Smoothie Drinks: Possible Source of Resistant and Biofilm-Forming Microorganisms
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36553778
PubMed Central
PMC9778333
DOI
10.3390/foods11244039
PII: foods11244039
Knihovny.cz E-zdroje
- Klíčová slova
- antibiotic resistance, biofilm, coliforms, enterococci, fresh bar, fungi, microbial quality, smoothie, yeast,
- Publikační typ
- časopisecké články MeSH
Smoothie drinks are currently very popular drinks sold especially in fast food establishments. However, smoothies are a significant source of microorganisms. The aim of this study was to evaluate the microbiological quality of smoothies purchased in Eastern Bohemia. A higher prevalence of mesophilic aerobic bacteria (5.4-7.2 log CFU/mL), yeast (4.4-5.9 log CFU/mL) and coliform bacteria (3.1-6.0 log CFU/mL) was observed in vegetable smoothies, in which even the occurrence of enterococci (1.6-3.3 log CFU/mL) was observed. However, the occurrence of S. aureus, Salmonella spp. and Listeria spp. was not observed in any samples. Nevertheless, antimicrobial resistance was observed in 71.8% of the isolated strains. The highest level of resistance was found in isolates from smoothie drinks with predominantly vegetable contents (green smoothie drinks). Considerable resistance was observed in Gram-negative rods, especially to amoxicillin (82.2%) and amoxicillin with clavulanic acid (55.6%). Among enterococci, only one vancomycin-resistant strain was detected. The vast majority of isolated strains were able to form biofilms at a significant level, which increases the clinical importance of these microorganisms. The highest biofilm production was found in Pseudomonas aeruginosa, Kocuria kristinae and Klebsiella pneumoniae. Overall, significant biofilm production was also noted among isolates of Candida spp.
Zobrazit více v PubMed
Fukuda K. Food safety in a globalized world. Bull. World Health Organ. 2016;93:212. doi: 10.2471/BLT.15.154831. PubMed DOI PMC
Li C.J., Li C.Y., Yu H., Cheng Y.L., Xie Y.F., Yao W.R., Guo Y.H., Qian H. Chemical food contaminants during food processing: Sources and control. Crit. Rev. Food Sci. Nutr. 2021;61:1545–1555. doi: 10.1080/10408398.2020.1762069. PubMed DOI
Fung F., Wang H.S., Menon S. Food safety in the 21st century. Biomed. J. 2018;41:88–95. doi: 10.1016/j.bj.2018.03.003. PubMed DOI PMC
Machado-Moreira B., Richards K., Brennan F., Abram F., Burgess C.M. Microbial Contamination of Fresh Produce: What, Where, and How? Compr. Rev. Food Sci. Food Saf. 2019;18:1727–1750. doi: 10.1111/1541-4337.12487. PubMed DOI
Zacconi C., Giosue S., Marudelli M., Scolari G. Microbiological quality and safety of smoothies treated in different pressure-temperature domains: Effects on indigenous fruit microbiota and Listeria monocytogenes and their survival during storage. Eur. Food Res. Technol. 2015;241:317–328. doi: 10.1007/s00217-015-2460-8. DOI
Nawawee N.S.M., Abu Bakar N.F., Zulfakar S.S. Microbiological Safety of Street-Vended Beverages in Chow Kit, Kuala Lumpur. Int. J. Environ. Res. Public Health. 2019;16:4463. doi: 10.3390/ijerph16224463. PubMed DOI PMC
