A novel Erwiniaceae gut symbiont modulates gene expression of the intracellular bacterium Cardinium in the stored product mite Tyrophagus putrescentiae
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GF22-15841K
Czech Science Foundation
PubMed
40126013
PubMed Central
PMC12039267
DOI
10.1128/msphere.00879-24
Knihovny.cz E-zdroje
- Klíčová slova
- Cardinium, Erwiniaceae, Sodalis, Tyrophagus putrescentiae, Wolbachia, allergens, bacterial symbionts, gene expression, stored product mite,
- MeSH
- Acaridae * mikrobiologie MeSH
- Bacteroidetes * genetika fyziologie MeSH
- regulace genové exprese u bakterií * MeSH
- roztoči * mikrobiologie MeSH
- střevní mikroflóra * MeSH
- symbióza * MeSH
- Wolbachia genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
We examined host and bacterial gene expression profiles in the stored product mite Tyrophagus putrescentiae co-infected with Wolbachia (wTPut) and Cardinium (cTPut) while varying the presence of the Erwiniaceae symbiont (SLS). SLS, a novel symbiont in the family Erwiniaceae, with a genome size of 1.7 Mb, is found in 16% of mite species in infected cultures. In addition, SLS was detected in mite feces but not in their eggs. Although Wolbachia expression remained unchanged, the presence or absence of SLS significantly affected Cardinium expression. It indicated that the effect of Wolbachia on SLS was neutral. In SLS-positive samples, Cardinium exhibited 29 upregulated and 48 downregulated genes compared to SLS-negative samples. Furthermore, Cardinium gene expression strongly correlated with mite KEGG gene expression in SLS-positive samples. Positive Spearman's correlations between Cardinium gene expression and mite KEGG immune and regulatory pathways were doubled in SLS-positive compared to SLS-negative samples. The diversity of expressed genes in the mite host decreased in the presence of SLS. Cardinium had more interacting genes to mite host in SLS-positive samples than without SLS. Transposases are the most affected Cardinium genes, showing upregulation in the presence of SLS. Correlation analyses revealed interactions between Cardinium and SLS via mite immune and regulatory pathways, including lysosome, ubiquitin-mediated proteolysis, PIK3_Akt, and cGMP-PKG. The results showed that Cardinium indirectly affects the gut symbionts of mites.IMPORTANCEThis study introduces a new model to analyze interactions between intracellular bacterial symbionts, gut bacterial symbionts, and their mite hosts. Using gene expression correlations, we investigated how the intracellular Cardinium responds to the novel Erwiniaceae gut symbiont in the mold mite Tyrophagus putrescentiae. The data showed that both mite and Cardinium gene expression are different in the samples with and without Erwiniaceae symbionts. In the presence of Erwiniaceae symbionts, Cardinium increased the interaction with the mite host in terms of changes in gene expression. The mite immune and regulatory pathway gene expression is differently correlated to Cardinium genes in relation to Erwiniaceae symbionts. As a well-known producer of allergens, T. putrescentiae physiology and thus its allergen production are influenced by both symbionts, potentially affecting the release of allergens into human environments.
