Cardinium disrupts Wolbachia-host dynamics in the domestic mite Tyrophagus putrescentiae: evidence from manipulative experiments

. 2025 May 20 ; 10 (5) : e0176924. [epub] 20250418

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40249197

Grantová podpora
GF22-15841K Grantová Agentura České Republiky

UNLABELLED: We investigated the tripartite interactions between two intracellular bacterial symbionts, Cardinium and Wolbachia in Tyrophagus putrescentiae. Cultures of Tyrophagus putrescentiae are typically single-infected by one intracellular symbiont. However, co-infection can be experimentally induced by mixing single-infected cultures, resulting in 10% of mite individuals being double-infected (Cardinium + Wolbachia) and a corresponding reduction in host fitness. Here, we assembled the genomes of Cardinium and Wolbachia and analyzed their gene expression in parental single-infected and mixed mite cultures using population-level samples (ranging from 7,500 to 10,000 mites). Wolbachia interacts more extensively with its mite host than Cardinium in single-infected cultures. However, in mixed cultures, (i) Wolbachia exhibited reduced regulation of the host compared with Cardinium; (ii) the gene expression profile of Cardinium shifted, increasing its interactions with the host, whereas the gene expression profile of Wolbachia remained unchanged; and (iii) Wolbachia genes exhibited a loss of interactions with mite gene expression, as indicated by reduced correlations (for example with host MAPK, endocytosis, and calcium signaling pathways). The experiments show that at the mite population level, symbiont infection disrupts gene expression interaction between the two symbionts and their host in different ways. Wolbachia was more influenced by Cardinium gene expression than vice versa. Cardinium can inhibit the growth of Wolbachia by disrupting its interaction with the host, leading to a loss of Wolbachia's influence on mite immune and regulatory pathways. The reasons for responses are due to co-infection or the reduced frequency of Wolbachia single-infected individuals due to the analyses of population-level samples. IMPORTANCE: We found that Cardinium disrupts the interaction between Wolbachia and mite host. In Wolbachia single-infected cultures, strong correlations exist between symbiont and host gene expressions. Interestingly, although Cardinium can also interact with the host, this interaction appears weaker compared with Wolbachia in single-infected cultures. These results suggest that both symbionts affect mite host gene expression, particularly in immune and regulatory pathways. In mixed samples, Cardinium appears to outcompete Wolbachia by disrupting its host interaction. It indicates competition between these two intracellular symbionts in mite populations. Wolbachia belongs to a mite-specific supergroup Q, distinct from the more commonly studied Wolbachia supergroups. As these mite-specific bacteria exhibit pathogen-blocking effects, our findings may have relevance for other systems, such as ticks and tick-borne diseases. The study sheds light on intracellular symbiont interaction within a novel mite-symbiont model.

Zobrazit více v PubMed

Wybouw N, Mortier F, Bonte D. 2022. Interacting host modifier systems control Wolbachia-induced cytoplasmic incompatibility in a haplodiploid mite. Evol Lett 6:255–265. doi:10.1002/evl3.282 PubMed DOI PMC

Porter J, Sullivan W. 2023. The cellular lives of Wolbachia. Nat Rev Microbiol 21:750–766. doi:10.1038/s41579-023-00918-x PubMed DOI

Weeks AR, Marec F, Breeuwer JAJ. 2001. A mite species that consists entirely of haploid females. Science 292:2479–2482. doi:10.1126/science.1060411 PubMed DOI

Zchori-Fein E, Gottlieb Y, Kelly SE, Brown JK, Wilson JM, Karr TL, Hunter MS. 2001. A newly discovered bacterium associated with parthenogenesis and A change in host selection behavior in parasitoid wasps. Proc Natl Acad Sci USA 98:12555–12560. doi:10.1073/pnas.221467498 PubMed DOI PMC

Zchori-Fein E, Perlman SJ, Kelly SE, Katzir N, Hunter MS. 2004. Characterization of a “Bacteroidetes” symbiont in Encarsia wasps (Hymenoptera: Aphelinidae): proposal of “Candidatus Cardinium hertigii”. Int J Syst Evol Microbiol 54:961–968. doi:10.1099/ijs.0.02957-0 PubMed DOI

