M, Farah M, Camargo CHF, Teive HAG and Munhoz RP. Nonmotor symptoms in spinocerebellar ataxias (SCAs). Cerebellum Ataxias. 2019:6:12. doi 10.1186/s40673-019-0106-5 PubMed DOI PMC
Van Overwalle F, Manto M, Cattaneo Z, Clausi S, Ferrari C, Gabrieli JDE, et al. Consensus Paper: Cerebellum and Social Cognition. Cerebellum. 2020. doi 10.1007/s12311-020-01155-1 PubMed DOI PMC
Hilber P, Cendelin J, Le Gall A, Machado ML, Tuma J and Besnard S. Cooperation of the vestibular and cerebellar networks in anxiety disorders and depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2019:89:310–21. doi 10.1016/j.pnpbp.2018.10.004 PubMed DOI
Tuma J, Kolinko Y, Jelinkova D, Hilber P and Cendelin J. Impaired spatial performance in cerebellar-deficient Lurcher mice is not associated with their abnormal stress response. Neurobiol Learn Mem. 2017:140:62–70. doi 10.1016/j.nlm.2017.02.009 PubMed DOI
Lorivel T, Cendelin J and Hilber P. Familiarization effects on the behavioral disinhibition of the cerebellar Lurcher mutant mice: use of the innovative Dual Maze. Behav Brain Res. 2021:398:112972. doi 10.1016/j.bbr.2020.112972 PubMed DOI
Ouyang S, Xie Y, Xiong Z, Yang Y, Xian Y, Ou Z, et al. CRISPR/Cas9-Targeted Deletion of Polyglutamine in Spinocerebellar Ataxia Type 3-Derived Induced Pluripotent Stem Cells. Stem Cells Dev. 2018:27:756–70. doi 10.1089/scd.2017.0209 PubMed DOI
Lurcher Mouse as a Model of Cerebellar Syndromes
Reduction of Microvessel Number and Length in the Cerebellum of Purkinje Cell Degeneration Mice
Experimental Treatment with Edaravone in a Mouse Model of Spinocerebellar Ataxia 1