Psychiatric-Like Impairments in Mouse Models of Spinocerebellar Ataxias
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Q39
Univerzita Karlova v Praze
No. CZ.02.1.01/0.0/0.0/16_019/ 0000787
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
35000108
DOI
10.1007/s12311-022-01367-7
PII: 10.1007/s12311-022-01367-7
Knihovny.cz E-zdroje
- Klíčová slova
- Cerebellar cognitive-affective syndrome, Knock-in mice, Neuropsychiatric issues, Spinocerebellar ataxia,
- MeSH
- cerebelární ataxie * patologie MeSH
- kognitivní dysfunkce * genetika MeSH
- kvalita života MeSH
- mozeček patologie MeSH
- myši MeSH
- nemoci nervového systému * MeSH
- spinocerebelární ataxie * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Many patients with spinocerebellar ataxia (SCA) suffer from diverse neuropsychiatric issues, including memory impairments, apathy, depression, or anxiety. These neuropsychiatric aspects contribute per se to the reduced quality of life and worse prognosis. However, the extent to which SCA-related neuropathology directly contributes to these issues remains largely unclear. Behavioral profiling of various SCA mouse models can bring new insight into this question. This paper aims to synthesize recent findings from behavioral studies of SCA patients and mouse models. The role of SCA neuropathology for shaping psychiatric-like impairments may be exemplified in mouse models of SCA1. These mice evince robust cognitive impairments which are shaped by both the cerebellar as well as out-of-cerebellar pathology. Although emotional-related alternations are also present, they seem to be less robust and more affected by the specific distribution and character of the neuropathology. For example, cerebellar-specific pathology seems to provoke behavioral disinhibition, leading to seemingly decreased anxiety, whereas complex SCA1 neuropathology induces anxiety-like phenotype. In SCA1 mice with complex neuropathology, some of the psychiatric-like impairments are present even before marked cerebellar degeneration and ataxia and correlate with hippocampal atrophy. Similarly, complete or partial deletion of the implicated gene (Atxn1) leads to cognitive dysfunction and anxiety-like behavior, respectively, without apparent ataxia and cerebellar degeneration. Altogether, these findings collectively suggest that the neuropsychiatric issues have a biological basis partially independent of the cerebellum. As some neuropsychiatric issues may stem from weakening the function of the implicated gene, therapeutic reduction of its expression by molecular approaches may not necessarily mitigate the neuropsychiatric issues.
Zobrazit více v PubMed
Klinke I, Minnerop M, Schmitz-Hübsch T, Hendriks M, Klockgether T, Wüllner U, et al. Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum [Internet]. Springer; 2010 [cited 2021 Jan 25];9:433–42. Available from: https://link.springer.com/article/10.1007/s12311-010-0183-8 .
Lo RY, Figueroa KP, Pulst SM, Perlman S, Wilmot G, Gomez C, et al. Depression and clinical progression in spinocerebellar ataxias. Park Relat Disord. 2016;22:87–92. https://doi.org/10.1016/j.parkreldis.2015.11.021 . DOI
Taroni F, Chiapparini L, Mariotti C. Autosomal dominant spinocerebellar ataxias and episodic ataxias. Handb Cerebellum Cerebellar Disord [Internet]. Springer Netherlands; 2013 [cited 2021 Jan 12]. p. 2193–268. Available from: https://link.springer.com/referenceworkentry/10.1007/978-94-007-1333-8_101 .
Soga K, Ishikawa K, Furuya T, Iida T, Yamada T, Ando N, et al. Gene dosage effect in spinocerebellar ataxia type 6 homozygotes: a clinical and neuropathological study. J Neurol Sci. 2017;373:321–8. DOI
Trojano L, Chiacchio L, Grossi D, Pisacreta AI, Calabrese O, Castaldo I, et al. Determinants of cognitive disorders in autosomal dominant cerebellar ataxia type 1. J Neurol Sci. 1998;157:162–7. DOI
Cendelin J, Cvetanovic M, Gandelman M, Hirai H, Orr HT, Pulst SM, et al. Consensus paper: strengths and weaknesses of animal models of spinocerebellar ataxias and their clinical implications. Cerebellum. The Cerebellum. 2021.
Crawley JN. Behavioral phenotyping strategies for mutant mice. Neuron [Internet]. Elsevier; 2008 [cited 2021 Oct 13];57:809–18. Available from: http://www.cell.com/article/S0896627308002122/fulltext .
Laubach M, Amarante LM, Swanson K, White SR. What, if anything, is rodent prefrontal cortex? eNeuro [Internet]. Society for Neuroscience; 2018 [cited 2021 Oct 13];5:315–33. Available from: https://www.eneuro.org/content/5/5/ENEURO.0315-18.2018 .
