Germline replications and somatic mutation accumulation are independent of vegetative life span in Arabidopsis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
268962
European Research Council - International
PubMed
27729523
PubMed Central
PMC5087024
DOI
10.1073/pnas.1609686113
PII: 1609686113
Knihovny.cz E-zdroje
- Klíčová slova
- germline, mismatch repair, mutation rate, shoot apical meristem, telomeres,
- MeSH
- akumulace mutací MeSH
- Arabidopsis genetika růst a vývoj MeSH
- diploidie MeSH
- genom rostlinný genetika MeSH
- kořeny rostlin genetika růst a vývoj MeSH
- meristém genetika růst a vývoj MeSH
- mutace genetika MeSH
- regulace genové exprese u rostlin MeSH
- replikace DNA genetika MeSH
- rostlinné buňky MeSH
- sekvenční analýza DNA MeSH
- stonky rostlin genetika růst a vývoj MeSH
- výhonky rostlin genetika růst a vývoj MeSH
- zárodečné buňky růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In plants, gametogenesis occurs late in development, and somatic mutations can therefore be transmitted to the next generation. Longer periods of growth are believed to result in an increase in the number of cell divisions before gametogenesis, with a concomitant increase in mutations arising due to replication errors. However, there is little experimental evidence addressing how many cell divisions occur before gametogenesis. Here, we measured loss of telomeric DNA and accumulation of replication errors in Arabidopsis with short and long life spans to determine the number of replications in lineages leading to gametes. Surprisingly, the number of cell divisions within the gamete lineage is nearly independent of both life span and vegetative growth. One consequence of the relatively stable number of replications per generation is that older plants may not pass along more somatically acquired mutations to their offspring. We confirmed this hypothesis by genomic sequencing of progeny from young and old plants. This independence can be achieved by hierarchical arrangement of cell divisions in plant meristems where vegetative growth is primarily accomplished by expansion of cells in rapidly dividing meristematic zones, which are only rarely refreshed by occasional divisions of more quiescent cells. We support this model by 5-ethynyl-2'-deoxyuridine retention experiments in shoot and root apical meristems. These results suggest that stem-cell organization has independently evolved in plants and animals to minimize mutations by limiting DNA replication.
Zobrazit více v PubMed
Sablowski R. Plant and animal stem cells: Conceptually similar, molecularly distinct? Trends Cell Biol. 2004;14(11):605–611. PubMed
Klekowski EJ. 1988. Mutation, Developmental Selection, and Plant Evolution (Columbia University Press, New York), pp xi, 373 pp.
Ally D, Ritland K, Otto SP. Aging in a long-lived clonal tree. PLoS Biol. 2010;8(8):e1000454. PubMed PMC
Bobiwash K, Schultz ST, Schoen DJ. Somatic deleterious mutation rate in a woody plant: Estimation from phenotypic data. Heredity (Edinb) 2013;111(4):338–344. PubMed PMC
Cloutier D, Rioux D, Beaulieu J, Schoen DJ. Somatic stability of microsatellite loci in Eastern white pine, Pinus strobus L. Heredity (Edinb) 2003;90(3):247–252. PubMed
Klekowski EJ, Godfrey PJ. Aging and mutation in plants. Nature. 1989;340(6232):389–391.
O’Connell LM, Ritland K. Somatic mutations at microsatellite loci in western Redcedar (Thuja plicata: Cupressaceae) J Hered. 2004;95(2):172–176. PubMed
Petit RJ, Hampe A. Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst. 2006;37:187–214.
Arnheim N, Calabrese P. Understanding what determines the frequency and pattern of human germline mutations. Nat Rev Genet. 2009;10(7):478–488. PubMed PMC
Baer CF, Miyamoto MM, Denver DR. Mutation rate variation in multicellular eukaryotes: Causes and consequences. Nat Rev Genet. 2007;8(8):619–631. PubMed
Gaut B, Yang L, Takuno S, Eguiarte LE. The patterns and causes of variation in plant nucleotide substitution rates. Annu Rev Ecol Evol Syst. 2011;42:245–266.