Alshannaq A., Yu J.H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health. 2017;14:632. doi: 10.3390/ijerph14060632. PubMed DOI PMC
Bintsis T. Microbial pollution and food safety. Aims Microbiol. 2018;4:377–396. doi: 10.3934/microbiol.2018.3.377. PubMed DOI PMC
Gil M.I., Selma M.V., Suslow T., Jacxsens L., Uyttendaele M., Allende A. Pre- and Postharvest Preventive Measures and Intervention Strategies to Control Microbial Food Safety Hazards of Fresh Leafy Vegetables. Crit. Rev. Food Sci. Nutr. 2015;55:453–468. doi: 10.1080/10408398.2012.657808. PubMed DOI
Luna-Guevara J.J., Arenas-Hernandez M.M.P., de la Pena C.M., Silva J.L., Luna-Guevara M.L. The Role of Pathogenic E. coli in Fresh Vegetables: Behavior, Contamination Factors, and Preventive Measures. Int. J. Microbiol. 2019;2019:2894328. doi: 10.1155/2019/2894328. PubMed DOI PMC
Tascini C., Sozio E., Viaggi B., Meini S. Reading and understanding an antibiogram. Italian J. Med. 2016;10:289–300. doi: 10.4081/itjm.2016.794. DOI
Yitayeh L., Gize A., Kassa M., Neway M., Afework A., Kibret M., Mulu W. Antibiogram Profiles of Bacteria Isolated from Different Body Site Infections Among Patients Admitted to GAMBY Teaching General Hospital, Northwest Ethiopia. Inf. Drug Resist. 2021;14:2225–2232. doi: 10.2147/IDR.S307267. PubMed DOI PMC
Omar A., Wright J.B., Schultz G., Burrell R., Nadworny P. Microbial Biofilms and Chronic Wounds. Microorganisms. 2017;5:9. doi: 10.3390/microorganisms5010009. PubMed DOI PMC
Hoiby N. A short history of microbial biofilms and biofilm infections. Apmis. 2017;125:272–275. doi: 10.1111/apm.12686. PubMed DOI
Koo H., Allan R.N., Howlin R.P., Stoodley P., Hall-Stoodley L. Targeting microbial biofilms: Current and prospective therapeutic strategies. Nat. Rev. Microbiol. 2017;15:740–755. doi: 10.1038/nrmicro.2017.99. PubMed DOI PMC
Koo H., Falsetta M.L., Klein M.I. The Exopolysaccharide Matrix: A Virulence Determinant of Cariogenic Biofilm. J. Dent. Res. 2013;92:1065–1073. doi: 10.1177/0022034513504218. PubMed DOI PMC
European Committee on Antimicrobial Susceptibility Testing (EUCAST) EUCAST Disk Diffusion Method, Version 10.0 January 2019. European Committee on Antimicrobial Susceptibility Testing (EUCAST); Basel, Switzerland: 2019.
Clinical Laboratory Standards Institute (CLSI) M100-S29 Performance Standards for Antimicrobial Susceptibility Testing. Clinical Laboratory Standards Institute (CLSI); Annapolis Junction, MD, USA: 2019. Twenty-Nine Informational Supplement 2019.
Silha D., Svarcova K., Bajer T., Kralovec K., Tesarova E., Mouckova K., Pejchalova M., Bajerova P. Chemical Composition of Natural Hydrolates and Their Antimicrobial Activity on Arcobacter-Like Cells in Comparison with Other Microorganisms. Molecules. 2020;25:5654. doi: 10.3390/molecules25235654. PubMed DOI PMC
Svarcova K., Pejchalova M., Silha D. The Effect of Antibiotics on Planktonic Cells and Biofilm Formation Ability of Collected Arcobacter-like Strains and Strains Isolated within the Czech Republic. Antibiotics. 2022;11:87. doi: 10.3390/antibiotics11010087. PubMed DOI PMC
Stepanovic S., Vukovic D., Dakic I., Savic B., Švabic-Vlahovic M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Meth. 2000;40:175–179. doi: 10.1016/S0167-7012(00)00122-6. PubMed DOI