Ferree PM, Frydman HM, Li JM, Cao J, Wieschaus E, Sullivan W. 2005. Wolbachia utilizes host microtubules and dynein for anterior localization in the Drosophila oocyte. PLoS Pathog 1:e14. doi:10.1371/journal.ppat.0010014 PubMed DOI PMC

White PM, Pietri JE, Debec A, Russell S, Patel B, Sullivan W. 2017. Mechanisms of horizontal cell-to-cell transfer of Wolbachia spp. in Drosophila melanogaster. Appl Environ Microbiol 83:e03425-16. doi:10.1128/AEM.03425-16 PubMed DOI PMC

Li F, Li P, Hua H, Hou M, Wang F. 2020. Diversity, tissue localization, and infection pattern of bacterial symbionts of the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Microb Ecol 79:720–730. doi:10.1007/s00248-019-01433-4 PubMed DOI

Weinert LA, Araujo-Jnr EV, Ahmed MZ, Welch JJ. 2015. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc Biol Sci 282:20150249. doi:10.1098/rspb.2015.0249 PubMed DOI PMC

Nakamura Y, Kawai S, Yukuhiro F, Ito S, Gotoh T, Kisimoto R, Yanase T, Matsumoto Y, Kageyama D, Noda H. 2009. Prevalence of Cardinium bacteria in planthoppers and spider mites and taxonomic revision of “Candidatus Cardinium hertigii” based on detection of a new Cardinium group from biting midges. Appl Environ Microbiol 75:6757–6763. doi:10.1128/AEM.01583-09 PubMed DOI PMC

Breeuwer H, Ros VID, Groot TVM. 2012. Cardinium: the next addition to the family of reproductive parasites, p 207–224. In Zchori-Fein E, Bourtzis K (ed), Manipulative tenants: bacteria associated with arthropods. CRC Press, Boca Raton, FL.

Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, Bordenstein SR, Bordenstein SR. 2021. Living in the endosymbiotic world of Wolbachia: a centennial review. Cell Host Microbe 29:879–893. doi:10.1016/j.chom.2021.03.006 PubMed DOI PMC

Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T. 2014. Evolutionary origin of insect–Wolbachia nutritional mutualism. Proc Natl Acad Sci USA 111:10257–10262. doi:10.1073/pnas.1409284111 PubMed DOI PMC

Penz T, Schmitz-Esser S, Kelly SE, Cass BN, Muller A, Woyke T, Malfatti SA, Hunter MS, Horn M. 2012. Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genet 8:e1003012. doi:10.1371/journal.pgen.1003012 PubMed DOI PMC

Zeng Z, Fu Y, Guo D, Wu Y, Ajayi OE, Wu Q. 2018. Bacterial endosymbiont Cardinium cSfur genome sequence provides insights for understanding the symbiotic relationship in Sogatella furcifera host. BMC Genomics 19:688. doi:10.1186/s12864-018-5078-y PubMed DOI PMC

Hedges LM, Brownlie JC, O’Neill SL, Johnson KN. 2008. Wolbachia and virus protection in insects. Science 322:702–702. doi:10.1126/science.1162418 PubMed DOI

Kambris Z, Cook PE, Phuc HK, Sinkins SP. 2009. Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 326:134–136. doi:10.1126/science.1177531 PubMed DOI PMC

Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O’Neill SL. 2009. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell 139:1268–1278. doi:10.1016/j.cell.2009.11.042 PubMed DOI

Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O’Neill SL, Hoffmann AA. 2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476:450–453. doi:10.1038/nature10355 PubMed DOI

Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstädter J, Hurst GD. 2008. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6:27. doi:10.1186/1741-7007-6-27 PubMed DOI PMC

Gottlieb Y, Ghanim M, Gueguen G, Kontsedalov S, Vavre F, Fleury F, Zchori-Fein E. 2008. Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB J 22:2591–2599. doi:10.1096/fj.07-101162 PubMed DOI

Zhu L-Y, Zhang K-J, Zhang Y-K, Ge C, Gotoh T, Hong X-Y. 2012. Wolbachia strengthens Cardinium-induced cytoplasmic incompatibility in the spider mite Tetranychus piercei McGregor. Curr Microbiol 65:516–523. doi:10.1007/s00284-012-0190-8 PubMed DOI

