Predicting Blomia tropicalis allergens using a multiomics approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
193021X0012
Ministry of Science and Higher Education of the Russian Federation
LUAUS23082
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
37876035
PubMed Central
PMC10542617
DOI
10.1002/clt2.12302
Knihovny.cz E-zdroje
- Klíčová slova
- IgE, enzyme, genome, label-free proteomics, mites, transcriptome,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The domestic mite Blomia tropicalis is a major source of allergens in tropical and subtropical regions. Despite its great medical importance, the allergome of this mite has not been sufficiently studied. Only 14 allergen groups have been identified in B. tropicalis thus far, even though early radioimmunoelectrophoresis techniques (27 uncharacterized allergen complexes) and comparative data based on 40 allergen groups officially recognized by the World Health Organization (WHO)/IUIS in domestic astigmatid mites suggest the presence of a large set of additional allergens. METHODS: Here, we employ a multiomics approach to assess the allergome of B. tropicalis using genomic and transcriptomic sequence data and perform highly sensitive protein abundance quantification. FINDINGS: Among the 14 known allergen groups, we confirmed 13 (one WHO/IUIS allergen, Blo t 19, was not found) and identified 16 potentially novel allergens based on sequence similarity. These data indicate that B. tropicalis shares 27 known/deduced allergen groups with pyroglyphid house dust mites (genus Dermatophagoides). Among these groups, five allergen-encoding genes are highly expressed at the transcript level: Blo t 1, Blo t 5, Blo t 21 (known), Blo t 15, and Blo t 18 (predicted). However, at the protein level, a different set of most abundant allergens was found: Blo t 2, 10, 11, 20 and 21 (mite bodies) or Blo t 3, 4, 6 and predicted Blo t 13, 14 and 36 (mite feces). INTERPRETATION: We report the use of an integrated omics method to identify and predict an array of mite allergens and advanced, label-free proteomics to determine allergen protein abundance. Our research identifies a large set of novel putative allergens and shows that the expression levels of allergen-encoding genes may not be strictly correlated with the actual allergenic protein abundance in mite bodies.
Crop Research Institute Prague Czechia
Institute for Environmental Studies Faculty of Science Charles University Prague Czechia
Proteomics Core Facility Faculty of Science Charles University BIOCEV Vestec Czechia
Purdue University Lilly Hall of Life Sciences West Lafayette Indiana USA
Zobrazit více v PubMed
Aggarwal P, Senthilkumaran S. Dust Mite Allergy. StatPearls Publishing; 2022. Accessed 22 February 2023. https://www.ncbi.nlm.nih.gov/books/NBK560718/ PubMed
Bischoff S. Role of mast cells in allergic and non‐allergic immune responses: comparison of human and murine data. Nat Rev Immunol. 2007;7(2):93‐104. 10.1038/nri2018 PubMed DOI
Amoretti M, Amsler C, Bonomi G, et al. Production and detection of cold antihydrogen atoms. Nature. 2002;419(6906):456‐459. 10.1038/nature01096 PubMed DOI
WHO/IUIS . Allergen Nomenclature. WHO/IUIS Allergen Nomenclature Sub‐Committee; 2023. Accessed 22 February 2023. http://www.allergen.org
Arlian LG, Morgan MS, Neal JS. Dust mite allergens: ecology and distribution. Curr Allergy Asthma Rep. 2002;2(5):401‐411. 10.1007/s11882-002-0074-2 PubMed DOI