Bromham L. The genome as a life-history character: Why rate of molecular evolution varies between mammal species. Philos Trans R Soc Lond B Biol Sci. 2011;366(1577):2503–2513. PubMed PMC
Mooers AO, Harvey PH. Metabolic rate, generation time, and the rate of molecular evolution in birds. Mol Phylogenet Evol. 1994;3(4):344–350. PubMed
Ohta T. An examination of the generation-time effect on molecular evolution. Proc Natl Acad Sci USA. 1993;90(22):10676–10680. PubMed PMC
Smith SA, Donoghue MJ. Rates of molecular evolution are linked to life history in flowering plants. Science. 2008;322(5898):86–89. PubMed
Thomas JA, Welch JJ, Lanfear R, Bromham L. A generation time effect on the rate of molecular evolution in invertebrates. Mol Biol Evol. 2010;27(5):1173–1180. PubMed
Reizel Y, et al. Cell lineage analysis of the mammalian female germline. PLoS Genet. 2012;8(2):e1002477. PubMed PMC
Romberger JA, Hejnowicz Z, Hill JF. 1993. Plant Structure: Function and Development: A Treatise on Anatomy and Vegetative Development, with Special Reference to Woody Plants (Springer, Berlin), pp xix, 524 pp.
Otto SP, Walbot V. DNA methylation in eukaryotes: Kinetics of demethylation and de novo methylation during the life cycle. Genetics. 1990;124(2):429–437. PubMed PMC
Furner IJ, Pumfrey JE. Cell fate in the shoot apical meristem of Arabidopsis thaliana. Development. 1992;115(3):755–764.
Irish VF, Sussex IM. A fate map of the Arabidopsis embryonic shoot apical meristem. Development. 1992;115(3):745–753.
Jegla DE, Sussex IM. Cell lineage patterns in the shoot meristem of the sunflower embryo in the dry seed. Dev Biol. 1989;131(1):215–225. PubMed
McDaniel CN, Poethig RS. Cell-lineage patterns in the shoot apical meristem of the germinating maize embryo. Planta. 1988;175(1):13–22. PubMed
Meinke DW, Sussex IM. Isolation and characterization of six embryo-lethal mutants of Arabidopsis thaliana. Dev Biol. 1979;72(1):62–72. PubMed
Furner IJ, Ainscough JFX, Pumfrey JA, Petty LM. Clonal analysis of the late flowering fca mutant of Arabidopsis thaliana: Cell fate and cell autonomy. Development. 1996;122(3):1041–1050. PubMed
Dudley M, Poethig RS. The effect of a heterochronic mutation, Teopod2, on the cell lineage of the maize shoot. Development. 1991;111(3):733–739. PubMed
Watson JM, Riha K. Telomeres, aging, and plants: From weeds to Methuselah—A mini-review. Gerontology. 2011;57(2):129–136. PubMed
Huffman KE, Levene SD, Tesmer VM, Shay JW, Wright WE. Telomere shortening is proportional to the size of the G-rich telomeric 3′-overhang. J Biol Chem. 2000;275(26):19719–19722. PubMed
Riha K, McKnight TD, Griffing LR, Shippen DE. Living with genome instability: Plant responses to telomere dysfunction. Science. 2001;291(5509):1797–1800. PubMed
Riha K, McKnight TD, Fajkus J, Vyskot B, Shippen DE. Analysis of the G-overhang structures on plant telomeres: Evidence for two distinct telomere architectures. Plant J. 2000;23(5):633–641. PubMed
Soudet J, Jolivet P, Teixeira MT. Elucidation of the DNA end-replication problem in Saccharomyces cerevisiae. Mol Cell. 2014;53(6):954–964. PubMed
Lee H, Popodi E, Tang H, Foster PL. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc Natl Acad Sci USA. 2012;109(41):E2774–E2783. PubMed PMC
Zanders S, et al. Detection of heterozygous mutations in the genome of mismatch repair defective diploid yeast using a Bayesian approach. Genetics. 2010;186(2):493–503. PubMed PMC
Hoffman PD, Leonard JM, Lindberg GE, Bollmann SR, Hays JB. Rapid accumulation of mutations during seed-to-seed propagation of mismatch-repair-defective Arabidopsis. Genes Dev. 2004;18(21):2676–2685. PubMed PMC