Brown AMV, Wasala SK, Howe DK, Peetz AB, Zasada IA, Denver DR. 2018. Comparative genomics of Wolbachia–Cardinium dual endosymbiosis in a plant-parasitic nematode. Front Microbiol 9:2482. doi:10.3389/fmicb.2018.02482 PubMed DOI PMC

Zele F, Santos I, Olivieri I, Weill M, Duron O, Magalhaes S. 2018. Endosymbiont diversity and prevalence in herbivorous spider mite populations in South-Western Europe. FEMS Microbiol Ecol 94:fiy015. doi:10.1093/femsec/fiy015 PubMed DOI

Zele F, Weill M, Magalhaes S. 2018. Identification of spider-mite species and their endosymbionts using multiplex PCR. Exp Appl Acarol 74:123–138. doi:10.1007/s10493-018-0224-4 PubMed DOI

Zytynska SE. 2019. Cohabitation and roommate bias of symbiotic bacteria in insect hosts. Mol Ecol 28:5199–5202. doi:10.1111/mec.15295 PubMed DOI PMC

Sakamoto H, Suzuki R, Nishizawa N, Matsuda T, Gotoh T. 2019. Effects of Wolbachia/Cardinium infection on the mitochondrial phylogeny of Oligonychus castaneae (Acari: Tetranychidae). J Econ Entomol 112:883–893. doi:10.1093/jee/toy354 PubMed DOI

Ros VID, Fleming VM, Feil EJ, Breeuwer JAJ. 2012. Diversity and recombination in Wolbachia and Cardinium from Bryobia spider mites. BMC Microbiol 12 (Suppl 1):S13. doi:10.1186/1471-2180-12-S1-S13 PubMed DOI PMC

Gotoh T, Noda H, Ito S. 2007. Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity (Edinb) 98:13–20. doi:10.1038/sj.hdy.6800881 PubMed DOI

Zhao D-X, Chen D-S, Ge C, Gotoh T, Hong X-Y. 2013. Multiple infections with Cardinium and two strains of Wolbachia in the spider mite Tetranychus phaselus Ehara: revealing new forces driving the spread of Wolbachia. PLoS One 8:e54964. doi:10.1371/journal.pone.0054964 PubMed DOI PMC

Zhao D-X, Zhang X-F, Hong X-Y. 2013. Host–symbiont interactions in spider mite Tetranychus truncates doubly infected with Wolbachia and Cardinium. Environ Entomol 42:445–452. doi:10.1603/EN12354 PubMed DOI

Haghshenas-Gorgabi N, Poorjavd N, Khajehali J, Wybouw N. 2023. Cardinium symbionts are pervasive in Iranian populations of the spider mite Panonychus ulmi despite inducing an infection cost and no demonstrable reproductive phenotypes when Wolbachia is a symbiotic partner. Exp Appl Acarol 91:369–380. doi:10.1007/s10493-023-00840-0 PubMed DOI

Nguyen DT, Morrow JL, Spooner-Hart RN, Riegler M. 2017. Independent cytoplasmic incompatibility induced by Cardinium and Wolbachia maintains endosymbiont coinfections in haplodiploid thrips populations. Evolution 71:995–1008. doi:10.1111/evo.13197 PubMed DOI

Li C, He M, Yun Y, Peng Y. 2020. Co-infection with Wolbachia and Cardinium may promote the synthesis of fat and free amino acids in a small spider, Hylyphantes graminicola. J Invertebr Pathol 169:107307. doi:10.1016/j.jip.2019.107307 PubMed DOI

Li T-P, Zhou C-Y, Wang M-K, Zha S-S, Chen J, Bing X-L, Hoffmann AA, Hong X-Y. 2022. Endosymbionts reduce microbiome diversity and modify host metabolism and fecundity in the planthopper Sogatella furcifera. mSystems 7:e01516-21. doi:10.1128/msystems.01516-21 PubMed DOI PMC