Schmahmann JD. Cerebellar cognitive affective syndrome and the neuropsychiatry of the cerebellum. Handb Cerebellum Cerebellar Disord [Internet]. Springer Netherlands; 2013 [cited 2020 Dec 29]. p. 1717–52. Available from: https://link.springer.com/referenceworkentry/10.1007/978-94-007-1333-8_77 .
Chirino-Pérez A, Vaca-Palomares I, Torres DL, Hernandez-Castillo CR, Diaz R, Ramirez-Garcia G, et al. Cognitive impairments in spinocerebellar ataxia type 10 and their relation to cortical thickness. Mov Disord [Internet]. John Wiley & Sons, Ltd; 2021 [cited 2021 Dec 23];36:2910–21. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/mds.28728 .
Seidel K, Siswanto S, Brunt ERP, Den Dunnen W, Korf HW, Rüb U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol 2012 1241 [Internet]. Springer; 2012 [cited 2021 Dec 14];124:1–21. Available from: https://link.springer.com/article/10.1007/s00401-012-1000-x .
De Michele G, Maltecca F, Carella M, Volpe G, Orio M, De Falco A, et al. Dementia, ataxia, extrapyramidal features, and epilepsy: phenotype spectrum in two Italian families with spinocerebellar ataxia type 17. Neurol Sci [Internet]. Springer; 2003 [cited 2021 Jan 24];24:166–7. Available from: https://link.springer.com/article/10.1007/s10072-003-0112-4 .
Tang B, Liu C, Shen L, Dai H, Pan Q, Jing L, et al. Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch Neurol [Internet]. American Medical Association; 2000 [cited 2021 Jan 23];57:540–4. Available from: https://jamanetwork.com/ .
Dürr A, Smadja D, Cancel G, Lezin A, Stevanin G, Mikol J, et al. Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Brain [Internet]. Oxford Academic; 1995 [cited 2021 Jan 23];118:1573–81. Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/118.6.1573 .
Nakamura K, Jeong S-Y, Uchihara T, Anno M, Nagashima K, Nagashima T, et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein [Internet]. Hum. Mol. Genet. Oxford Academic; 2001 Jul. Available from: http://www.gene.ucl.ac.uk/nomenclature/ .
Atadzhanov M, Smith DC, Mwaba MH, Siddiqi OK, Bryer A, Greenberg LJ. Clinical and genetic analysis of spinocerebellar ataxia type 7 (SCA7) in Zambian families. Cerebellum and Ataxias [Internet]. BioMed Central Ltd.; 2017 [cited 2021 Jan 25];4:17. Available from: https://cerebellumandataxias.biomedcentral.com/articles/10.1186/s40673-017-0075-5 .
Brusse E, de Koning I, Maat-Kievit A, Oostra BA, Heutink P, van Swieten JC. Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): a new phenotype. Mov Disord [Internet]. John Wiley & Sons, Ltd; 2006 [cited 2021 Jan 27];21:396–401. Available from: http://doi.wiley.com/10.1002/mds.20708 .
Paucar M, Lundin J, Alshammari T, Bergendal, Lindefeldt M, Alshammari M, et al. Broader phenotypic traits and widespread brain hypometabolism in spinocerebellar ataxia 27. J Intern Med. 2020.
Rottnek M, Riggio S, Byne W, Sano M, Margolis RL, Walker RH. Schizophrenia in a patient with spinocerebellar ataxia 2: coincidence of two disorders or a neurodegenerative disease presenting with psychosis? Am J Psychiatry [Internet]. American Psychiatric Association ; 2008 [cited 2021 Jan 25];165:964–7. Available from: http://psychiatryonline.org/doi/abs/10.1176/appi.ajp.2008.08020285 .
Turk KW, Flanagan ME, Josephson S, Keene CD, Jayadev S, Bird TD. Psychosis in spinocerebellar ataxias: a case series and study of tyrosine hydroxylase in substantia nigra. Cerebellum [Internet]. Springer New York LLC; 2018 [cited 2021 Jan 24];17:143–51. Available from: https://link.springer.com/article/10.1007/s12311-017-0882-5 .
Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, et al. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol [Internet]. John Wiley & Sons, Ltd; 2003 [cited 2021 Jan 24];54:367–75. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/ana.10676 .
Feng L, Chen DB, Hou L, Huang LH, Lu SY, Liang XL, et al. Cognitive impairment in native Chinese with spinocerebellar ataxia type 3. Eur Neurol [Internet]. Karger Publishers; 2014 [cited 2021 Dec 31];71:262–70. Available from: https://www.karger.com/Article/FullText/357404 .