Czech Agrifood Research Center Prague Czechia
Purdue University Lilly Hall of Life Sciences West Lafayette Indiana USA
Zobrazit více v PubMed
Pietri JE, DeBruhl H, Sullivan W. 2016. The rich somatic life of Wolbachia. MicrobiologyOpen 5:923–936. doi:10.1002/mbo3.390 PubMed DOI PMC
Zchori-Fein E, Perlman SJ. 2004. Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol 13:2009–2016. doi:10.1111/j.1365-294X.2004.02203.x PubMed DOI
Groot TVM, Breeuwer JAJ. 2006. Cardinium symbionts induce haploid thelytoky in most clones of three closely related Brevipalpus species. Exp Appl Acarol 39:257–271. doi:10.1007/s10493-006-9019-0 PubMed DOI
Werren JH. 1997. Biology of Wolbachia. Annu Rev Entomol 42:587–609. doi:10.1146/annurev.ento.42.1.587 PubMed DOI
Landmann F. 2019. The Wolbachia endosymbionts. Microbiol Spectr 7:microbiolspec.bai-0018-2019. doi:10.1128/microbiolspec.bai-0018-2019 PubMed DOI PMC
Santos-Garcia D, Rollat-Farnier P-A, Beitia F, Zchori-Fein E, Vavre F, Mouton L, Moya A, Latorre A, Silva FJ. 2014. The genome of Cardinium cBtQ1 provides insights into genome reduction, symbiont motility, and its settlement in Bemisia tabaci. Genome Biol Evol 6:1013–1030. doi:10.1093/gbe/evu077 PubMed DOI PMC
Gotoh T, Noda H, Ito S. 2007. Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity (Edinb) 98:13–20. doi:10.1038/sj.hdy.6800881 PubMed DOI
Zhu L-Y, Zhang K-J, Zhang Y-K, Ge C, Gotoh T, Hong X-Y. 2012. Wolbachia strengthens Cardinium-induced cytoplasmic incompatibility in the spider mite Tetranychus piercei McGregor. Curr Microbiol 65:516–523. doi:10.1007/s00284-012-0190-8 PubMed DOI
Wu K, Hoy MA. 2012. Extended starvation reduced and eliminated Wolbachia, but not Cardinium, from Metaseiulus occidentalis females (Acari: Phytoseiidae): a need to reassess Wolbachia’s status in this predatory mite? J Invertebr Pathol 109:20–26. doi:10.1016/j.jip.2011.09.005 PubMed DOI
Wu K, Hoy MA. 2012. Cardinium is associated with reproductive incompatibility in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae). J Invertebr Pathol 110:359–365. doi:10.1016/j.jip.2012.03.027 PubMed DOI
Doremus MR, Kelly SE, Hunter MS. 2019. Exposure to opposing temperature extremes causes comparable effects on Cardinium density but contrasting effects on Cardinium-induced cytoplasmic incompatibility. PLoS Pathog 15:e1008022. doi:10.1371/journal.ppat.1008022 PubMed DOI PMC
Zhang Y-K, Chen Y-T, Yang K, Hong X-Y. 2016. A review of prevalence and phylogeny of the bacterial symbiont Cardinium in mites (subclass: Acari). Syst Appl Acarol 21:978–990. doi:10.11158/saa.21.7.11 DOI
Zeng Z, Fu Y, Guo D, Wu Y, Ajayi OE, Wu Q. 2018. Bacterial endosymbiont Cardinium cSfur genome sequence provides insights for understanding the symbiotic relationship in Sogatella furcifera host. BMC Genomics 19:688. doi:10.1186/s12864-018-5078-y PubMed DOI PMC
Siozios S, Pilgrim J, Darby AC, Baylis M, Hurst GDD. 2019. The draft genome of strain cCpun from biting midges confirms insect Cardinium are not a monophyletic group and reveals a novel gene family expansion in a symbiont. PeerJ 7:e6448. doi:10.7717/peerj.6448 PubMed DOI PMC
Erban T, Klimov P, Molva V, Hubert J. 2020. Whole genomic sequencing and sex-dependent abundance estimation of Cardinium sp., a common and hyperabundant bacterial endosymbiont of the American house dust mite, Dermatophagoides farinae. Exp Appl Acarol 80:363–380. doi:10.1007/s10493-020-00475-5 PubMed DOI
Xiong Q, Fung CS-H, Xiao X, Wan AT-Y, Wang M, Klimov P, Ren Y, Yang KY, Hubert J, Cui Y, Liu X, Tsui SK-W. 2023. Endogenous plasmids and chromosomal genome reduction in the Cardinium endosymbiont of Dermatophagoides farinae. mSphere 8:e00074-23. doi:10.1128/msphere.00074-23 PubMed DOI PMC