Thomas WR, Hales BJ, Smith W. Blomia tropicalis: more than just another source of mite allergens. Clin Exp Allergy. 2003;33(4):416‐418. 10.1046/j.1365-2222.2003.01634.x PubMed DOI
Fernandez‐Caldas E, Puerta L, Mercado D, Lockey RF, Caraballo LR. Mite fauna, Der p I, Der f I and Blomia tropicalis allergen levels in a tropical environment. Clin Exp Allergy. 1993;23(4):292‐297. 10.1111/j.1365-2222.1993.tb00325.x PubMed DOI
Arruda LK, Vailes LD, Platts‐Mills TAE, et al. Sensitization to Blomia tropicalis in patients with asthma and identification of allergen Blo t 5. Am J Respir Crit Care Med. 1997;155(1):343‐350. 10.1164/ajrccm.155.1.9001334 PubMed DOI
Huang H.‐W, Lue K.‐H, Wong R.‐H, Sun H.‐L, Sheu J.‐N, Lu K.‐H. Distribution of allergens in children with different atopic disorders in central Taiwan. Acta Paediatr Taiwanica. 2006;47(3):127‐134. PubMed
Carvalho KA, de Melo‐Neto OP, Magalhaes FB, et al. Blomia tropicalis Blo t 5 and Blo t 21 recombinant allergens might confer higher specificity to serodiagnostic assays than whole mite extract. BMC Immunol. 2013;14(1):11. 10.1186/1471-2172-14-11 PubMed DOI PMC
Pauli G, Wurmser C, Roos A, et al. Frequent IgE recognition of Blomia tropicalis allergen molecules in asthmatic children and young adults in equatorial Africa. Front Immunol. 2023;14:1133935. 10.3389/fimmu.2023.1133935 PubMed DOI PMC
Arlian LG, Vyszenski‐Moher DL, Fernandez‐Caldas E. Allergenicity of the mite, Blomia tropicalis . J Allergy Clin Immunol. 1993;91(5):1042‐1050. 10.1016/0091-6749(93)90218-5 PubMed DOI
da Silva ES, Asam C, Lackner P, et al. Allergens of Blomia tropicalis: an overview of recombinant molecules. Int Arch Allergy Immunol. 2017;172(4):203‐214. 10.1159/000464325 PubMed DOI PMC
Vrtala S. Allergens from house dust and storage mites. Allergo J Int. 2022;31(8):267‐271. 10.1007/s40629-022-00226-5 DOI
Aalberse RC. Structural biology of allergens. J Allergy Clin Immunol. 2000;106(2):228‐238. 10.1067/mai.2000.108434 PubMed DOI
Tovey ER, Chapman MD, Platts‐Mills TAE. Mite faeces are a major source of house dust allergens. Nature. 1981;289(5798):592‐593. 10.1038/289592a0 PubMed DOI
Thomas WR. Hierarchy and molecular properties of house dust mite allergens. Allergol Int. 2015;64(4):304‐311. 10.1016/j.alit.2015.05.004 PubMed DOI
Erban T, Hubert J. Two‐dimensional gel proteomic analysis of Dermatophagoides farinae feces. Exp Appl Acarol. 2015;65(1):73‐87. 10.1007/s10493-014-9848-1 PubMed DOI
Erban T, Rybanska D, Harant K, Hortova B, Hubert J. Feces derived allergens of Tyrophagus putrescentiae reared on dried dog food and evidence of the strong nutritional interaction between the mite and Bacillus cereus producing protease bacillolysins and exo‐chitinases. Front Physiol. 2016;7:53. 10.3389/fphys.2016.00053 PubMed DOI PMC
Erban T, Harant K, Hubert J. Detailed two‐dimensional gel proteomic mapping of the feces of the house dust mite Dermatophagoides pteronyssinus and comparison with D. farinae: reduced trypsin protease content in D. pteronyssinus and different isoforms. J Proteonomics. 2017;162:11‐19. 10.1016/j.jprot.2017.04.021 PubMed DOI
da Silva ES, Ponte JCM, da Silva MB, et al. Proteomic analysis reveals allergen variability among breeds of the dust mite Blomia tropicalis . Int Arch Allergy Immunol. 2019;180(3):159‐172. 10.1159/000501964 PubMed DOI
Hubert J, Nesvorna M, Kopecky J, Erban T, Klimov P. Population and culture age influence the microbiome profiles of house dust mites. Microb Ecol. 2019;77(4):1048‐1066. 10.1007/s00248-018-1294-x PubMed DOI