Nigri A, Sarro L, Mongelli A, Castaldo A, Porcu L, Pinardi C, et al. Spinocerebellar ataxia type 1: one-year longitudinal study to identify clinical and MRI measures of disease progression in patients and presymptomatic carriers. Cerebellum [Internet]. Springer; 2021 [cited 2021 Dec 31];1–12. Available from: https://link.springer.com/article/10.1007/s12311-021-01285-0 .
Mercadillo RE, Galvez V, Díaz R, Hernández-Castillo CR, Campos-Romo A, Boll MC, et al. Parahippocampal gray matter alterations in spinocerebellar ataxia type 2 identified by voxel based morphometry. J Neurol Sci [Internet]. Elsevier; 2014 [cited 2021 Dec 23];347:50–8. Available from: http://www.jns-journal.com/article/S0022510X14005978/fulltext .
McMurtray AM, Clark DG, Flood MK, Perlman S, Mendez MF. Depressive and memory symptoms as presenting features of spinocerebellar ataxia. J Neuropsychiatry Clin Neurosci [Internet]. 2006;18:420–2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16963595 .
Bürk K, Globas C, Bösch S, Klockgether T, Zühlke C, Daum I, et al. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol [Internet]. 2003;250:207–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12574952 .
Ma J, Wu C, Lei J, Zhang X. Cognitive impairments in patients with spinocerebellar ataxia types 1, 2 and 3 are positively correlated to the clinical severity of ataxia symptoms. Int J Clin Exp Med. 2014;7:5765–71.
Chirino A, Hernandez-Castillo CR, Galvez V, Contreras A, Diaz R, Beltran-Parrazal L, et al. Motor and cognitive impairments in spinocerebellar ataxia type 7 and its correlations with cortical volumes. Eur J Neurosci [Internet]. John Wiley & Sons, Ltd; 2018 [cited 2021 Dec 30];48:3199–211. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/ejn.14148 .
Kawai Y, Suenaga M, Watanabe H, Ito M, Kato K, Kato T, et al. Prefrontal hypoperfusion and cognitive dysfunction correlates in spinocerebellar ataxia type 6. J Neurol Sci [Internet]. Elsevier; 2008 [cited 2021 Dec 30];271:68–74. Available from: http://www.jns-journal.com/article/S0022510X08001482/fulltext .
Jacobi H, du Montcel ST, Bauer P, Giunti P, Cook A, Labrum R, et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol [Internet]. Elsevier; 2015 [cited 2021 Dec 31];14:1101–8. Available from: http://www.thelancet.com/article/S1474442215002021/fulltext .
Diallo A, Jacobi H, Tezenas du Montcel S, Klockgether T. Natural history of most common spinocerebellar ataxia: a systematic review and meta-analysis. J Neurol. 2020. https://doi.org/10.1007/s00415-020-09815-2 .
Diallo A, Jacobi H, Cook A, Giunti P, Parkinson MH, Labrum R, et al. Prediction of survival with long-term disease progression in most common spinocerebellar ataxia. Mov Disord [Internet]. John Wiley & Sons, Ltd; 2019 [cited 2022 Jan 2];34:1220–7. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/mds.27739 .
Fancellu R, Paridi D, Tomasello C, Panzeri M, Castaldo A, Genitrini S. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. 2013;3134–43.
Roeske S, Filla I, Heim S, Amunts K, Helmstaedter C, Wüllner U, et al. Progressive cognitive dysfunction in spinocerebellar ataxia type 3. Mov Disord [Internet]. John Wiley & Sons, Ltd; 2013 [cited 2021 Dec 31];28:1435–8. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/mds.25512 .
Moriarty A, Cook A, Hunt H, Adams ME, Cipolotti L, Giunti P. A longitudinal investigation into cognition and disease progression in spinocerebellar ataxia types 1, 2, 3, 6, and 7. Orphanet J Rare Dis [Internet]. BioMed Central Ltd.; 2016 [cited 2021 Dec 14];11:1–9. Available from: https://ojrd.biomedcentral.com/articles/10.1186/s13023-016-0447-6 .
Schmahmann J, Sherman JC. The cerebellar cognitive affective syndrome. Brain [Internet]. Oxford University Press; 1998 [cited 2018 Sep 24];121:561–79. Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/121.4.561 .
Rodríguez-Labrada R, Batista-Izquierdo A, González-Melix Z, Reynado-Cejas L, Vázquez-Mojena Y, Sanz YA, et al. Cognitive decline is closely associated with ataxia severity in spinocerebellar ataxia type 2: a validation study of the schmahmann syndrome scale. Cerebellum [Internet]. Springer; 2021 [cited 2021 Dec 31];1–13. Available from: https://link.springer.com/article/10.1007/s12311-021-01305-z .