Hubert J, Nesvorna M, Pekar S, Green SJ, Klimov PB. 2021. Cardinium inhibits Wolbachia in its mite host, Tyrophagus putrescentiae, and affects host fitness. FEMS Microbiol Ecol 97:fiab123. doi:10.1093/femsec/fiab123 PubMed DOI
Klimov PB, Chetverikov PE, Dodueva IE, Vishnyakov AE, Bolton SJ, Paponova SS, Lutova LA, Tolstikov AV. 2022. Symbiotic bacteria of the gall-inducing mite Fragariocoptes setiger (Eriophyoidea) and phylogenomic resolution of the eriophyoid position among Acari. Sci Rep 12:3811. doi:10.1038/s41598-022-07535-3 PubMed DOI PMC
Glowska E, Dragun-Damian A, Dabert M, Gerth M. 2015. New Wolbachia supergroups detected in quill mites (Acari: Syringophilidae). Infect Genet Evol 30:140–146. doi:10.1016/j.meegid.2014.12.019 PubMed DOI
Klimov PB, Hubert J, Erban T, Alejandra Perotti M, Braig HR, Flynt A, He Q, Cui Y. 2024. Genomic and metagenomic analyses of the domestic mite Tyrophagus putrescentiae identify it as a widespread environmental contaminant and a host of a basal, mite-specific Wolbachia lineage (supergroup Q). Int J Parasitol 54:661–674. doi:10.1016/j.ijpara.2024.07.001 PubMed DOI
Engel P, Moran NA. 2013. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev 37:699–735. doi:10.1111/1574-6976.12025 PubMed DOI
Liu H-H, Chen L, Shao H-B, Gao S, Hong X-Y, Bing X-L. 2024. Environmental factors and the symbiont Cardinium influence the bacterial microbiome of spider mites across the landscape. Microb Ecol 87:1. doi:10.1007/s00248-023-02314-7 PubMed DOI
Nesvorna M, Sopko B, Hubert J. 2020. Cardinium and Wolbachia are negatively correlated in the microbiome of various populations of stored product mite Tyrophagus putrescentiae. Int J Acarol 46:192–199. doi:10.1080/01647954.2020.1752305 DOI
Erban T, Klimov PB, Smrz J, Phillips TW, Nesvorna M, Kopecky J, Hubert J. 2016. Populations of stored product mite Tyrophagus putrescentiae differ in their bacterial communities. Front Microbiol 7:1046. doi:10.3389/fmicb.2016.01046 PubMed DOI PMC
Hubert J, Nesvorna M, Sopko B, Green SJ. 2023. Diet modulation of the microbiome of the pest storage mite Tyrophagus putrescentiae. FEMS Microbiol Ecol 99:fiad011. doi:10.1093/femsec/fiad011 PubMed DOI
Erban T, Ledvinka O, Nesvorna M, Hubert J. 2017. Experimental manipulation shows a greater influence of population than dietary perturbation on the microbiome of Tyrophagus putrescentiae. Appl Environ Microbiol 83:e00128-17. doi:10.1128/AEM.00128-17 PubMed DOI PMC
Hubert Jan, Kopecky J, Perotti MA, Nesvorna M, Braig HR, Sagova-Mareckova M, Macovei L, Zurek L. 2012. Detection and identification of species-specific bacteria associated with synanthropic mites. Microb Ecol 63:919–928. doi:10.1007/s00248-011-9969-6 PubMed DOI
Hubert J, Navratilova B, Sopko B, Nesvorna M, Phillips TW. 2022. Pesticide residue exposure provides different responses of the microbiomes of distinct cultures of the stored product pest mite Acarus siro. BMC Microbiol 22:252. doi:10.1186/s12866-022-02661-4 PubMed DOI PMC
Li T-P, Zha S-S, Zhou C-Y, Gong J-T, Zhu Y-X, Zhang X, Xi Z, Hong X-Y. 2020. Newly introduced Cardinium endosymbiont reduces microbial diversity in the rice brown planthopper Nilaparvata lugens. FEMS Microbiol Ecol 96:fiaa194. doi:10.1093/femsec/fiaa194 PubMed DOI
Li T-P, Zhou C-Y, Wang M-K, Zha S-S, Chen J, Bing X-L, Hoffmann AA, Hong X-Y. 2022. Endosymbionts reduce microbiome diversity and modify host metabolism and fecundity in the planthopper Sogatella furcifera. mSystems 7:e01516-21. doi:10.1128/msystems.01516-21 PubMed DOI PMC
Zhang X, Hendrix JD, Campbell YL, Phillips TW, Goddard J, Cheng W-H, Kim T, Wu T-L, Schilling MW. 2018. Biology and integrated pest management of Tyrophagus putrescentiae (Schrank) infesting dry cured hams. J Stored Prod Res 79:16–28. doi:10.1016/j.jspr.2018.08.001 DOI