Erban T, Hubert J. Digestive function of lysozyme in synanthropic acaridid mites enables utilization of bacteria as a food source. Exp Appl Acarol. 2008;44(3):199‐212. 10.1007/s10493-008-9138-x PubMed DOI
Krueger F. Trim Galore. Babraham Bioinforma. 2021. Accessed 22 February 2023. https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Babraham Bioinformatics; 2019. Accessed 22 February 2023. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single‐cell sequencing. J Comput Biol. 2012;19(5):455‐477. 10.1089/cmb.2012.0021 PubMed DOI PMC
Antipov D, Korobeynikov A, McLean JS, Pevzner PA. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics. 2016;32(7):1009‐1015. 10.1093/bioinformatics/btv688 PubMed DOI PMC
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068‐2069. 10.1093/bioinformatics/btu153 PubMed DOI
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428(4):726‐731. 10.1016/j.jmb.2015.11.006 PubMed DOI
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory‐efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25. 10.1186/gb-2009-10-3-r25 PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped‐read alignment with Bowtie 2. Nat Methods. 2012;9(4):357‐359. 10.1038/nmeth.1923 PubMed DOI PMC
Li H. Minimap2: Pairwise Alignment for Nucleotide Sequences, Version 5; 2018. arXiv, 1708.01492 [q‐bio.GN]. Accessed 22 February 2023. https://arxiv.org/abs/1708.01492 PubMed PMC
Slater GSC, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinf. 2005;6(1):31. 10.1186/1471-2105-6-31 PubMed DOI PMC
Erban T, Klimov P, Talacko P, Harant K, Hubert J. Proteogenomics of the house dust mite, Dermatophagoides farinae: allergen repertoire, accurate allergen identification, isoforms, and sex‐biased proteome differences. J Proteonomics. 2020;210:103535. 10.1016/j.jprot.2019.103535 PubMed DOI
Erban T, Klimov PB, Harant K, Talacko P, Nesvorna M, Hubert J. Label‐free proteomic analysis reveals differentially expressed Wolbachia proteins in Tyrophagus putrescentiae: mite allergens and markers reflecting population‐related proteome differences. J Proteonomics. 2021;249:104356. 10.1016/j.jprot.2021.104356 PubMed DOI
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification. Nat Biotechnol. 2008;26(12):1367‐1372. 10.1038/nbt.1511 PubMed DOI
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome‐wide label‐free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13(9):2513‐2526. 10.1074/mcp.M113.031591 PubMed DOI PMC
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10(4):1794‐1805. 10.1021/pr101065j PubMed DOI
Tyanova S, Temu T, Sinitcyn P, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13(9):731‐740. 10.1038/nmeth.3901 PubMed DOI
Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36(Web server issue):W5‐W9. 10.1093/nar/gkn201 PubMed DOI PMC
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39(Web server issue):W29‐W37. 10.1093/nar/gkr367 PubMed DOI PMC
Notredame C, Higgins DG, Heringa J. T‐coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000;302(1):205‐217. 10.1006/jmbi.2000.4042 PubMed DOI
Di Tommaso P, Moretti S, Xenarios I, et al. T‐Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res. 2011;39(Web server issue):W13‐W17. 10.1093/nar/gkr245 PubMed DOI PMC
Guindon S, Dufayard J‐F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum‐likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307‐321. 10.1093/sysbio/syq010 PubMed DOI
Rambaut A. FigTree, a Graphical Viewer of Phylogenetic Trees: 2014‐07‐09 – v1.4.2. Molecular Evolution, Phylogenetics and Epidemiology: Research, Software and Publications of Andrew Rambaut and Members of His Research Group; 2014. Accessed 22 February 2023. http://tree.bio.ed.ac.uk/software/figtree/
Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42(W1):W320‐W324. 10.1093/nar/gku316 PubMed DOI PMC
Madeira F, Pearce M, Tivey ARN, et al. Search and sequence analysis tools services from EMBL‐EBI in 2022. Nucleic Acids Res. 2022;50(W1):W276‐W279. 10.1093/nar/gkac240 PubMed DOI PMC
Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update. Nucleic Acids Res. 2018;46(W1):W200‐W204. 10.1093/nar/gky448 PubMed DOI PMC
Larkin MA, Blackshields G, Brown NP, et al. Clustal W and clustal X version 2.0. Bioinformatics. 2007;23(21):2947‐2948. 10.1093/bioinformatics/btm404 PubMed DOI
Fiser A, Do RK, Sali A. Modeling of loops in protein structures. Protein Sci. 2000;9(9):1753‐1773. 10.1110/ps.9.9.1753 PubMed DOI PMC
Marti‐Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000;29(1):291‐325. 10.1146/annurev.biophys.29.1.291 PubMed DOI
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26(2):283‐291. 10.1107/S0021889892009944 DOI
Schuler LD, Daura X, van Gunsteren WF. An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem. 2001;22(11):1205‐1218. 10.1002/jcc.1078 DOI
R Development Core Team . R‐4.2.2 for Windows. The Comprehensive R Archive Network; 2022. Accessed 22 February 2023. https://cran.r‐project.org/bin/windows/base/
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847‐2849. 10.1093/bioinformatics/btw313 PubMed DOI
Gu Z. Complex heatmap visualization. iMeta. 2022;1(3):e43. 10.1002/imt2.43 PubMed DOI PMC
Hammer O. Past 4 – the Past of the Future. Natural History Museum, University of Oslo; 2020. Accessed 22 February 2023. https://www.nhm.uio.no/english/research/resources/past/
Xiong Q, Wan T, Malainual N, Tsui SK‐W. The genome analysis of Blomia tropicalis reveals a comprehensive allergen profile. J Allergy Clin Immunol. 2020;145(2 Suppl l):AB82. AB82–AB82. 10.1016/j.jaci.2019.12.682 DOI
Xiong Q, Wan AT‐Y, Liu X, et al. Comparative genomics reveals insights into the divergent evolution of astigmatic mites and household pest adaptations. Mol Biol Evol. 2022;39(5):msac097. 10.1093/molbev/msac097 PubMed DOI PMC
Mora C, Flores I, Montealegre F, Diaz A. Cloning and expression of Blo t 1, a novel allergen from the dust mite Blomia tropicalis, homologous to cysteine proteases. Clin Exp Allergy. 2003;33(1):28‐34. 10.1046/j.1365-2222.2003.01480.x PubMed DOI
Chew FT, Wang W‐L, Shang HS, Kuay KT, Lim SH, Lee BW. Identification and cloning of group 1 allergen from Blomia tropicalis ; 2003. Unpublished. Accessed 22 February 2023. https://www.ncbi.nlm.nih.gov/protein/AAQ24541
Xiong Q, Liu X, Wan AT‐Y, et al. Comprehensive allergen profile of Blomia tropicalis provides insights into the component‐resolved diagnosis of mite allergy. bioRxiv. 2023. 10.1101/2023.02.09.527948. Accessed 22 February 2023. DOI
Chew FT, Angus AC, Lim SH. Cloning and expression of group 2 allergen isoforms from the storage mites Lepidoglyphus destructor and Blomia tropicalis ; 2003. Unpublished. Accessed 22 February 2023. https://www.ncbi.nlm.nih.gov/protein/AAQ73483
Reginald K, Pang SL, Chew FT. Blo t 2: group 2 allergen from the dust mite Blomia tropicalis . Sci Rep. 2019;9(1):12239. 10.1038/s41598-019-48688-y PubMed DOI PMC
Reginald K, Kuay KT, Chew FT. Cloning and characterization of a group 2 allergen from Blomia tropicalis ; 2006. Unpublished. Accessed 22 February 2023. https://www.ncbi.nlm.nih.gov/protein/ABG76185