Rodríguez-Labrada R, Velázquez-Pérez L, Ortega-Sánchez R, Peña-Acosta A, Vázquez-Mojena Y, Canales-Ochoa N, et al. Insights into cognitive decline in spinocerebellar ataxia type 2: a P300 event-related brain potential study. Cereb Ataxias. 2019;6:1–9.
Moro A, Moscovich M, Farah M, Camargo CHF, Teive HAG, Munhoz RP. Nonmotor symptoms in spinocerebellar ataxias (SCAs) [Internet]. Cerebellum and Ataxias. BioMed Central Ltd.; 2019 [cited 2021 Jan 25]. p. 12. Available from: https://cerebellumandataxias.biomedcentral.com/articles/10.1186/s40673-019-0106-5 .
Saute JAM, Da Silva ACF, Donis KC, Vedolin L, Saraiva-Pereira ML, Jardim LB. Depressive mood is associated with ataxic and non-ataxic neurological dysfunction in SCA3 patients [Internet]. Cerebellum. Springer; 2010 [cited 2021 Jan 25]. p. 603–5. Available from: https://link.springer.com/article/10.1007/s12311-010-0205-6 .
Friedman JH, Amick MM. Fatigue and daytime somnolence in Machado Joseph disease (spinocerebellar ataxia type 3). Mov Disord [Internet]. John Wiley & Sons, Ltd; 2008 [cited 2021 Jan 25];23:1323–4. Available from: http://doi.wiley.com/10.1002/mds.22122 .
Cecchin CR, Pires AP, Rieder CR, Monte TL, Silveira I, Carvalho T, et al. Depressive symptoms in Machado-Joseph disease (SCA3) patients and their relatives. Community Genet [Internet]. Karger Publishers; 2007 [cited 2021 Jan 25];10:19–26. Available from: https://www.karger.com/Article/FullText/96276 .
Feinstein A, Magalhaes S, Richard J-F, Audet B, Moore C. The link between multiple sclerosis and depression. Nat Rev Neurol 2014 109 [Internet]. Nature Publishing Group; 2014 [cited 2021 Oct 14];10:507–17. Available from: https://www.nature.com/articles/nrneurol.2014.139 .
Schmitz-Hübsch T, Coudert M, Tezenas du Montcel S, Giunti P, Labrum R, Dürr A, et al. Depression comorbidity in spinocerebellar ataxia. Mov Disord. 2011;26:870–6.
Lin M-T, Yang J-S, Chen P-P, Qian M-Z, Lin H-X, Chen X-P, et al. Bidirectional connections between depression and ataxia severity in spinocerebellar ataxia type 3 patients. Eur Neurol [Internet]. S. Karger AG; 2018 [cited 2020 Dec 4];79:266–71. Available from: https://www.karger.com/Article/FullText/489398 .
Hanna M, Strober LB. Anxiety and depression in multiple sclerosis (MS): antecedents, consequences, and differential impact on well-being and quality of life. Mult Scler Relat Disord. 2020;44:102261. DOI
Bohne P, Mourabit DB El, Josten M, Mark MD. Cognitive deficits in episodic ataxia type 2 mouse models. Hum Mol Genet [Internet]. Oxford Academic; 2021 [cited 2022 Jan 1];30:1811–32. Available from: https://academic.oup.com/hmg/article/30/19/1811/6291183 .
Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods [Internet]. Elsevier; 1984 [cited 2018 Sep 24];11:47–60. Available from: https://www.sciencedirect.com/science/article/pii/0165027084900074 .
Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1:848–58. DOI
Logue SF, Paylor R, Wehner JM. Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behav Neurosci [Internet]. 1997 [cited 2021 Oct 14];111:104–13. Available from: /record/1997–07487–009.
Cendelin J, Tichanek F. Cerebellar degeneration averts blindness-induced despaired behavior during spatial task in mice. Neurosci Lett. 2020;722: 134854. https://doi.org/10.1016/j.neulet.2020.134854 . DOI
Tuma J, Kolinko Y, Jelinkova D, Hilber P, Cendelin J. Impaired spatial performance in cerebellar-deficient Lurcher mice is not associated with their abnormal stress response. Neurobiol Learn Mem. 2017;140:62–70. https://doi.org/10.1016/j.nlm.2017.02.009 . DOI
Harrison FE, Hosseini AH, McDonald MP. Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks. Behav Brain Res. 2009;198:247–51. DOI
Paul CM, Magda G, Abel S. Spatial memory: theoretical basis and comparative review on experimental methods in rodents. Behav Brain Res. 2009;203:151–64. DOI
Pitts M. Barnes maze procedure for spatial learning and memory in mice. Bio-Protocol. 2018;8.
