Chemical Composition of Natural Hydrolates and Their Antimicrobial Activity on Arcobacter-Like Cells in Comparison with Other Microorganisms
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33266263
PubMed Central
PMC7730011
DOI
10.3390/molecules25235654
PII: molecules25235654
Knihovny.cz E-zdroje
- Klíčová slova
- Arcobacter-like bacteria, Foeniculum vulgare, Laurus nobilis, Lavandula angustifolia, Syzygium aromaticum, antimicrobial activity, biofilm formation, distillation, gas chromatography, hydrolates,
- MeSH
- antiinfekční látky farmakologie MeSH
- Arcobacter účinky léků MeSH
- buňky A549 MeSH
- Candida albicans účinky léků MeSH
- destilace MeSH
- levandule chemie MeSH
- lidé MeSH
- nádory plic farmakoterapie MeSH
- oleje prchavé farmakologie MeSH
- oleje rostlin farmakologie MeSH
- proliferace buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiinfekční látky MeSH
- oleje prchavé MeSH
- oleje rostlin MeSH
Hydrolates obtained via the hydrodistillation and steam distillation of Lavandulaangustifolia Mill., Syzygiumaromaticum L., Foeniculumvulgare Mill., and Laurusnobilis L. were analyzed by gas chromatography with flame ionization detector (GC-FID) and gas chromatography coupled to mass spectrometry (GC-MS). Additionally, the hydrolates were evaluated for antimicrobial activity (disk-diffusion and microdilution method), influence on biofilm formation (Christensen method) and cytotoxicity of concentrated hydrolates against human cell lines (A549) by xCELLigence system. Using chemical analysis, 48, 9, 13 and 33 different components were detected in lavender, clove, fennel and laurel hydrolates, respectively. Lavender hydrolate contained the largest proportion of 1,8-cineol, linalool furanoxide, and linalool. The main components of laurel hydrolate were 1,8-cineol, 4-terpineol and α-terpineol. Fenchone and estragole were the most abundant in fennel hydrolate, and eugenol and eugenyl acetate in clove hydrolate. Concentrated hydrolates showed significant antimicrobial activity. Clove hydrolate was among the most antimicrobially active agents, most preferably against C. albicans, with an inhibition zone up to 23.5 mm. Moreover, concentrated hydrolates did not show any cytotoxic effect again8 st human A549 cells. In the presence of the non-concentrated hydrolates, significantly reduced biofilm formation was observed; however, with concentrated clove hydrolate, there was an increase in biofilm formation, e.g., of A. thereius, A. lanthieri, and A. butzleri. Research shows new findings about hydrolates that may be important in natural medicine or for preservation purposes.
Zobrazit více v PubMed
Mohamed A., El-Sayed M.A., Hegazy M.E., Helaly S.E., Esmail A.M., Mohamed N.S. Chemical Constituents and Biological Activities of Artemisia herba-alba. Rec. Nat. Prod. 2010;4:1–25.
Sowndhararajan K., Deepa P., Kim M., Park S.J., Kim S. A Review of the Composition of the Essential Oils and Biological Activities of Angelica Species. Sci. Pharm. 2017;85:33. doi: 10.3390/scipharm85030033. PubMed DOI PMC
Pejin B., Vujisic L., Sabovljevic M., Tesevic V., Vajs V. Preliminary data on essential oil composition of the moss Rhodobryum ontariense (Kindb.) Kindb. Cryptogam. Bryol. 2011;32:113–117. doi: 10.7872/cryb.v32.iss1.2011.113. DOI
Dadalioglu I., Evrendilek G.A. Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens. J. Agric. Food Chem. 2004;52:8255–8260. doi: 10.1021/jf049033e. PubMed DOI
Diao W.R., Hu Q.P., Zhang H., Xu J.G. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.) Food Control. 2014;35:109–116. doi: 10.1016/j.foodcont.2013.06.056. DOI
Hamedi A., Moheimani S.M., Sakhteman A., Etemadfard H., Moein M. An overview on indications and chemical composition of aromatic waters (hydrosols) as functional beverages in Persian nutrition culture and folk medicine for hyperlipidemia and cardiovascular conditions. J. Evid. Based Complement. Altern. 2017;22:544–561. doi: 10.1177/2156587216686460. PubMed DOI PMC
Lu H., Li H., Li X.L., Zhou A.G. Chemical composition of lavender essential oil and its antioxidant activity and inhibition against rhinitis-related bacteria. Afr. J. Microbiol. Res. 2010;4:309–313.