Rajwar A., Srivastava P., Sahgal M. Microbiology of Fresh Produce: Route of Contamination, Detection Methods, and Remedy. Crit. Rev. Food Sci. Nutr. 2016;56:2383–2390. doi: 10.1080/10408398.2013.841119. PubMed DOI
Heaton J.C., Jones K. Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: A review. J. Appl. Microbiol. 2008;104:613–626. doi: 10.1111/j.1365-2672.2007.03587.x. PubMed DOI
Nieva S.G., Jagus R.J., Aguero M.V., Fernandez M.V. Fruit and vegetable smoothies preservation with natural antimicrobials for the assurance of safety and quality. LWT-Food Sci. Technol. 2022;154:112663. doi: 10.1016/j.lwt.2021.112663. DOI
Formica-Oliveira A.C., Martinez-Hernandez G.B., Aguayo E., Gomez P.A., Artes F., Artes-Hernandez F. A Functional Smoothie from Carrots with Induced Enhanced Phenolic Content. Food Bioprocess Technol. 2017;10:491–502. doi: 10.1007/s11947-016-1829-4. DOI
Bevilacqua A., Petruzzi L., Perricone M., Speranza B., Campaniello D., Sinigaglia M., Corbo M.R. Nonthermal Technologies for Fruit and Vegetable Juices and Beverages: Overview and Advances. Compr. Rev. Food Sci. Food Saf. 2018;17:2–62. doi: 10.1111/1541-4337.12299. PubMed DOI
Morales-de la Pena M., Welti-Chanes J., Martin-Belloso O. Application of Novel Processing Methods for Greater Retention of Functional Compounds in Fruit-Based Beverages. Beverages. 2016;2:14. doi: 10.3390/beverages2020014. DOI
Salamandane A., Silva A.C., Brito L., Malfeito-Ferreira M. Microbiological assessment of street foods at the point of sale in Maputo (Mozambique) Food Qual. Saf. 2021;5:fyaa030. doi: 10.1093/fqsafe/fyaa030. DOI
Zulfakar S.S., Zin N.M., Zalami S., Nawawee N.S.M. Identification and Antibiotic Resistance Profile of Salmonella spp. and Citrobacter spp. Isolated from Street-Vended Beverages. Pertanika J. Sci. Technol. 2021;29:593–606. doi: 10.47836/pjst.29.1.31. DOI
Krahulcova M., Micajova B., Olejnikova P., Cverenkarova K., Birosova L. Microbial Safety of Smoothie Drinks from Fresh Bars Collected in Slovakia. Foods. 2021;10:551. doi: 10.3390/foods10030551. PubMed DOI PMC
Mukhopadhyay S., Sokorai K., Ukuku D., Fan X.T., Juneja V., Sites J., Cassidy J. Inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree by high hydrostatic pressure with/without added ascorbic acid. Int. J. Food Microbiol. 2016;235:77–84. doi: 10.1016/j.ijfoodmicro.2016.07.007. PubMed DOI
Fernandez M.V., Denoya G.I., Aguero M.V., Vaudagna S.R., Jagus R.J. Quality preservation and safety ensurement of a vegetable smoothie by high-pressure processing. J. Food Process. Preserv. 2020;44:e14326. doi: 10.1111/jfpp.14326. DOI
Hurtado A., Guardia M.D., Picouet P., Jofre A., Ros J.M., Banon S. Stabilization of red fruit-based smoothies by high-pressure processing. Part A. Effects on microbial growth, enzyme activity, antioxidant capacity and physical stability. J. Sci. Food Agric. 2017;97:770–776. doi: 10.1002/jsfa.7796. PubMed DOI
Veronica F.M., Bengardino M., Jagus R.J., Aguero M.V. Enrichment and preservation of a vegetable smoothie with an antioxidant and antimicrobial extract obtained from beet by-products. LWT-Food Sci. Technol. 2020;117:108622.