Rustay N, Browman K, Curzon P. Cued and contextual fear conditioning for rodents. In: Buccafusco JJ, editor. Methods Behav Anal Neurosci 2nd Ed [Internet]. CRC Press/Taylor & Francis; 2008 [cited 2021 Oct 14]. p. 19–37. Available from: https://www.ncbi.nlm.nih.gov/books/NBK5223/ .
Rogan MT, Stäubli U V., LeDoux JE. Fear conditioning induces associative long-term potentiation in the amygdala. Nat 1997 3906660 [Internet]. Nature Publishing Group; 1997 [cited 2021 Oct 14];390:604–7. Available from: https://www.nature.com/articles/37601 .
Anagnostaras SG, Gale GD, Fanselow MS. Hippocampus and contextual fear conditioning: recent controversies and advances. 2001.
Guariglia SR, Chadman KK. Water T-maze: a useful assay for determination of repetitive behaviors in mice. J Neurosci Methods. 2013;220:24–9. https://doi.org/10.1016/j.jneumeth.2013.08.019 . DOI
Krumin M, Lee JJ, Harris KD, Carandini M. Decision and navigation in mouse parietal cortex. Elife. 2018;7.
Birrell JM, Brown VJ. Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci [Internet]. Society for Neuroscience; 2000 [cited 2021 Oct 14];20:4320–4. Available from: https://www.jneurosci.org/content/20/11/4320 .
Brown VJ, Bowman EM. Rodent models of prefrontal cortical function. Trends Neurosci. 2002;25:340–3. DOI
Anacker C, Hen R. Adult hippocampal neurogenesis and cognitive flexibility — linking memory and mood. Nat Rev Neurosci [Internet]. Nature Publishing Group; 2017; Available from: http://www.nature.com/doifinder/10.1038/nrn.2017.45 .
Kempermann G. New neurons for “survival of the fittest.” Nat Rev Neurosci 2012 1310 [Internet]. Nature Publishing Group; 2012 [cited 2021 Oct 14];13:727–36. Available from: https://www.nature.com/articles/nrn3319 .
Rikhye R V., Gilra A, Halassa MM. Thalamic regulation of switching between cortical representations enables cognitive flexibility. Nat Neurosci 2018 2112 [Internet]. Nature Publishing Group; 2018 [cited 2021 Oct 14];21:1753–63. Available from: https://www.nature.com/articles/s41593-018-0269-z .
Darvas M, Palmiter RD. Contributions of striatal dopamine signaling to the modulation of cognitive flexibility. Biol Psychiatry. 2011;69:704–7. DOI
Gould TD, Dao DT, Kovacsics CE. The open field test. In: Gould TD, editor. Mood anxiety relat phenotypes mice charact using behav tests. Totowa: Humana Press; 2009. p. 1–20. https://doi.org/10.1007/978-1-60761-303-9_1 .
Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol. 2003;463:3–33. DOI
Birkett MA, Shinday NM, Kessler EJ, Meyer JS, Ritchie S, Rowlett JK. Acute anxiogenic-like effects of selective serotonin reuptake inhibitors are attenuated by the benzodiazepine diazepam in BALB/c mice. Pharmacol Biochem Behav. 2011;98:544–51. DOI
Gray VC, Hughes RN. Drug-, dose- and sex-dependent effects of chronic fluoxetine, reboxetine and venlafaxine on open-field behavior and spatial memory in rats. Behav Brain Res. 2015;281:43–54. DOI
Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, et al. Object recognition test in mice. Nat Protoc. 2013;8:2531–7. DOI
Samuels BA, Hen R. Novelty-suppressed feeding in the mouse BT - mood and anxiety related phenotypes in mice: characterization using behavioral tests, Volume II. In: Gould TD, editor. Mood Anxiety Relat Phenotypes Mice [Internet]. Humana Press; 2011 [cited 2022 Jan 1]. p. 107–21. https://doi.org/10.1007/978-1-61779-313-4_7 .
Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2007 22 [Internet]. Nature Publishing Group; 2007 [cited 2021 Oct 14];2:322–8. Available from: https://www.nature.com/articles/nprot.2007.44 .
Biedermann S V., Biedermann DG, Wenzlaff F, Kurjak T, Nouri S, Auer MK, et al. An elevated plus-maze in mixed reality for studying human anxiety-related behavior. BMC Biol 2017 151 [Internet]. BioMed Central; 2017 [cited 2021 Oct 14];15:1–13. Available from: https://link.springer.com/articles/10.1186/s12915-017-0463-6 .