Nakamura Y, Gotoh T, Imanishi S, Mita K, Kurtti TJ, Noda H. 2011. Differentially expressed genes in silkworm cell cultures in response to infection by Wolbachia and Cardinium endosymbionts. Insect Mol Biol 20:279–289. doi:10.1111/j.1365-2583.2010.01056.x PubMed DOI

Zhang X, Hendrix JD, Campbell YL, Phillips TW, Goddard J, Cheng W-H, Kim T, Wu T-L, Schilling MW. 2018. Biology and integrated pest management of Tyrophagus putrescentiae (Schrank) infesting dry cured hams. J Stored Prod Res 79:16–28. doi:10.1016/j.jspr.2018.08.001 DOI

Olivry T, Mueller RS. 2019. Critically appraised topic on adverse food reactions of companion animals (8): storage mites in commercial pet foods. BMC Vet Res 15:385. doi:10.1186/s12917-019-2102-7 PubMed DOI PMC

van Hage-Hamsten M, Johansson E. 1998. Clinical and immunologic aspects of storage mite allergy. Allergy 53:49–53. doi:10.1111/j.1398-9995.1998.tb04997.x PubMed DOI

Sanchez-Borges M, Suarez Chacon R, Capriles-Hulett A, Caballero-Fonseca F, Fernandez-Caldas E. 2013. Anaphylaxis from ingestion of mites: pancake anaphylaxis. J Allergy Clin Immunol 131:31–35. doi:10.1016/j.jaci.2012.09.026 PubMed DOI

Hubert J, Nesvorna M, Green SJ, Klimov PB. 2021. Microbial communities of stored product mites: variation by species and population. Microb Ecol 81:506–522. doi:10.1007/s00248-020-01581-y PubMed DOI

Lee J, Kim JY, Yi M-H, Hwang Y, Lee I-Y, Nam S-H, Yong D, Yong T-S. 2019. Comparative microbiome analysis of Dermatophagoides farinae, Dermatophagoides pteronyssinus, and Tyrophagus putrescentiae. J Allergy Clin Immunol 143:1620–1623. doi:10.1016/j.jaci.2018.10.062 PubMed DOI

Xiong Q, Fung CS-H, Xiao X, Wan AT-Y, Wang M, Klimov P, Ren Y, Yang KY, Hubert J, Cui Y, Liu X, Tsui SK-W. 2023. Endogenous plasmids and chromosomal genome reduction in the Cardinium endosymbiont of Dermatophagoides farinae. mSphere 8:e0007423. doi:10.1128/msphere.00074-23 PubMed DOI PMC

Zhou Y, Klimov PB, Gu X, Yu Z, Cui X, Li Q, Pan R, Yuan C, Cai F, Cui Y. 2023. Chromosome-level genomic assembly and allergome inference reveal novel allergens in Tyrophagus putrescentiae. Allergy 78:1691–1695. doi:10.1111/all.15656 PubMed DOI

Klimov PB, Hubert J, Erban T, Perotti MA, Braig HR, Flynt A, He Q, Cui Y. 2024. Genomic and metagenomic analyses of the domestic mite Tyrophagus putrescentiae identify it as a widespread environmental contaminant and a host of a basal, mite-specific Wolbachia lineage (supergroup Q). Int J Parasitol 54:661–674. doi:10.1016/j.ijpara.2024.07.001 PubMed DOI

Hubert J, Nesvorna M, Pekar S, Green SJ, Klimov PB. 2021. Cardinium inhibits Wolbachia in its mite host, Tyrophagus putrescentiae, and affects host fitness. FEMS Microbiol Ecol 97:fiab123. doi:10.1093/femsec/fiab123 PubMed DOI

Hubert Jan, Kopecky J, Perotti MA, Nesvorna M, Braig HR, Sagova-Mareckova M, Macovei L, Zurek L. 2012. Detection and identification of species-specific bacteria associated with synanthropic mites. Microb Ecol 63:919–928. doi:10.1007/s00248-011-9969-6 PubMed DOI

Hubert J, Glowska-Patyniak E, Pekar S. 2024. Cultures of Tyrophagus putrescentiae experimentally infected with Cardinium and Wolbachia presented reduced fitness. bioRxiv. doi:10.1101/2025.04.09.647973 DOI

