Endogenous Plasmids and Chromosomal Genome Reduction in the Cardinium Endosymbiont of Dermatophagoides farinae

. 2023 Apr 20 ; 8 (2) : e0007423. [epub] 20230320

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36939349

Cardinium bacteria are well known as endosymbionts that infect a wide range of arthropods and can manipulate host reproduction to promote their vertical transmission. As intracellular bacteria, Cardinium species undergo dramatic genome evolution, especially their chromosomal genome reduction. Although Cardinium plasmids have been reported to harbor important genes, the role of these plasmids in the genome evolution is yet to be fully understood. In this study, 2 genomes of Cardinium endosymbiont bacteria in astigmatic mites were de novo assembled, including the complete circular chromosomal genome of Cardinium sp. DF that was constructed in high quality using high-coverage long-read sequencing data. Intriguingly, 2 circular plasmids were assembled in Cardinium sp. DF and were identified to be endogenous for over 10 homologous genes shared with the chromosomal genome. Comparative genomics analysis illustrated an outline of the genome evolution of Cardinium bacteria, and the in-depth analysis of Cardinium sp. DF shed light on the multiple roles of endogenous plasmids in the molecular process of the chromosomal genome reduction. The endogenous plasmids of Cardinium sp. DF not only harbor massive homologous sequences that enable homologous recombination with the chromosome, but also can provide necessary functional proteins when the coding genes decayed in the chromosomal genome. IMPORTANCE As bacterial endosymbionts, Cardinium typically undergoes genome reduction, but the molecular process is still unclear, such as how plasmids get involved in chromosome reduction. Here, we de novo assembled 2 genomes of Cardinium in astigmatic mites, especially the chromosome of Cardinium sp. DF was assembled in a complete circular DNA using high-coverage long-read sequencing data. In the genome assembly of Cardinium sp. DF, 2 circular endogenous plasmids were identified to share at least 10 homologous genes with the chromosomal genome. In the comparative analysis, we identified a range of genes decayed in the chromosomal genome of Cardinium sp. DF but preserved in the 2 plasmids. Taken together with in-depth analyses, our results unveil that the endogenous plasmids harbor homologous sequences of chromosomal genome and can provide a structural basis of homologous recombination. Overall, this study reveals that endogenous plasmids participate in the ongoing chromosomal genome reduction of Cardinium sp. DF.

Zobrazit více v PubMed

Ros VID, Fleming VM, Feil EJ, Breeuwer JAJ. 2012. Diversity and recombination in Wolbachia and Cardinium from Bryobiaspider mites. BMC Microbiol 12:S13. doi:10.1186/1471-2180-12-S1-S13. PubMed DOI PMC

Xiong Q, Wan AT-Y, Liu X, Fung CS-H, Xiao X, Malainual N, Hou J, Wang L, Wang M, Yang KY, Cui Y, Leung EL-H, Nong W, Shin S-K, Au SW-N, Jeong KY, Chew F-T, Hui JH-L, Leung T-F, Tungtrongchitr A, Zhong N, Liu Z, Tsui SK-W. 2022. Comparative genomics reveals insights into the divergent evolution of astigmatic mites and household pest adaptations. Molecular Biology and Evolution 39:msac097. doi:10.1093/molbev/msac097. PubMed DOI PMC

Chan T-F, Ji K-M, Yim AK-Y, Liu X-Y, Zhou J-W, Li R-Q, Yang KY, Li J, Li M, Law PT-W, Wu Y-L, Cai Z-L, Qin H, Bao Y, Leung RK-K, Ng PK-S, Zou J, Zhong X-J, Ran P-X, Zhong N-S, Liu Z-G, Tsui SK-W. 2015. The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens. J Allergy and Clin Immunol 135:539–548. doi:10.1016/j.jaci.2014.09.031. PubMed DOI

Erban T, Klimov P, Molva V, Hubert J. 2020. Whole genomic sequencing and sex-dependent abundance estimation of Cardinium sp., a common and hyperabundant bacterial endosymbiont of the American house dust mite, Dermatophagoides farinae. Exp Appl Acarol 80:363–380. doi:10.1007/s10493-020-00475-5. PubMed DOI

Hubert J, Nesvorna M, Pekar S, Green SJ, Klimov PB. 2021. Cardinium inhibits Wolbachia in its mite host, Tyrophagus putrescentiae, and affects host fitness. FEMS Microbiol Ecol 97:fiab123. doi:10.1093/femsec/fiab123. PubMed DOI

Ankenbrand MJ, Hohlfeld S, Hackl T, Förster F. 2017. AliTV—interactive visualization of whole genome comparisons. PeerJ Computer Science 3:e116. doi:10.7717/peerj-cs.116. DOI