Garcia AMB, Cardenas FP, Morato S. The effects of pentylenetetrazol, chlordiazepoxide and caffeine in rats tested in the elevated plus-maze depend on the experimental illumination. Behav Brain Res. 2011;217:171–7. DOI
Lorivel T, Cendelin J, Hilber P. Familiarization effects on the behavioral disinhibition of the cerebellar Lurcher mutant mice: use of the innovative Dual Maze. Behav Brain Res. 2021;398: 112972. https://doi.org/10.1016/j.bbr.2020.112972 . DOI
Slattery DA, Cryan JF. Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat Protoc 2012 76 [Internet]. Nature Publishing Group; 2012 [cited 2021 Oct 14];7:1009–14. Available from: https://www.nature.com/articles/nprot.2012.044 .
Kara NZ, Stukalin Y, Einat H. Revisiting the validity of the mouse forced swim test: systematic review and meta-analysis of the effects of prototypic antidepressants. Neurosci Biobehav Rev. 2018;84:1–11. DOI
Anyan J, Amir S. Too depressed to swim or too afraid to stop? A reinterpretation of the forced swim test as a measure of anxiety-like behavior. Neuropsychopharmacology. 2018;43:931–3. https://doi.org/10.1038/npp.2017.260 . DOI
Kasper S, Spadone C, Verpillat P, Angst J. Onset of action of escitalopram compared with other antidepressants: results of a pooled analysis. Int Clin Psychopharmacol [Internet]. 2006 [cited 2021 Oct 14];21:105–10. Available from: https://journals.lww.com/intclinpsychopharm/Fulltext/2006/03000/Onset_of_action_of_escitalopram_compared_with.6.aspx .
Serchov T, van Calker D, Biber K. Sucrose preference test to measure anhedonic behaviour in mice. Bio-Protocol. 2016;6.
Liu M-Y, Yin C-Y, Zhu L-J, Zhu X-H, Xu C, Luo C-X, et al. Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat Protoc 2018 137 [Internet]. Nature Publishing Group; 2018 [cited 2021 Oct 14];13:1686–98. Available from: https://www.nature.com/articles/s41596-018-0011-z .
Becker M, Pinhasov A, Ornoy A. Animal models of depression: what can they teach us about the human disease? Diagnostics 2021, Vol 11, Page 123 [Internet]. Multidisciplinary Digital Publishing Institute; 2021 [cited 2021 Oct 14];11:123. Available from: https://www.mdpi.com/2075-4418/11/1/123/htm .
Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacol 1997 1344 [Internet]. Springer; 1997 [cited 2021 Oct 14];134:319–29. Available from: https://link.springer.com/article/10.1007/s002130050456 .
Tichanek F, Salomova M, Jedlicka J, Kuncova J, Pitule P, Macanova T, et al. Hippocampal mitochondrial dysfunction and psychiatric-relevant behavioral deficits in spinocerebellar ataxia 1 mouse model. Sci Rep [Internet]. 2020;10:1–14. Available from: https://www.nature.com/articles/s41598-020-62308-0 .
Asher M, Rosa JG, Cvetanovic M. Mood alterations in mouse models of spinocerebellar ataxia type 1. Sci Rep [Internet]. Nature Research; 2021 [cited 2021 Jun 6];11:1–11. Available from: https://www.nature.com/articles/s41598-020-80664-9 .
Asher M, Rosa JG, Rainwater O, Duvick L, Bennyworth M, Lai RY, et al. Cerebellar contribution to the cognitive alterations in SCA1: evidence from mouse models. Hum Mol Genet. 2020;29:117–31. DOI
Elsaey MA, Namikawa K, Köster RW. Genetic modeling of the neurodegenerative disease spinocerebellar ataxia type 1 in zebrafish. Int J Mol Sci 2021, Vol 22, Page 7351 [Internet]. Multidisciplinary Digital Publishing Institute; 2021 [cited 2021 Oct 18];22:7351. Available from: https://www.mdpi.com/1422-0067/22/14/7351/htm .
Watase K, Weeber EJ, Xu B, Antalffy B, Yuva-Paylor L, Hashimoto K, et al. A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron. 2002;34:905–19. DOI
Burright EN, Brent Clark H, Servadio A, Matilla T, Feddersen RM, Yunis WS, et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell. 1995;82:937–48. DOI
Matilla A, Roberson ED, Banfi S, Morales J, Armstrong DL, Burright EN, et al. Mice lacking ataxin-1 display learning deficits and decreased hippocampal paired-pulse facilitation. J Neurosci. 1998;18:5508–16. DOI
Watase K, Gatchel JR, Sun Y, Emamian E, Atkinson R, Richman R, et al. Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model. PLoS Med. 2007;4:0836–47. DOI
Hatanaka Y, Watase K, Wada K, Nagai Y. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1. Sci Rep [Internet]. Nature Publishing Group; 2015;5:16102. Available from: http://www.nature.com/articles/srep16102 http://www.ncbi.nlm.nih.gov/pubmed/26531852 .