Chaieb K., Hajlaoui H., Zmantar T., Kahla-Nakbi A.B., Rouabhia M., Mahdouani K., Bakhrouf A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. myrtaceae): A short review. Phytother. Res. 2007;21:501–506. PubMed
Edris A.E. Identification and absolute quantification of the major water-soluble aroma components isolated from the hydrosols of some aromatic plants. J. Essent. Oil Bear. Plants. 2009;12:155–161. doi: 10.1080/0972060X.2009.10643705. DOI
Politi M., Menghini L., Conti B., Bedini S., Farina P., Cioni P.L., Braca A., De Leo M. Reconsidering hydrosols as main products of aromatic plants manufactory: The lavandin (Lavandula × intermedia) case study in Tuscany. Molecules. 2020;25:2225. doi: 10.3390/molecules25092225. PubMed DOI PMC
Smigielski K., Prusinowska R., Stobiecka A., Kunicka-Styczynska A., Gruska R. Biological properties and chemical composition of essential oils from flowers and aerial parts of lavender (Lavandula angustifolia) J. Essent. Oil Bear. Plants. 2018;21:1303–1314. doi: 10.1080/0972060X.2018.1503068. DOI
Hay Y.O., Abril-Sierra M.A., Sequeda-Castaneda L.G., Bonnafous C., Raynaud C. Evaluation of combinations of essential oils and essential oils with hydrosols on antimicrobial and antioxidant activities. J. Pharm. Pharmacogn. Res. 2018;6:216–230.
Lira P.D., Reeta D., Tkacik E., Ringuelet J., Coussio J.D., van Baren C., Bandoni A.L. Essential oil and by-products of distillation of bay leaves (Laurus nobilis L.) from Argentina. Ind. Crop. Prod. 2009;30:259–264. doi: 10.1016/j.indcrop.2009.04.005. DOI
Baydar H., Sagdic O., Ozkan G., Karadogan T. Antibacterial activity and composition of essential oils from Origanum, Thymbra and Satureja species with commercial importance in Turkey. Food Control. 2004;15:169–172. doi: 10.1016/S0956-7135(03)00028-8. DOI
Rai M., Paralikar P., Jogee P., Agarkar G., Ingle A.P., Derita M., Zacchino S. Synergistic antimicrobial potential of essential oils in combination with nanoparticles: Emerging trends and future perspectives. Int. J. Pharm. 2017;519:67–78. doi: 10.1016/j.ijpharm.2017.01.013. PubMed DOI
Delaquis P.J., Stanich K., Girard B., Mazza G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol. 2002;74:101–109. doi: 10.1016/S0168-1605(01)00734-6. PubMed DOI
Sagdic O., Ozcan M. Antibacterial activity of Turkish spice hydrosols. Food Control. 2003;14:141–143. doi: 10.1016/S0956-7135(02)00057-9. DOI
Brenes M., Medina E., Romero C., De Castro A. Antimicrobial activity of olive oil. Agro Food Ind. Hi Tech. 2007;18:6–8. PubMed
Medina E., Romero C., Brenes M., de Castro A. Antimicrobial activity of olive oil, vinegar, and various beverages against foodborne pathogens. J. Food Prot. 2007;70:1194–1199. doi: 10.4315/0362-028X-70.5.1194. PubMed DOI
Chieffi D., Fanelli F., Fusco V. Arcobacter butzleri: Up-to-date taxonomy, ecology, and pathogenicity of an emerging pathogen. Compr. Rev. Food Sci. Food Saf. 2020;19:2071–2109. doi: 10.1111/1541-4337.12577. PubMed DOI
Collado L., Guarro J., Figueras M.J. Prevalence of Arcobacter in meat and shellfish. J. Food Prot. 2009;72:1102–1106. doi: 10.4315/0362-028X-72.5.1102. PubMed DOI