Sanchez-Ramos I, Castanera P. 2001. Development and survival of Tyrophagus putrescentiae (Acari: Acaridae) at constant temperatures. Environ Entomol 30:1082–1089. doi:10.1603/0046-225X-30.6.1082 DOI

Matsumoto K. 1965. Studies on environmental factors for breeding of grain mites VII: relationship between reproduction of mites and kind of carbohydrates in the diet. Med Entomol Zool 16:118–122. doi:10.7601/mez.16.118. (in Japanese with English summary). DOI

Bordenstein SR, Werren JH. 2007. Bidirectional incompatibility among divergent Wolbachia and incompatibility level differences among closely related Wolbachia in Nasonia. Heredity (Edinb) 99:278–287. doi:10.1038/sj.hdy.6800994 PubMed DOI

Erban T, Klimov PB, Smrz J, Phillips TW, Nesvorna M, Kopecky J, Hubert J. 2016. Populations of stored product mite Tyrophagus putrescentiae differ in their bacterial communities. Front Microbiol 7:1046. doi:10.3389/fmicb.2016.01046 PubMed DOI PMC

Martinez J, Klasson L, Welch JJ, Jiggins FM. 2021. Life and death of selfish genes: comparative genomics reveals the dynamic evolution of cytoplasmic incompatibility. Mol Biol Evol 38:2–15. doi:10.1093/molbev/msaa209 PubMed DOI PMC

Olm MR, Brown CT, Brooks B, Banfield JF. 2017. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J 11:2864–2868. doi:10.1038/ismej.2017.126 PubMed DOI PMC

Avram O, Rapoport D, Portugez S, Pupko T. 2019. M1CR0B1AL1Z3R—a user-friendly web server for the analysis of large-scale microbial genomics data. Nucleic Acids Res 47:W88–W92. doi:10.1093/nar/gkz423 PubMed DOI PMC

Grant JR, Enns E, Marinier E, Mandal A, Herman EK, Chen C-Y, Graham M, Van Domselaar G, Stothard P. 2023. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res 51:W484–W492. doi:10.1093/nar/gkad326 PubMed DOI PMC

Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, Pratama AA, Gazitua MC, Vik D, Sullivan MB, Roux S. 2021. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9:37. doi:10.1186/s40168-020-00990-y PubMed DOI PMC

Halter T, Hendrickx F, Horn M, Manzano-Marin A. 2022. A novel widespread mite element in the repeat-rich genome of the Cardinium endosymbiont of the spider Oedothorax gibbosus. Microbiol Spectr 10:e02627-22. doi:10.1128/spectrum.02627-22 PubMed DOI PMC

Klimov PB, Chetverikov PE, Dodueva IE, Vishnyakov AE, Bolton SJ, Paponova SS, Lutova LA, Tolstikov AV. 2022. Symbiotic bacteria of the gall-inducing mite Fragariocoptes setiger (Eriophyoidea) and phylogenomic resolution of the eriophyoid position among Acari. Sci Rep 12:3811. doi:10.1038/s41598-022-07535-3 PubMed DOI PMC

Mathers TC, Mugford ST, Hogenhout SA, Tripathi L. 2020. Genome sequence of the banana aphid, Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae) and its symbionts. G3 (Bethesda) 10:4315–4321. doi:10.1534/g3.120.401358 PubMed DOI PMC

Arai H, Anbutsu H, Nishikawa Y, Kogawa M, Ishii K, Hosokawa M, Lin S-R, Ueda M, Nakai M, Kunimi Y, Harumoto T, Kageyama D, Takeyama H, Inoue MN. 2023. Combined actions of bacteriophage-encoded genes in Wolbachia-induced male lethality. iScience 26:106842. doi:10.1016/j.isci.2023.106842 PubMed DOI PMC

Sheehan KB, Martin M, Lesser CF, Isberg RR, Newton ILG. 2016. Identification and characterization of a candidate Wolbachia pipientis type IV effector that interacts with the actin cytoskeleton. mBio 7:e00622-16. doi:10.1128/mBio.00622-16 PubMed DOI PMC