Lorenzetti D, Watase K, Xu B, Matzuk MM, Orr HT, Zoghbi HY. Repeat instability and motor incoordination in mice with a targeted expanded CAG repeat in the Sca1 locus. Hum Mol Genet. 2000;9:779–85. DOI
Mena A, Ruiz-Salas JC, Puentes A, Dorado I, Ruiz-Veguilla M, De la Casa LG. Reduced prepulse inhibition as a biomarker of schizophrenia. Front Behav Neurosci [Internet]. Frontiers; 2016 [cited 2019 May 2];10:202. Available from: http://journal.frontiersin.org/article/10.3389/fnbeh.2016.00202/full .
Hejl AM, Glenthøj B, MacKeprang T, Hemmingsen R, Waldemar G. Prepulse inhibition in patients with Alzheimer’s disease. Neurobiol Aging. 2004;25:1045–50. DOI
Hernandez-Castillo CR, Vaca-Palomares I, Galvez V, Campos-Romo A, Diaz R, Fernandez-Ruiz J. Cognitive deficits correlate with white matter deterioration in spinocerebellar ataxia type 2. J Int Neuropsychol Soc. 2016;22:486–91. DOI
Moreno-Rius J. The cerebellum in fear and anxiety-related disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;85:23–32. DOI
Rosas I, Martínez C, Clarimón J, Lleó A, Illán-Gala I, Dols-Icardo O, et al. Role for ATXN1, ATXN2, and HTT intermediate repeats in frontotemporal dementia and Alzheimer’s disease. Neurobiol Aging. 2020;87:139.e1-139.e7. DOI
Asher M, Johnson A, Zecevic B, Pease D, Cvetanovic M. Ataxin-1 regulates proliferation of hippocampal neural precursors. Neuroscience. 2016;322:54–65. https://doi.org/10.1016/j.neuroscience.2016.02.011 . DOI
Suh J, Romano DM, Nitschke L, Herrick SP, DiMarzio BA, Dzhala V, et al. Loss of ataxin-1 potentiates Alzheimer’s pathogenesis by elevating cerebral BACE1 transcription. Cell. 2019;178:1159-1175.e17. https://doi.org/10.1016/j.cell.2019.07.043 . DOI
Friedrich J, Kordasiewicz HB, O’Callaghan B, Handler HP, Wagener C, Duvick L, et al. Antisense oligonucleotide–mediated ataxin-1 reduction prolongs survival in SCA1 mice and reveals disease-associated transcriptome profiles. JCI Insight. 2018 [cited 2021 Oct 15];3. https://doi.org/10.1172/jci.insight.123193 .
Wang Q, Bardgett ME, Wong M, Wozniak DF, Lou J, McNeil BD, et al. Ataxia and paroxysmal dyskinesia in mice lacking axonally transported FGF14. Neuron. 2002;35:25–38. DOI
Espinosa F, McMahon A, Chan E, Wang S, Ho CS, Heintz N, et al. Alcohol hypersensitivity, increased locomotion, and spontaneous myoclonus in mice lacking the potassium channels Kv3.1 and Kv3.3. J Neurosci [Internet]. Society for Neuroscience; 2001 [cited 2020 Oct 2];21:6657–65. Available from: https://www.jneurosci.org/content/21/17/6657 .
Salomova M, Tichanek F, Jelinkova D, Cendelin J. Forced activity and environmental enrichment mildly improve manifestation of rapid cerebellar degeneration in mice. Behav Brain Res. 2021;401:113060. https://doi.org/10.1016/j.bbr.2020.113060 . DOI
Tuma J, Kolinko Y, Vozeh F, Cendelin J. Mutation-related differences in exploratory, spatial, and depressive-like behavior in pcd and Lurcher cerebellar mutant mice. Front Behav Neurosci [Internet]. 2015;9:116. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4429248&tool=pmcentrez&rendertype=abstract .
Hilber P, Lorivel T, Delarue C, Caston J. Stress and anxious-related behaviors in Lurcher mutant mice. Brain Res. 2004;1003:108–12. DOI
Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004; 367–78.