Ossowski S, et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science. 2010;327(5961):92–94. PubMed PMC
McCulloch SD, Kunkel TA. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res. 2008;18(1):148–161. PubMed PMC
Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science. 2010;327(5965):542–545. PubMed PMC
Fletcher JC. Shoot and floral meristem maintenance in Arabidopsis. Annu Rev Plant Biol. 2002;53:45–66. PubMed
Laufs P, Grandjean O, Jonak C, Kiêu K, Traas J. Cellular parameters of the shoot apical meristem in Arabidopsis. Plant Cell. 1998;10(8):1375–1390. PubMed PMC
Kwiatkowska D. Flowering and apical meristem growth dynamics. J Exp Bot. 2008;59(2):187–201. PubMed
Reddy GV, Heisler MG, Ehrhardt DW, Meyerowitz EM. Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development. 2004;131(17):4225–4237. PubMed
Xu J, et al. A molecular framework for plant regeneration. Science. 2006;311(5759):385–388. PubMed
Phillips HL, Torrey JG. The quiescent center in cultured roots of Convolvulus arvensis L. Am J Bot. 1971;(58):665–671.
Clowes FAL. Rates of mitosis in a partially synchronous meristem. New Phytol. 1962;(61):111–118.
Gifford EM., Jr Incorporation of tritiated thymidine into nuclei of shoot apical meristems. Science. 1960;131(3397):360. PubMed
Johri MM, Coe EH., Jr Clonal analysis of corn plant development. I. The development of the tassel and the ear shoot. Dev Biol. 1983;97(1):154–172. PubMed
Jacqmard A, Gadisseur I, Bernier G. Cell division and morphological changes in the shoot apex of Arabidopsis thaliana during floral transition. Ann Bot (Lond) 2003;91(5):571–576. PubMed PMC
Zluvova J, Janousek B, Vyskot B. Immunohistochemical study of DNA methylation dynamics during plant development. J Exp Bot. 2001;52(365):2265–2273. PubMed
Burian A, Barbier de Reuille P, Kuhlemeier C. Patterns of stem cell divisions contribute to plant longevity. Curr Biol. 2016;26(11):1385–1394. PubMed
Lanfear R, et al. Taller plants have lower rates of molecular evolution. Nat Commun. 2013;4:1879. PubMed
Bromham L. Why do species vary in their rate of molecular evolution? Biol Lett. 2009;5(3):401–404. PubMed PMC
Fitzgerald MS, et al. Disruption of the telomerase catalytic subunit gene from Arabidopsis inactivates telomerase and leads to a slow loss of telomeric DNA. Proc Natl Acad Sci USA. 1999;96(26):14813–14818. PubMed PMC
Leonard JM, Bollmann SR, Hays JB. Reduction of stability of Arabidopsis genomic and transgenic DNA-repeat sequences (microsatellites) by inactivation of AtMSH2 mismatch-repair function. Plant Physiol. 2003;133(1):328–338. PubMed PMC
Alonso JM, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 2003;301(5633):653–657. PubMed
Heacock M, Spangler E, Riha K, Puizina J, Shippen DE. Molecular analysis of telomere fusions in Arabidopsis: Multiple pathways for chromosome end-joining. EMBO J. 2004;23(11):2304–2313. PubMed PMC
Kazda A, Akimcheva S, Watson JM, Riha K. Cell proliferation analysis using EdU labeling in whole plant and histological samples of Arabidopsis. Methods Mol Biol. 2016;1370:169–182. PubMed
Stroud H, Greenberg MV, Feng S, Bernatavichute YV, Jacobsen SE. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell. 2013;152(1-2):352–364. PubMed PMC
Growing old while staying young : The unique mechanisms that defy aging in plants
Molecular characterization of Chlamydomonas reinhardtii telomeres and telomerase mutants
Visualization of the Nucleolus Using Ethynyl Uridine