Gonella E, Pajoro M, Marzorati M, Crotti E, Mandrioli M, Pontini M, Bulgari D, Negri I, Sacchi L, Chouaia B, Daffonchio D, Alma A. 2015. Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects. Sci Rep 5:15811. doi:10.1038/srep15811. PubMed DOI PMC

Chrostek E, Pelz-Stelinski K, Hurst GDD, Hughes GL. 2017. Horizontal transmission of intracellular insect symbionts via plants. Front Microbiol 8:2237. doi:10.3389/fmicb.2017.02237. PubMed DOI PMC

Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi:10.1093/bioinformatics/btu153. PubMed DOI

Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. 2021. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic Scale. Mol Biol Evol 38:5825–5829. doi:10.1093/molbev/msab293. PubMed DOI PMC

Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, von Mering C, Bork P. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314. doi:10.1093/nar/gky1085. PubMed DOI PMC

Penz T, Schmitz-Esser S, Kelly SE, Cass BN, Müller A, Woyke T, Malfatti SA, Hunter MS, Horn M. 2012. Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genet 8:e1003012. doi:10.1371/journal.pgen.1003012. PubMed DOI PMC

Santos-Garcia D, Rollat-Farnier P-A, Beitia F, Zchori-Fein E, Vavre F, Mouton L, Moya A, Latorre A, Silva FJ. 2014. The genome of Cardinium cBtQ1 provides insights into genome reduction, symbiont motility, and its settlement in Bemisia tabaci. Genome Biol and Evolution 6:1013–1030. doi:10.1093/gbe/evu077. PubMed DOI PMC

Zeng Z, Fu Y, Guo D, Wu Y, Ajayi OE, Wu Q. 2018. Bacterial endosymbiont Cardinium cSfur genome sequence provides insights for understanding the symbiotic relationship in Sogatella furcifera host. BMC Genomics 19:688. doi:10.1186/s12864-018-5078-y. PubMed DOI PMC

van Dijk B, Bertels F, Stolk L, Takeuchi N, Rainey PB. 2022. Transposable elements promote the evolution of genome streamlining. Philos Trans R Soc Lond B Biol Sci 377:20200477. doi:10.1098/rstb.2020.0477. PubMed DOI PMC

McCutcheon JP, Moran NA. 2012. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26. doi:10.1038/nrmicro2670. PubMed DOI

Martínez-Cano DJ, Reyes-Prieto M, Martínez-Romero E, Partida-Martínez LP, Latorre A, Moya A, Delaye L. 2015. Evolution of small prokaryotic genomes. Front Microbiol 5:742–742. doi:10.3389/fmicb.2014.00742. PubMed DOI PMC

Moran NA. 2002. Microbial minimalism: genome reduction in bacterial pathogens. Cell 108:583–586. doi:10.1016/s0092-8674(02)00665-7. PubMed DOI

López-Madrigal S, Latorre A, Moya A, Gil R. 2015. The link between independent acquisition of intracellular gamma-endosymbionts and concerted evolution in Tremblaya princeps. Front Microbiol 6:fmicb.2015.00642. doi:10.3389/fmicb.2015.00642. PubMed DOI PMC

Köstlbacher S, Collingro A, Halter T, Domman D, Horn M. 2021. Coevolving plasmids drive gene flow and genome plasticity in host-associated intracellular bacteria. Curr Biol 31:346–357. doi:10.1016/j.cub.2020.10.030. PubMed DOI PMC

Dietel A-K, Kaltenpoth M, Kost C. 2018. Convergent evolution in intracellular elements: plasmids as model endosymbionts. Trends in Microbiology 26:755–768. doi:10.1016/j.tim.2018.03.004. PubMed DOI

Van Ham RCHJ, González-Candelas F, Silva FJ, Sabater B, Moya A, Latorre A. 2000. Postsymbiotic plasmid acquisition and evolution of the repA1-replicon in Buchnera aphidicola. Proc Natl Acad Sci USA 97:10855–10860. doi:10.1073/pnas.180310197. PubMed DOI PMC

Gil R, Sabater-Muñoz B, Perez-Brocal V, Silva FJ, Latorre A. 2006. Plasmids in the aphid endosymbiont Buchnera aphidicola with the smallest genomes. A Puzzling Evolutionary Story Gene 370:17–25. PubMed

Chong RA, Park H, Moran NA. 2019. Genome evolution of the obligate endosymbiont Buchnera aphidicola. Mol Biol Evol 36:1481–1489. doi:10.1093/molbev/msz082. PubMed DOI

Oakeson KF, Gil R, Clayton AL, Dunn DM, von Niederhausern AC, Hamil C, Aoyagi A, Duval B, Baca A, Silva FJ, Vallier A, Jackson DG, Latorre A, Weiss RB, Heddi A, Moya A, Dale C. 2014. Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol and Evolution 6:76–93. doi:10.1093/gbe/evt210. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...