Cheong N, Yang L, Lee BW, Chua KY. Cloning of a group 3 allergen from Blomia tropicalis mites. Allergy. 2003;58(4):352‐356. 10.1034/j.1398-9995.2003.00033.x PubMed DOI
Flores I, Mora C, Rivera E, Donnelly R, Montealegre F. Cloning and molecular characterization of a cDNA from Blomia tropicalis homologous to dust mite group 3 allergens (trypsin‐like proteases). Int Arch Allergy Immunol. 2003;130(1):12‐16. 10.1159/000068375 PubMed DOI
Chew FT, Kuay KT, Shang HS, Wang W‐L, Lim SH, Lee BW. Identification and cloning of group 4 allergen from Blomia tropicalis ; 2003. Unpublished. Accessed 22 February 2023. https://www.ncbi.nlm.nih.gov/protein/AAQ24543
Caraballo L, Avjioglu A, Marrugo J, Puerta L, Marsh D. Cloning and expression of complementary DNA coding for an allergen with common antibody‐binding specificities with three allergens of the house dust mite Blomia tropicalis . J Allergy Clin Immunol. 1996;98(3):573‐579. 10.1016/s0091-6749(96)70091-x PubMed DOI
Gao YF, Wang DY, Ong TC, Tay SL, Yap KH, Chew FT. Identification and characterization of a novel allergen from Blomia tropicalis: Blo t 21. J Allergy Clin Immunol. 2007;120(1):105‐112. 10.1016/j.jaci.2007.02.032 PubMed DOI
Medina LR, Malainual N, Ramos JD. Genetic polymorphisms and allergenicity of Blo t 5 in a house dust mite allergic Filipino population. Asian Pac J Allergy Immunol. 2017;35(4):203‐211. 10.12932/AP0794 PubMed DOI
Chew FT, Wang W.‐L, Shang HS, Kuay KT, Lim SH, Lee BW. Identification and cloning of group 6 allergen from Blomia tropicalis ; 2003. Unpublished. Accessed 22 February 2023. https://www.ncbi.nlm.nih.gov/protein/AAQ24544
Jacquet APA. Blo t 7 precursor, partial [Blomia tropicalis]: direct submission. 2017. Unpublished. Accessed 22 February 2023. https://www.ncbi.nlm.nih.gov/protein/ASX95438
Chew FT, Shang HS. Identification and cloning of group 7 allergen from Blomia tropicalis . 2003. Unpublished. Accessed 22 February 2023. https://www.ncbi.nlm.nih.gov/protein/AAQ24545.1
Zakzuk J, Fernandez‐Caldas E, Caraballo L. Characterization of a glutatione S‐transferase from Blomia tropicalis ; 2009. Unpublished. Accessed 22 February 2023. https://www.ncbi.nlm.nih.gov/protein/ACV04860
Chew FT, Wang W‐L, Kuay KT, et al. Identification and cloning of group 8 allergen from Blomia tropicalis expressed sequence tags; 2003. Unpublished. Accessed 22 February 2023. https://www.ncbi.nlm.nih.gov/protein/AAP35069
Chew FT, Wang W‐L, Kuay KT, Lim SH, Lee BW. Identification and cloning of group 10 allergen from Blomia tropicalis expressed sequence tags; 2007. Unpublished. Accessed 22 February 2023. https://www.ncbi.nlm.nih.gov/protein/ABU97466
Caraballo L, Puerta L, Jimenez S, et al. Cloning and IgE binding of a recombinant allergen from the mite Blomia tropicalis, homologous with fatty acid‐binding proteins. Int Arch Allergy Immunol. 1997;112(4):341‐347. 10.1159/000237478 PubMed DOI
Epton MJ, Dilworth RJ, Smith W, Thomas WR. Sensitisation to the lipid‐binding apolipophorin allergen Der p 14 and the peptide Mag‐1. Int Arch Allergy Immunol. 2001;124(1–3):57‐60. 10.1159/000053668 PubMed DOI
El Ramlawy KG, Fujimura T, Aki T, et al. Prominent IgE‐binding and cytokine‐inducing capacities of a newly cloned N‐terminal region of Der f 14, an apolipophorin‐like house dust mite allergen. J Biochem. 2018;163(1):51‐60. 10.1093/jb/mvx060 PubMed DOI
Engelmann F. Insect vitellogenin: identification, biosynthesis, and role in vitellogenesis. Adv Insect Physiol. 1979;14:49‐108. 10.1016/S0065-2806(08)60051-X DOI