Fernandez M.V., Denoya G.I., Jagus R.J., Vaudagna S.R., Aguero M.V. Microbiological, antioxidant and physicochemical stability of a fruit and vegetable smoothie treated by high pressure processing and stored at room temperature. LWT–Food Sci. Technol. 2019;105:206–210. doi: 10.1016/j.lwt.2019.02.030. DOI
Fernandez M.V., Denoya G.I., Aguero M.V., Jagus R.J., Vaudagna S.R. Optimization of high pressure processing parameters to preserve quality attributes of a mixed fruit and vegetable smoothie. Innov. Food Sci. Emerg. Technol. 2018;47:170–179. doi: 10.1016/j.ifset.2018.02.011. DOI
Barac A., Cevik M., Colovic N., Lekovic D., Stevanovic G., Micic J., Rubino S. Investigation of a healthcare-associated Candida tropicalis candidiasis cluster in a haematology unit and a systematic review of nosocomial outbreaks. Mycoses. 2020;63:326–333. doi: 10.1111/myc.13048. PubMed DOI
Kothavade R.J., Kura M.M., Valand A.G., Panthaki M.H. Candida tropicalis: Its prevalence, pathogenicity and increasing resistance to fluconazole. J. Med. Microbiol. 2010;59:873–880. doi: 10.1099/jmm.0.013227-0. PubMed DOI
Kumar S., Kumar A., Roudbary M., Mohammadi R., Cernakova L., Rodrigues C.F. Overview on the Infections Related to Rare Candida Species. Pathogens. 2022;11:963. doi: 10.3390/pathogens11090963. PubMed DOI PMC
Dadgostar P. Antimicrobial Resistance: Implications and Costs. Inf. Drug Resist. 2019;12:3903–3910. doi: 10.2147/IDR.S234610. PubMed DOI PMC
Carvalheira A., Silva J., Teixeira P. Lettuce and fruits as a source of multidrug resistant Acinetobacter spp. Food Microbiol. 2017;64:119–125. doi: 10.1016/j.fm.2016.12.005. PubMed DOI
Huttner A., Bielicki J., Clements M.N., Frimodt-Moller N., Muller A.E., Paccaud J.P., Mouton J.W. Oral amoxicillin and amoxicillin-clavulanic acid: Properties, indications and usage. Clin. Microbiol. Infect. 2020;26:871–879. doi: 10.1016/j.cmi.2019.11.028. PubMed DOI
Almasaudi S.B. Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features. Saudi J. Biol. Sci. 2018;25:586–596. doi: 10.1016/j.sjbs.2016.02.009. PubMed DOI PMC
Fujimura S., Sato T., Hayakawa S., Kawamura M., Furukawa E., Watanabe A. Antimicrobial efficacy of combined clarithromycin plus daptomycin against biofilms-formed methicillin-resistant Staphylococcus aureus on titanium medical devices. J. Infect. Chemother. 2015;21:756–759. doi: 10.1016/j.jiac.2015.06.001. PubMed DOI
Snyder A.D.H., Vidaillac C., Rose W., McRoberts J.P., Rybak M.J. Evaluation of High-Dose Daptomycin Versus Vancomycin Alone or Combined with Clarithromycin or Rifampin Against Staphylococcus aureus and S. epidermidis in a Novel In Vitro PK/PD Model of Bacterial Biofilm. Infect. Dis. Ther. 2015;4:51–65. doi: 10.1007/s40121-014-0055-5. PubMed DOI PMC
Stevanovic N.L., Glisic B.D., Vojnovic S., Wadepohl H., Andrejevic T.P., Duric S.Z., Savic N.D., Nikodinovic-Runic J., Djuran M.I., Pavic A. Improvement of the anti-Candida activity of itraconazole in the zebrafish infection model by its coordination to silver(I) J. Mol. Struct. 2021;1232:130006. doi: 10.1016/j.molstruc.2021.130006. DOI
Navarro-Arias M.J., Hernandez-Chavez M.J., Garcia-Carnero L.C., Amezcua-Hernandez D.G., Lozoya-Perez N.E., Estrada-Mata E., Martinez-Duncker I., Franco B., Mora-Montes H.M. Differential recognition of Candida tropicalis, Candida guilliermondii, Candida krusei, and Candida auris by human innate immune cells. Infect. Drug Resist. 2019;12:783–794. doi: 10.2147/IDR.S197531. PubMed DOI PMC
Vestby L.K., Gronseth T., Simm R., Nesse L.L. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics. 2020;9:59. doi: 10.3390/antibiotics9020059. PubMed DOI PMC
Thi M.T.T., Wibowo D., Rehm B.H.A. Pseudomonas aeruginosa Biofilms. Int. J. Mol. Sci. 2020;21:8671. doi: 10.3390/ijms21228671. PubMed DOI PMC
Kandi V., Palange P., Vaish R., Bhatti A.B., Kale V., Kandi M.R., Bhoomagiri M.R. Emerging Bacterial Infection: Identification and Clinical Significance of Kocuria Species. Cureus. 2016;8:e731. doi: 10.7759/cureus.731. PubMed DOI PMC
Ananieva M., Nazarchuk O., Faustova M., Basarab Y., Loban’ G. Pathogenicity factors of Kocuria kristinae contributing to the development of Peri-Implant Mucositis. Malays. J. Med. Health Sci. 2018;14:34–38.