Douglas AE. 2009. The microbial dimension in insect nutritional ecology. Funct Ecol 23:38–47. doi:10.1111/j.1365-2435.2008.01442.x DOI
van Hage‐Hamsten M, Johansson E. 1998. Clinical and immunologic aspects of storage mite allergy. Allergy 53:49–53. doi:10.1111/j.1398-9995.1998.tb04997.x PubMed DOI
Vrtala S. 2022. Allergens from house dust and storage mites. Allergo J Int 31:267–271. doi:10.1007/s40629-022-00226-5 DOI
Hubert J, Nesvorna M, Klimov P, Dowd SE, Sopko B, Erban T. 2019. Differential allergen expression in three Tyrophagus putrescentiae strains inhabited by distinct microbiome. Allergy 74:2502–2507. doi:10.1111/all.13921 PubMed DOI
Arlian LG, Vyszenski-Moher DL, Johansson SG, van Hage-Hamsten M. 1997. Allergenic characterization of Tyrophagus putrescentiae using sera from occupationally exposed farmers. Ann Allergy Asthma Immunol 79:525–529. doi:10.1016/S1081-1206(10)63060-8 PubMed DOI
Smrz J, Svobodova J, Catska V. 1991. Synergetic participation of Tyrophagus putrescentiae (Schrank) (Acari; Acaridida) and its associated bacteria on the destruction of some soil micromycetes. J Appl Entomol 111:206–210. doi:10.1111/j.1439-0418.1991.tb00312.x DOI
Smrz J. 2003. Microanatomical and biological aspects of bacterial associations in Tyrophagus putrescentiae (Acari: Acaridida). Exp Appl Acarol 31:105–113. doi:10.1023/b:appa.0000005111.05959.d6 PubMed DOI
Smrz J, Catska V. 2010. Mycophagous mites and their internal associated bacteria cooperate to digest chitin in soil. Symbiosis 52:33–40. doi:10.1007/s13199-010-0099-6 DOI
Erban T, Klimov PB, Harant K, Talacko P, Nesvorna M, Hubert J. 2021. Label-free proteomic analysis reveals differentially expressed Wolbachia proteins in Tyrophagus putrescentiae: mite allergens and markers reflecting population-related proteome differences. J Proteomics 249:104356. doi:10.1016/j.jprot.2021.104356 PubMed DOI
Hubert J, Glowska-Patyniak E, Dowd SE, Klimov PB. Forthcoming. Cardinium disrupts Wolbachia-host dynamics in the domestic mite Tyrophagus putrescentiae–evidence from manipulative experiments. mSystems in press. PubMed
Hubert J, Nesvorna M, Green SJ, Klimov PB. 2021. Microbial communities of stored product mites: variation by species and population. Microb Ecol 81:506–522. doi:10.1007/s00248-020-01581-y PubMed DOI
Olm MR, Brown CT, Brooks B, Banfield JF. 2017. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J 11:2864–2868. doi:10.1038/ismej.2017.126 PubMed DOI PMC
Halter T, Hendrickx F, Horn M, Manzano-Marin A. 2022. A novel widespread MITE element in the repeat-rich genome of the Cardinium endosymbiont of the spider Oedothorax gibbosus. Microbiol Spectr 10:e02627-22. doi:10.1128/spectrum.02627-22 PubMed DOI PMC
Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM. 2016. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17:132. doi:10.1186/s13059-016-0997-x PubMed DOI PMC
Meier-Kolthoff JP, Goker M. 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182. doi:10.1038/s41467-019-10210-3 PubMed DOI PMC
Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Goker M. 2022. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 50:D801–D807. doi:10.1093/nar/gkab902 PubMed DOI PMC
Jung H. 2002. The sodium/substrate symporter family: structural and functional features. FEBS Lett 529:73–77. doi:10.1016/S0014-5793(02)03184-8 PubMed DOI
Selberherr E, Penz T, Konig L, Conrady B, Siegl A, Horn M, Schmitz-Esser S. 2022. The life cycle-dependent transcriptional profile of the obligate intracellular amoeba symbiont Amoebophilus asiaticus. FEMS Microbiol Ecol 98:fiac001. doi:10.1093/femsec/fiac001 PubMed DOI PMC