Jacquet A. The HDM allergen orchestra and its cysteine protease maestro: stimulators of kaleidoscopic innate immune responses. Mol Immunol. 2023;156:48‐60. 10.1016/j.molimm.2023.03.002 PubMed DOI
Puerta L, Caraballo L, Fernandez‐Caldas E, et al. Nucleotide sequence analysis of a complementary DNA coding for a Blomia tropicalis allergen. J Allergy Clin Immunol. 1996;98(5):932‐937. 10.1016/s0091-6749(96)80009-1 PubMed DOI
Soh WT, Le Mignon M, Suratannon N, et al. The house dust mite major allergen Der p 23 displays O‐glycan‐independent IgE reactivities but no chitin‐binding activity. Int Arch Allergy Immunol. 2015;168(3):150‐160. 10.1159/000442176 PubMed DOI
He Y, Dou C, Su Y, et al. Identification of Der f 23 as a new major allergen of Dermatophagoides farinae . Mol Med Rep. 2019;20(2):1270‐1278. 10.3892/mmr.2019.10305 PubMed DOI PMC
Weghofer M, Grote M, Resch Y, et al. Identification of Der p 23, a peritrophin‐like protein, as a new major Dermatophagoides pteronyssinus allergen associated with the peritrophic matrix of mite fecal pellets. J Immunol. 2013;190(7):3059‐3067. 10.4049/jimmunol.1202288 PubMed DOI PMC
O'Neil SE, Heinrich TK, Hales BJ, et al. The chitinase allergens Der p 15 and Der p 18 from Dermatophagoides pteronyssinus . Clin Exp Allergy. 2006;36(6):831‐839. 10.1111/j.1365-2222.2006.02497.x PubMed DOI
Xing P, Yu H, Li M, et al. Characterization of arginine kinase, anovel allergen of Dermatophagoides farinae (Der f 20). Am J Transl Res. 2015;7(12):2815‐2823. PubMed PMC
Hales BJ, Martin AC, Pearce LJ, et al. IgE and IgG anti‐house dust mite specificities in allergic disease. J Allergy Clin Immunol. 2006;118(2):361‐367. 10.1016/j.jaci.2006.04.001 PubMed DOI
Jeong KY, Lee JY, Son M, et al. Profiles of IgE sensitization to Der f 1, Der f 2, Der f 6, Der f 8, Der f 10, and Der f 20 in Korean house dust mite allergy patients. Allergy Asthma Immunol Res. 2015;7(5):483‐488. 10.4168/aair.2015.7.5.483 PubMed DOI PMC
WHO/IUIS. Der p 20: allergen details. WHO/IUIS Allergen Nomenclature Sub‐Committee; 2019. Accessed February 22, 2023. http://www.allergen.org/viewallergen.php?aid=294
Downs M, Johnson P, Zeece M. Insects and their connection to food allergy. In: Dossey AT, Morales‐Ramos JA, Rojas MG, eds. Insects as Sustainable Food Ingredients: Production, Processing and Food Applications. Academic Press; 2016:255‐272. 10.1016/B978-0-12-802856-8.00009-0 DOI
Cardona G, Guisantes J, Eraso E, Serna LA, Martinez J. Enzymatic analysis of Blomia tropicalis and Blomia kulagini (Acari: echimyopodidae) allergenic extracts obtained from different phases of culture growth. Exp Appl Acarol. 2006;39(3–4):281‐288. 10.1007/s10493-006-9009-2 PubMed DOI
Montealegre F, Quinones C, Torres N, Goth K. Detection of serine proteases in extracts of the domestic mite Blomia tropicalis . Exp Appl Acarol. 2002;26(1–2):87‐100. 10.1023/a:1020931221953 PubMed DOI
Vidal‐Quist JC, Ortego F, Hernandez‐Crespo P. Contribution of cysteine and serine proteases to proteolytic digestion in an allergy‐eliciting house dust mite. J Insect Physiol. 2021;133:104285. 10.1016/j.jinsphys.2021.104285 PubMed DOI
Foo ACY, Mueller GA. Abundance and stability as common properties of allergens. Front Allergy. 2021;2:769728. 10.3389/falgy.2021.769728 PubMed DOI PMC
Ogburn RN, Randall TA, Xu Y, et al. Are dust mite allergens more abundant and/or more stable than other Dermatophagoides pteronyssinus proteins? J Allergy Clin Immunol. 2017;139(3):1030‐1032.e1031. 10.1016/j.jaci.2016.08.016 PubMed DOI PMC