Erban T, Klimov PB, Harant K, Talacko P, Nesvorna M, Hubert J. 2021. Label-free proteomic analysis reveals differentially expressed Wolbachia proteins in Tyrophagus putrescentiae: mite allergens and markers reflecting population-related proteome differences. J Proteomics 249:104356. doi:10.1016/j.jprot.2021.104356 PubMed DOI

Hubert J, Nesvorna M, Klimov PB, Erban T, Sopko B, Dowd SE, Scully ED. 2021. Interactions of the intracellular bacterium Cardinium with its host, the house dust mite Dermatophagoides farinae, based on gene expression data. mSystems 6:e00916-21. doi:10.1128/mSystems.00916-21 PubMed DOI PMC

Rodrigues J, Lefoulon E, Gavotte L, Perillat-Sanguinet M, Makepeace B, Martin C, D’Haese CA. 2023. Wolbachia springs eternal: symbiosis in Collembola is associated with host ecology. R Soc Open Sci 10:230288. doi:10.1098/rsos.230288 PubMed DOI PMC

Ju J-F, Bing X-L, Zhao D-S, Guo Y, Xi Z, Hoffmann AA, Zhang K-J, Huang H-J, Gong J-T, Zhang X, Hong X-Y. 2020. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J 14:676–687. doi:10.1038/s41396-019-0559-9 PubMed DOI PMC

Newton ILG, Rice DW. 2020. The Jekyll and Hyde symbiont: could Wolbachia be a nutritional mutualist? J Bacteriol 202:e00589-00519. doi:10.1128/JB.00589-19 PubMed DOI PMC

Higashi CHV, Patel V, Kamalaker B, Inaganti R, Bressan A, Russell JA, Oliver KM. 2024. Another tool in the toolbox: aphid-specific Wolbachia protect against fungal pathogens. Environ Microbiol 26:e70005. doi:10.1111/1462-2920.70005 PubMed DOI

Manzano-Marin A. 2020. No evidence for Wolbachia as a nutritional co-obligate endosymbiont in the aphid Pentalonia nigronervosa. Microbiome 8:72. doi:10.1186/s40168-020-00865-2 PubMed DOI PMC

Bordenstein SR, Bordenstein SR. 2011. Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility. PLoS One 6:e29106. doi:10.1371/journal.pone.0029106 PubMed DOI PMC

Halter T, Kostlbacher S, Rattei T, Hendrickx F, Manzano-Marin A, Horn M. 2023. One to host them all: genomics of the diverse bacterial endosymbionts of the spider Oedothorax gibbosus. Microb Genom 9:mgen000943. doi:10.1099/mgen.0.000943 PubMed DOI PMC

Manzano-Marin A, Coeur d’acier A, Clamens A-L, Orvain C, Cruaud C, Barbe V, Jousselin E. 2020. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J 14:259–273. doi:10.1038/s41396-019-0533-6 PubMed DOI PMC

Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, Xi Z. 2012. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci USA 109:E23–E31. doi:10.1073/pnas.1116932108 PubMed DOI PMC

Voronin D, Cook DAN, Steven A, Taylor MJ. 2012. Autophagy regulates Wolbachia populations across diverse symbiotic associations. Proc Natl Acad Sci USA 109:E1638–E1646. doi:10.1073/pnas.1203519109 PubMed DOI PMC

Liu C, Wang J-L, Zheng Y, Xiong E-J, Li J-J, Yuan L-L, Yu X-Q, Wang Y-F. 2014. Wolbachia-induced paternal defect in Drosophila is likely by interaction with the juvenile hormone pathway. Insect Biochem Mol Biol 49:49–58. doi:10.1016/j.ibmb.2014.03.014 PubMed DOI

Newton ILG, Savytskyy O, Sheehan KB. 2015. Wolbachia utilize host actin for efficient maternal transmission in Drosophila melanogaster. PLoS Pathog 11:e1004798. doi:10.1371/journal.ppat.1004798 PubMed DOI PMC

Almeida F, Suesdek L. 2017. Effects of Wolbachia on ovarian apoptosis in Culex quinquefasciatus (Say, 1823) during the previtellogenic and vitellogenic periods. Parasit Vectors 10:398. doi:10.1186/s13071-017-2332-0 PubMed DOI PMC