Guerra M.E.S., Destro G., Vieira B., Lima A.S., Ferraz L.F.C., Hakansson A.P., Darrieux M., Converso T.R. Klebsiella pneumoniae Biofilms and Their Role in Disease Pathogenesis. Front. Cell. Infect. Microbiol. 2022;12:555. doi: 10.3389/fcimb.2022.877995. PubMed DOI PMC
Lenchenko E., Blumenkrants D., Sachivkina N., Shadrova N., Ibragimova A. Morphological and adhesive properties of Klebsiella pneumoniae biofilms. Vet. World. 2020;13:197–200. doi: 10.14202/vetworld.2020.197-200. PubMed DOI PMC
Cai L.L., Wang H.W., Liang L.J., Wang G.Y., Xu X.L., Wang H.H. Response of Formed-Biofilm of Enterobacter cloacae, Klebsiella oxytoca, and Citrobacter freundii to Chlorite-Based Disinfectants. J. Food Sci. 2018;83:1326–1332. doi: 10.1111/1750-3841.14149. PubMed DOI
Misra T., Tare M., Jha P.N. Insights Into the Dynamics and Composition of Biofilm Formed by Environmental Isolate of Enterobacter cloacae. Front. Microbiol. 2022;13:2240. doi: 10.3389/fmicb.2022.877060. PubMed DOI PMC
Shanks R.M.Q., Dashiff A., Alster J.S., Kadouri D.E. Isolation and identification of a bacteriocin with antibacterial and antibiofilm activity from Citrobacter freundii. Arch. Microbiol. 2012;194:575–587. doi: 10.1007/s00203-012-0793-2. PubMed DOI PMC
Donadu M.G., Ferrari M., Mazzarello V., Zanetti S., Kushkevych I., Rittmann S., Stajer A., Barath Z., Szabo D., Urban E., et al. No Correlation between Biofilm-Forming Capacity and Antibiotic Resistance in Environmental Staphylococcus spp.: In Vitro Results. Pathogens. 2022;11:471. doi: 10.3390/pathogens11040471. PubMed DOI PMC
Miao J., Liang Y.R., Chen L.Q., Wang W.X., Wang J.W., Li B., Li L., Chen D.Q., Xu Z.B. Formation and development of Staphylococcus biofilm: With focus on food safety. J. Food Saf. 2017;37:e12358. doi: 10.1111/jfs.12358. DOI
Neopane P., Nepal H.P., Shrestha R., Uehara O., Abiko Y. In vitro biofilm formation by Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance. Int. J. Gen. Med. 2018;11:25–32. doi: 10.2147/IJGM.S153268. PubMed DOI PMC
Zhu M.L., Wang Y.H., Dai Y., Wu X.Q., Ye J.R. Effects of Different Culture Conditions on the Biofilm Formation of Bacillus pumilus HR10. Curr. Microbiol. 2020;77:1405–1411. doi: 10.1007/s00284-020-01944-1. PubMed DOI
Galan-Ladero M.A., Blanco-Blanco M.T., Fernandez-Calderon M.C., Lucio L., Gutierrez-Martin Y., Blanco M.T., Perez-Giraldo C. Candida tropicalis biofilm formation and expression levels of the CTRG ALS-like genes in sessile cells. Yeast. 2019;36:107–115. doi: 10.1002/yea.3370. PubMed DOI
Hamal P., Hanzen J., Horn F., Trtkova J., Ruskova L., Vecerova R., Ruzicka F., Vollekova A., Raclavsky V. Usefulness of McRAPD for typing and importance of biofilm production in a case of nosocomial ventriculoperitoneal shunt infection caused by Candida lusitaniae. Folia Microbiol. 2011;56:407–414. doi: 10.1007/s12223-011-0063-8. PubMed DOI
Pannanusorn S., Fernandez V., Romling U. Prevalence of biofilm formation in clinical isolates of Candida species causing bloodstream infection. Mycoses. 2013;56:264–272. doi: 10.1111/myc.12014. PubMed DOI