de Boer R, van der Hoeven WAD, Stapel SO. The decay of house dust mite allergens, Der p I and Der p II, under natural conditions. Clin Exp Allergy. 1995;25(8):765‐770. 10.1111/j.1365-2222.1995.tb00015.x PubMed DOI
Terra WR, Ferreira C. Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol B Comp Biochem. 1994;109(1):1‐62. 10.1016/0305-0491(94)90141-4 DOI
Sidenius KE, Hallas TE, Stenderup J, Poulsen LK, Mosbech H. Decay of house‐dust mite allergen Der f 1 at indoor climatic conditions. Ann Allergy Asthma Immunol. 2002;89(1):34‐37. 10.1016/S1081-1206(10)61908-4 PubMed DOI
Zhou Y, Klimov PB, Gu X, et al. Chromosome‐level genomic assembly and allergome inference reveal novel allergens in Tyrophagus putrescentiae . Allergy. 2023;78(6):1691‐1695. 10.1111/all.15656 PubMed DOI
An S, Chen L, Long C, et al. Dermatophagoides farinae allergens diversity identification by proteomics. Mol Cell Proteomics. 2013;12(7):1818‐1828. 10.1074/mcp.M112.027136 PubMed DOI PMC
Chan T.‐F, Ji K‐M, Yim AK‐Y, et al. The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens. J Allergy Clin Immunol. 2015;135(2):539‐548. 10.1016/j.jaci.2014.09.031 PubMed DOI
Bordas‐Le Floch V, Le Mignon M, Bussieres L, et al. A combined transcriptome and proteome analysis extends the allergome of house dust mite Dermatophagoides species. PLoS ONE. 2017;12(10):e0185830. 10.1371/journal.pone.0185830 PubMed DOI PMC
Waldron R, McGowan J, Gordon N, McCarthy C, Mitchell EB, Fitzpatrick DA. Proteome and allergenome of the European house dust mite Dermatophagoides pteronyssinus . PLoS ONE. 2019;14(5):e0216171. 10.1371/journal.pone.0216171 PubMed DOI PMC
Hubert J, Nesvorna M, Klimov P, Dowd SE, Sopko B, Erban T. Differential allergen expression in three Tyrophagus putrescentiae strains inhabited by distinct microbiome. Allergy. 2019;74(12):2502‐2507. 10.1111/all.13921 PubMed DOI
Ramos JD, Cheong N, Lee BW, Chua KY. cDNA cloning and expression of Blo t 11, the Blomia tropicalis allergen homologous to paramyosin. Int Arch Allergy Immunol. 2001;126(4):286‐293. 10.1159/000049525 PubMed DOI
Ramos JDA, Teo ASM, Lee BW, Cheong N, Chua KY. DNA immunization for the production of monoclonal antibodies to Blo t 11, aparamyosin homolog from Blomia tropicalis . Allergy. 2004;59(5):539‐547. 10.1046/j.1398-9995.2003.00409.x PubMed DOI
Chew FT, Ong ST, Wang W‐L, et al. Identification and cloning of group 13 allergen from Blomia tropicalis expressed sequence tags; 2003. Unpublished. Accessed 22 February 2023. https://www.ncbi.nlm.nih.gov/protein/AAP35071.1
Chew FT, Kuay KT, Shang HS, Wang W‐L, Lim SH, Lee BW. Identification and cloning of chitinase homolog allergen from Blomia tropicalis ; 2003. Unpublished. Accessed 22 February 2023. https://www.ncbi.nlm.nih.gov/protein/AAQ24549
Chew FT, Gao YF. Blo T 5.02 Allergen [Blomia tropicalis]: direct submission; 2004. Unpublished. Accessed 22 February 2023. https://www.ncbi.nlm.nih.gov/protein/AAX34047
Chew FT, Kuay KT, Shang HS, Wang W‐L, Lim SH, Lee BW. Identification and cloning of Mag 29 allergen from Blomia tropicalis ; 2003. Unpublished. Accessed 22 February 2023. https://www.ncbi.nlm.nih.gov/protein/AAQ24552
Chew FT, Wang W‐L, Shang HS, Kuay KT, Lim SH, Lee BW. Identification and cloning of profilin homolog allergen from Blomia tropicalis ; 2003. Unpublished. Accessed 22 February 2023. https://www.ncbi.nlm.nih.gov/protein/AAQ24553
Chew FT, Wang W‐L, Shang HS, Kuay KT, Lim SH, Lee BW. Identification and cloning of Blo t Alt 6 homolog allergen from Blomia tropicalis ; 2003. Unpublished. Accessed 22 February 2023. https://www.ncbi.nlm.nih.gov/protein/AAQ24548