White PM, Serbus LR, Debec A, Codina A, Bray W, Guichet A, Lokey RS, Sullivan W. 2017. Reliance of Wolbachia on high rates of host proteolysis revealed by a genome-wide RNAi screen of Drosophila cells. Genetics 205:1473–1488. doi:10.1534/genetics.116.198903 PubMed DOI PMC

Li H, Harwood JD, Liu T, Chu D. 2018. Novel proteome and acetylome of Bemisia tabaci Q in response to Cardinium infection. BMC Genomics 19:523. doi:10.1186/s12864-018-4907-3 PubMed DOI PMC

Dou W, Miao Y, Xiao J, Huang D. 2021. Association of Wolbachia with gene expression in Drosophila testes. Microb Ecol 82:805–817. doi:10.1007/s00248-021-01703-0 PubMed DOI

Mills MK, McCabe LG, Rodrigue EM, Lechtreck KF, Starai VJ. 2023. Wbm0076, a candidate effector protein of the Wolbachia endosymbiont of Brugia malayi, disrupts eukaryotic actin dynamics. PLoS Pathog 19:e1010777. doi:10.1371/journal.ppat.1010777 PubMed DOI PMC

Nevalainen LB, Layton EM, Newton ILG. 2023. Wolbachia promotes its own uptake by host cells. Infect Immun 91:e0055722. doi:10.1128/iai.00557-22. PubMed DOI PMC

Konopinski MK. 2020. Shannon diversity index: a call to replace the original Shannon's formula with unbiased estimator in the population genetics studies. PeerJ 8:e9391. doi:10.7717/peerj.9391 PubMed DOI PMC

Martinez O, Reyes-Valdes MH. 2008. Defining diversity, specialization, and gene specificity in transcriptomes through information theory. Proc Natl Acad Sci USA 105:9709–9714. doi:10.1073/pnas.0803479105 PubMed DOI PMC

Nakamura Y, Yukuhiro F, Matsumura M, Noda H. 2012. Cytoplasmic incompatibility involving Cardinium and Wolbachia in the white-backed planthopper Sogatella furcifera (Hemiptera: Delphacidae). Appl Entomol Zool 47:273–283. doi:10.1007/s13355-012-0120-z DOI

Johansson E, Johansson SGO, van Hage-Hamsten M. 1994. Allergenic characterization of Acarus siro and Tyrophagus putrescentiae and their crossreactivity with Lepidoglyphus destructor and Dermatophagoides pteronyssinus. Clin Exp Allergy 24:743–751. doi:10.1111/j.1365-2222.1994.tb00985.x PubMed DOI

Hubert J, Nesvorna M, Klimov P, Dowd SE, Sopko B, Erban T. 2019. Differential allergen expression in three Tyrophagus putrescentiae strains inhabited by distinct microbiome. Allergy 74:2502–2507. doi:10.1111/all.13921 PubMed DOI

Eraso E, Martinez J, Garcia-Ortega P, Martinez A, Palacios R, Cisterna R, Guisantes JA. 1998. Influence of mite growth culture phases on the biological standardization of allergenic extracts. J Investig Allergol Clin Immunol 8:201–206. PubMed

Martinez J, Eraso E, Palacios R, Guisantes JA. 1999. Enzymatic analyses of house dust mite extracts from Dermatophagoides pteronyssinus and Dermatophagoides farinae (Acari: Pyroglyphidae) during different phases of culture growth. J Med Entomol 36:370–375. doi:10.1093/jmedent/36.3.370 PubMed DOI

Hubert J, Vrtala S, Sopko B, Dowd SE, He Q, Klimov PB, Harant K, Talacko P, Erban T. 2023. Predicting Blomia tropicalis allergens using a multiomics approach. Clin Transl Allergy 13:e12302. doi:10.1002/clt2.12302 PubMed DOI PMC

Krueger F. 2021. Trim Galore. Babraham Bioinformatics. Available from: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/

Andrews S. 2019. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. doi:10.1186/gb-2009-10-3-r25 PubMed DOI PMC

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923 PubMed DOI PMC

Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences, version 5. arXiv. doi:10.48550/arXiv.1708.01492 PubMed DOI PMC