Mann E, Stouthamer CM, Kelly SE, Dzieciol M, Hunter MS, Schmitz-Esser S. 2017. Transcriptome sequencing reveals novel candidate genes for Cardinium hertigii-caused cytoplasmic incompatibility and host-cell interaction. mSystems 2:e00141-17. doi:10.1128/mSystems.00141-17 PubMed DOI PMC
Penz T, Schmitz-Esser S, Kelly SE, Cass BN, Muller A, Woyke T, Malfatti SA, Hunter MS, Horn M. 2012. Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genet 8:e1003012. doi:10.1371/journal.pgen.1003012 PubMed DOI PMC
Yang K, Zhang H-Y, Wang P, Jin G-X, Chu D. 2023. Both symbionts and environmental factors contribute to shape the microbiota in a pest insect, Sogatella furcifera. Front Microbiol 14:1336345. doi:10.3389/fmicb.2023.1336345 PubMed DOI PMC
Aizenberg-Gershtein Y, Laviad S, Samuni-Blank M, Halpern M. 2016. Izhakiella capsodis gen. nov., sp. nov., in the family Enterobacteriaceae, isolated from the mirid bug Capsodes infuscatus. Int J Syst Evol Microbiol 66:1364–1370. doi:10.1099/ijsem.0.000886 PubMed DOI
Ji M, Tang S, Ferrari BC. 2017. Izhakiella australiensis sp. nov. isolated from an Australian desert soil. Int J Syst Evol Microbiol 67:4317–4322. doi:10.1099/ijsem.0.002171 PubMed DOI
Erban T, Sopko B, Klimov PB, Hubert J. 2024. Mixta mediterraneensis as a novel and abundant gut symbiont of the allergen-producing domestic mite Blomia tropicalis. Exp Appl Acarol 92:161–181. doi:10.1007/s10493-023-00875-3 PubMed DOI PMC
Xiong Q, Sopko B, Klimov PB, Hubert J. 2024. A novel Bartonella-like bacterium forms an interdependent mutualistic symbiosis with its host, the stored-product mite Tyrophagus putrescentiae . mSystems 9:e0082923. doi:10.1128/msystems.00829-23 PubMed DOI PMC
Kenyon LJ, Meulia T, Sabree ZL. 2015. Habitat visualization and genomic analysis of “Candidatus Pantoea carbekii,” the primary symbiont of the brown marmorated stink bug. Genome Biol Evol 7:620–635. doi:10.1093/gbe/evv006 PubMed DOI PMC
Stoll S, Gadau J, Gross R, Feldhaar H. 2007. Bacterial microbiota associated with ants of the genus Tetraponera. Biol J Linn Soc 90:399–412. doi:10.1111/j.1095-8312.2006.00730.x DOI
Nakamura Y, Kawai S, Yukuhiro F, Ito S, Gotoh T, Kisimoto R, Yanase T, Matsumoto Y, Kageyama D, Noda H. 2009. Prevalence of Cardinium bacteria in planthoppers and spider mites and taxonomic revision of “Candidatus Cardinium hertigii” based on detection of a new Cardinium group from biting midges. Appl Environ Microbiol 75:6757–6763. doi:10.1128/AEM.01583-09 PubMed DOI PMC
Lundqvist T, Fisher SL, Kern G, Folmer RHA, Xue Y, Newton DT, Keating TA, Alm RA, de Jonge BLM. 2007. Exploitation of structural and regulatory diversity in glutamate racemases. Nature 447:817–822. doi:10.1038/nature05689 PubMed DOI
Taguchi A, Page JE, Tsui H-C, Winkler ME, Walker S. 2021. Biochemical reconstitution defines new functions for membrane-bound glycosidases in assembly of the bacterial cell wall. Proc Natl Acad Sci U S A 118:e2103740118. doi:10.1073/pnas.2103740118 PubMed DOI PMC
Al-Khodor S, Price CT, Kalia A, Abu Kwaik Y. 2010. Functional diversity of ankyrin repeats in microbial proteins. Trends Microbiol 18:132–139. doi:10.1016/j.tim.2009.11.004 PubMed DOI PMC
Frank AC. 2019. Molecular host mimicry and manipulation in bacterial symbionts. FEMS Microbiol Lett 366:fnz038. doi:10.1093/femsle/fnz038 PubMed DOI
Nakamura Y, Gotoh T, Imanishi S, Mita K, Kurtti TJ, Noda H. 2011. Differentially expressed genes in silkworm cell cultures in response to infection by Wolbachia and Cardinium endosymbionts. Insect Mol Biol 20:279–289. doi:10.1111/j.1365-2583.2010.01056.x PubMed DOI
Liu Y, Yang K, Wang J, Chu D. 2023. Cardinium infection alters cotton defense and detoxification metabolism of its whitefly host. Insect Sci 30:473–485. doi:10.1111/1744-7917.13086 PubMed DOI