Cvetanovic M, Ingram M, Orr H, Opal P. Early activation of microglia and astrocytes in mouse models of spinocerebellar ataxia type 1. Neuroscience. 2015;48:289–99. DOI
Sheeler C, Rosa JG, Ferro A, McAdams B, Borgenheimer E, Cvetanovic M. Glia in neurodegeneration: the housekeeper, the defender and the perpetrator. Int J Mol Sci 2020, Vol 21, Page 9188 [Internet]. Multidisciplinary Digital Publishing Institute; 2020 [cited 2021 Dec 16];21:9188. Available from: https://www.mdpi.com/1422-0067/21/23/9188/htm .
Yamamoto M, Kim M, Imai H, Itakura Y, Ohtsuki G. Microglia-triggered plasticity of intrinsic excitability modulates psychomotor behaviors in acute cerebellar inflammation. Cell Rep. 2019;28:2923-2938.e8. https://doi.org/10.1016/j.celrep.2019.07.078 . DOI
Mellesmoen A, Sheeler C, Ferro A, Rainwater O, Cvetanovic M. Brain derived neurotrophic factor (BDNF) delays onset of pathogenesis in transgenic mouse model of spinocerebellar ataxia type 1 (SCA1). Front Cell Neurosci. 2019;12:1–8. DOI
Salomova M, Tichanek F, Jelinkova D, Cendelin J. Abnormalities in the cerebellar levels of trophic factors BDNF and GDNF in pcd and Lurcher cerebellar mutant mice. Neurosci Lett. 2020;134870.
Laricchiuta D, Andolina D, Angelucci F, Gelfo F, Berretta E, Puglisi-Allegra S, et al. Cerebellar BDNF promotes exploration and seeking for novelty. Int J Neuropsychopharmacol. 2018;21:485–98. DOI
Locke TM, Fujita H, Hunker A, Johanson SS, Darvas M, du Lac S, et al. Purkinje cell-specific knockout of tyrosine hydroxylase impairs cognitive behaviors. Front Cell Neurosci. 2020;14:228. DOI
Gehring T V., Luksys G, Sandi C, Vasilaki E. Detailed classification of swimming paths in the Morris water maze: multiple strategies within one trial. Sci Reports 2015 51 [Internet]. Nature Publishing Group; 2015 [cited 2021 Dec 21];5:1–15. Available from: https://www.nature.com/articles/srep14562 .
Overall RW, Zocher S, Garthe A, Kempermann G. Rtrack: a software package for reproducible automated water maze analysis. bioRxiv [Internet]. Cold Spring Harbor Laboratory; 2020 [cited 2021 Dec 20];2020.02.27.967372. Available from: https://www.biorxiv.org/content/10.1101/2020.02.27.967372v1 .
R Development Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2020. Available from: https://www.r-project.org/ .
Yu Z, Guindani M, Grieco SF, Chen L, Holmes TC, Xu X. Beyond t test and ANOVA: applications of mixed-effects models for more rigorous statistical analysis in neuroscience research. Neuron [Internet]. Elsevier; 2021 [cited 2021 Dec 22];0. Available from: http://www.cell.com/article/S089662732100845X/fulltext .
Harrell FE. Regression modeling strategies [Internet]. Cham: Springer International Publishing; 2015 [cited 2021 Dec 22]. Available from: http://link.springer.com/10.1007/978-3-319-19425-7 .
Boisgontier MP, Cheval B. The anova to mixed model transition. Neurosci Biobehav Rev. 2016;68:1004–5. DOI
McElreath R. Statistical rethinking [Internet]. 2nd Editio. New York: Chapman and Hall/CRC; 2020 [cited 2021 Dec 22]. Available from: https://www.taylorfrancis.com/books/mono/10.1201/9780429029608/statistical-rethinking-richard-mcelreath .
Button KS, Ioannidis JP a, Mokrysz C, Nosek B a, Flint J, Robinson ESJ, et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci [Internet]. Nature Publishing Group; 2013;14:365–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23571845 .
Kruschke JK. Doing Bayesian data analysis: a tutorial with R, JAGS, and Stan, second edition. Doing Bayesian Data Anal. A Tutor. with R, JAGS, Stan, Second Ed. 2014.
Bonapersona V, Hoijtink H, Abbinck M, Baram TZ, Bolton JL, Bordes J, et al. Increasing the statistical power of animal experiments with historical control data. Nat Neurosci 2021 244 [Internet]. Nature Publishing Group; 2021 [cited 2021 Dec 22];24:470–7. Available from: https://www.nature.com/articles/s41593-020-00792-3 .
Popkin G. Data sharing and how it can benefit your scientific career. Nature. 2019; 445–7.
Experimental Treatment with Edaravone in a Mouse Model of Spinocerebellar Ataxia 1