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi:10.1089/cmb.2012.0021 PubMed DOI PMC

Antipov D, Korobeynikov A, McLean JS, Pevzner PA. 2016. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics 32:1009–1015. doi:10.1093/bioinformatics/btv688 PubMed DOI PMC

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. doi:10.1371/journal.pone.0112963 PubMed DOI PMC

Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi:10.1093/bioinformatics/btu153 PubMed DOI

Tanizawa Y, Fujisawa T, Nakamura Y. 2018. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 34:1037–1039. doi:10.1093/bioinformatics/btx713 PubMed DOI PMC

Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731. doi:10.1016/j.jmb.2015.11.006 PubMed DOI

Palmer JM, Stajich J. 2020. Funannotate v1.8.1: eukaryotic genome annotation. Zenodo. Available from: https://zenodo.org/record/4054262

Galaxy Community . 2022. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res 50:W345–W351. doi:10.1093/nar/gkac247 PubMed DOI PMC

Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. doi:10.1093/nar/28.1.27 PubMed DOI PMC

Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P. 2016. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44:D286–D293. doi:10.1093/nar/gkv1248 PubMed DOI PMC

Gao C-H, Yu G, Cai P. 2021. ggVennDiagram: an intuitive, easy-to-use, and highly customizable r package to generate venn diagram. Front Genet 12:706907. doi:10.3389/fgene.2021.706907 PubMed DOI PMC

Gao C-H. 2023. Package “ggVennDiagram”, version 1.2.3. CRAN - The Comprehensive R Archive Network. Available from: https://cran.r-project.org/web/packages/ggVennDiagram/ggVennDiagram.pdf

R Development Core Team . 2023. R: a language and environment for statistical computing, version 4.3.1. R Foundation for Statistical Computing, Vienna. Available from: http://www.R-project.org

Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. doi:10.1128/AEM.01043-13 PubMed DOI PMC

Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM. 2016. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17:132. doi:10.1186/s13059-016-0997-x PubMed DOI PMC

Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. doi:10.1186/1471-2105-11-119 PubMed DOI PMC

Steinegger M, Soding J. 2017. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 35:1026–1028. doi:10.1038/nbt.3988 PubMed DOI

Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. 2017. PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 33:2946–2947. doi:10.1093/bioinformatics/btx324 PubMed DOI

Letunic I, Bork P. 2024. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res 52:W78–W82. doi:10.1093/nar/gkae268 PubMed DOI PMC

Hammer O. 2020. Past 4 - the past of the future. Natural History Museum, University of Oslo, Oslo. Available from: https://www.nhm.uio.no/english/research/resources/past/

Shannon CE. 1948. A mathematical theory of communication. Bell Syst Techn J 27:379–423. doi:10.1002/j.1538-7305.1948.tb01338.x DOI

Shannon CE, Weaver W. 1949. The mathematical theory of communication. The University of Illinois Press, Urbana, IL.

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MH, Szoecs E, Wagner H. 2019. Package “vegan”: community ecology package, version 2.5-6. CRAN - The Comprehensive R Archive Network. Available from: https://cran.r-project.org/web/packages/vegan/vegan.pdf

Jokergoo . 2018. Visualize big correlation matrix. a bioinformagician. GitHub. Available from: http://web.archive.org/web/20200424071358/http://jokergoo.github.io/blog/html/large_matrix_circular.html

Zeleny D. 2017. Analysis of community ecology data in R: constrained ordination. Available from: https://www.davidzeleny.net/anadat-r/doku.php/en:forward_sel

Gu Z, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849. doi:10.1093/bioinformatics/btw313 PubMed DOI

Gu Z. 2022. Complex heatmap visualization. iMeta 1:e43. doi:10.1002/imt2.43 PubMed DOI PMC

Barbosa AM. 2015. fuzzySim: applying fuzzy logic to binary similarity indices in ecology. Methods Ecol Evol 6:853–858. doi:10.1111/2041-210X.12372 DOI

Barbosa AM. 2024. fuzzySim: fuzzy similarity in species distributions, version 4.10.7. CRAN - The Comprehensive R Archive Network. Available from: https://cran.r-project.org/web/packages/fuzzySim/index.html

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...