Yang K, Yuan M-Y, Liu Y, Guo C-L, Liu T-X, Zhang Y-J, Chu D. 2021. First evidence for thermal tolerance benefits of the bacterial symbiont Cardinium in an invasive whitefly, Bemisia tabaci. Pest Manag Sci 77:5021–5031. doi:10.1002/ps.6543 PubMed DOI
Hubert J, Nesvorna M, Klimov PB, Erban T, Sopko B, Dowd SE, Scully ED. 2021. Interactions of the intracellular bacterium Cardinium with its host, the house dust mite Dermatophagoides farinae. mSystems 6:e00916-21. doi:10.1128/mSystems.00916-21 PubMed DOI PMC
Calzada D, Martin-Lopez L, Carnes J. 2023. Growth, allergen profile and microbiome studies in Dermatophagoides pteronyssinus cultures. Sci Rep 13:10633. doi:10.1038/s41598-023-37045-9 PubMed DOI PMC
Stewart GA, Butcher A, Lees K, Ackland J. 1986. Immunochemical and enzymatic analyses of extracts of the house dust mite. J Allergy Clin Immunol 77:14–24. doi:10.1016/0091-6749(86)90316-7 PubMed DOI
Hubert J, Vrtala S, Sopko B, Dowd SE, He Q, Klimov PB, Harant K, Talacko P, Erban T. 2023. Predicting Blomia tropicalis allergens using a multiomics approach. Clin Transl Allergy 13:e12302. doi:10.1002/clt2.12302 PubMed DOI PMC
Krueger F. 2021. Trim Galore. Babraham Bioinformatics. Available from: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
Andrews S. 2019. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi:10.1089/cmb.2012.0021 PubMed DOI PMC
Antipov D, Korobeynikov A, McLean JS, Pevzner PA. 2016. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics 32:1009–1015. doi:10.1093/bioinformatics/btv688 PubMed DOI PMC
Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi:10.1093/bioinformatics/btu153 PubMed DOI
Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731. doi:10.1016/j.jmb.2015.11.006 PubMed DOI
Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. doi:10.1186/gb-2009-10-3-r25 PubMed DOI PMC
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923 PubMed DOI PMC
Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences, version 5. 10.48550/arXiv.1708.01492. PubMed DOI PMC
Tanizawa Y, Fujisawa T, Nakamura Y. 2018. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 34:1037–1039. doi:10.1093/bioinformatics/btx713 PubMed DOI PMC
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. doi:10.1371/journal.pone.0112963 PubMed DOI PMC
Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30. doi:10.1093/nar/28.1.27 PubMed DOI PMC
Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P. 2016. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44:D286–D293. doi:10.1093/nar/gkv1248 PubMed DOI PMC
Grant JR, Enns E, Marinier E, Mandal A, Herman EK, Chen C-Y, Graham M, Van Domselaar G, Stothard P. 2023. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res 51:W484–W492. doi:10.1093/nar/gkad326 PubMed DOI PMC
CLCbio.2023. RNA-Seq analysis. QIAGEN Digital Insights. Available from: https://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/900/index.php?manual=RNA_Seq_analysis.html
Barbieri E, Paster BJ, Hughes D, Zurek L, Moser DP, Teske A, Sogin ML. 2001. Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg capsules of the squid Loligo pealei (Cephalopoda: Loliginidae). Environ Microbiol 3:151–167. doi:10.1046/j.1462-2920.2001.00172.x PubMed DOI
Kopecky J, Nesvorna M, Mareckova-Sagova M, Hubert J. 2014. The effect of antibiotics on associated bacterial community of stored product mites. PLoS One 9:e112919. doi:10.1371/journal.pone.0112919 PubMed DOI PMC
Nesvorna M, Bittner V, Hubert J. 2019. The mite Tyrophagus putrescentiae hosts population-specific microbiomes that respond weakly to starvation. Microb Ecol 77:488–501. doi:10.1007/s00248-018-1224-y PubMed DOI
Seemann T. 2018. barrnap. GitHub. Available from: https://github.com/tseemann/barrnap
Galaxy Community . 2022. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res 50:W345–W351. doi:10.1093/nar/gkac247 PubMed DOI PMC
Avram O, Rapoport D, Portugez S, Pupko T. 2019. M1CR0B1AL1Z3R-a user-friendly web server for the analysis of large-scale microbial genomics data. Nucleic Acids Res 47:W88–W92. doi:10.1093/nar/gkz423 PubMed DOI PMC
Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. doi:10.1186/1471-2105-11-119 PubMed DOI PMC
Steinegger M, Soding J. 2017. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 35:1026–1028. doi:10.1038/nbt.3988 PubMed DOI
Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. 2017. PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 33:2946–2947. doi:10.1093/bioinformatics/btx324 PubMed DOI
Rambaut A. 2014. FigTree, a graphical viewer of phylogenetic trees: 2014-07-09 - v1.4.2. Molecular evolution, phylogenetics and epidemiology: research, software and publications of Andrew Rambaut and members of his research group. http://tree.bio.ed.ac.uk/software/figtree/.
Notredame C, Higgins DG, Heringa J. 2000. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217. doi:10.1006/jmbi.2000.4042 PubMed DOI
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010 PubMed DOI
Letunic I, Bork P. 2024. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res 52:W78–W82. doi:10.1093/nar/gkae268 PubMed DOI PMC
Eddy SR. 2008. A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput Biol 4:e1000069. doi:10.1371/journal.pcbi.1000069 PubMed DOI PMC
Eddy SR. 2009. A new generation of homology search tools based on probabilistic inference. Genome Inform 23:205–211. doi:10.1142/9781848165632_0019 PubMed DOI
Eddy SR. 2011. Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195. doi:10.1371/journal.pcbi.1002195 PubMed DOI PMC
Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37. doi:10.1093/nar/gkr367 PubMed DOI PMC
Abueg LAL, Afgan E, Allart O, Awan AH, Bacon WA, Baker D, Bassetti M, Batut B, Bernt M, Blankenberg D. 2024. The galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update. Nucleic Acids Res 52:W83–W94. doi:10.1093/nar/gkae410 PubMed DOI PMC
Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. 2018. HMMER web server: 2018 update. Nucleic Acids Res 46:W200–W204. doi:10.1093/nar/gky448 PubMed DOI PMC
Gao C-H. 2023. Package “ggVennDiagram”, version 1.2.3. CRAN - the comprehensive R archive network. https://cran.r-project.org/web/packages/ggVennDiagram/ggVennDiagram.pdf.
R Development Core Team . 2023. R: a language and environment for statistical computing, version 4.3.1. R foundation for statistical computing. http://www.R-project.org.
Barbosa AM. 2024. fuzzySim: fuzzy similarity in species distributions, version 4.10.7. CRAN - The Comprehensive R Archive Network. https://cran.r-project.org/web/packages/fuzzySim/index.html.
Barbosa AM. 2015. fuzzySim: applying fuzzy logic to binary similarity indices in ecology. Methods Ecol Evol 6:853–858. doi:10.1111/2041-210X.12372 DOI
Oksanen J. 2022. Vegan: an R package for community ecologists.GitHub. Available from: https://github.com/vegandevs/vegan
Gu Z, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849. doi:10.1093/bioinformatics/btw313 PubMed DOI
Gu Z. 2022. Complex heatmap visualization. Imeta 1:e43. doi:10.1002/imt2.43 PubMed DOI PMC
Hammer O. 2020. Past 4 - the past of the future. Natural History Museum, University of Oslo. Available from: https://www.nhm.uio.no/english/research/resources/past/
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. doi:10.1101/gr.1239303 PubMed DOI PMC
Basu S, Duren W, Evans CR, Burant CF, Michailidis G, Karnovsky A. 2017. Sparse network modeling and metscape-based visualization methods for the analysis of large-scale metabolomics data. Bioinformatics 33:1545–1553. doi:10.1093/bioinformatics/btx012 PubMed DOI PMC