Van den Abeele A.-M., Vogelaers D., Van Hende J., Houf K. Prevalence of Arcobacter species among humans, Belgium, 2008–2013. Emerg Infect Dis. 2014;20:1731–1734. doi: 10.3201/eid2010.140433. PubMed DOI PMC
Reuter M., Mallett A., Pearson B.M., van Vliet A.H.M. Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Appl. Environ. Microbiol. 2010;76:2122–2128. doi: 10.1128/AEM.01878-09. PubMed DOI PMC
Elmali M., Can H.Y. Occurence and antimicrobial resistance of Arcobacter species in food and slaughterhouse samples. Food Sci. Technol. 2017;37:280–285. doi: 10.1590/1678-457x.19516. DOI
Levican A., Collado L., Figueras M.J. Arcobacter cloacae sp nov and Arcobacter suis sp nov., two new species isolated from food and sewage. Syst. Appl. Microbiol. 2013;36:22–27. doi: 10.1016/j.syapm.2012.11.003. PubMed DOI
Shah A.H., Saleha A.A., Zunita Z., Murugaiyah M. Arcobacter—An emerging threat to animals and animal origin food products? Trends Food Sci. Technol. 2011;22:225–236. doi: 10.1016/j.tifs.2011.01.010. DOI
Abay S., Kayman T., Hizlisoy H., Aydin F. In vitro antibacterial susceptibility of Arcobacter butzleri isolated from different sources. J. Vet. Med. Sci. 2012;74:613–616. doi: 10.1292/jvms.11-0487. PubMed DOI
Fera M.T., Maugeri T.L., Giannone M., Gugliandolo C., La Camera E., Blandino G., Carbone M. In vitro susceptibility of Arcobacter butzleri and Arcobacter cryaerophilus to different antimicrobial agents. Int. J. Antimicrob. Agents. 2003;21:488–491. doi: 10.1016/S0924-8579(03)00004-9. PubMed DOI
Kabeya H., Maruyama S., Morita Y., Ohsuga T., Ozawa S., Kobayashi Y., Abe M., Katsube Y., Mikami T. Prevalence of Arcobacter species in retail meats and antimicrobial susceptibility of the isolates in Japan. Int. J. Food Microbiol. 2004;90:303–308. doi: 10.1016/S0168-1605(03)00322-2. PubMed DOI
Shah A.H., Saleha A.A., Zunita Z., Murugaiyah M., Aliyu A.B. Antimicrobial susceptibility of an emergent zoonotic pathogen, Arcobacter butzleri. Int. J. Antimicrob. Agents. 2012;40:569–570. doi: 10.1016/j.ijantimicag.2012.08.001. PubMed DOI
Son I., Englen M.D., Berrang M.E., Fedorka-Cray P.J., Harrison M.A. Antimicrobial resistance of Arcobacter and Campylobacter from broiler carcasses. Int. J. Antimicrob. Agents. 2007;29:451–455. doi: 10.1016/j.ijantimicag.2006.10.016. PubMed DOI
Turek C., Stintzing F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013;12:40–53. doi: 10.1111/1541-4337.12006. DOI
Chlodwig F., Johannes N. Handbook of Essential Oils. CRC Press; Boca Raton, FL, USA: 2015. Production of Essential Oils; pp. 43–86.
Diaz-Maroto M.C., Perez-Coello M.S., Cabezudo M.D. Effect of drying method on the volatiles in bay leaf (Laurus nobilis L.) J. Agric. Food Chem. 2002;50:4520–4524. doi: 10.1021/jf011573d. PubMed DOI
Mota A.S., Martins M.R., Arantes S., Lopes V.R., Bettencourt E., Pombal S., Gomes A.C., Silva L.A. Antimicrobial activity and chemical composition of the essential oils of Portuguese Foeniculum vulgare Fruits. Nat. Prod. Commun. 2015;10:673–676. doi: 10.1177/1934578X1501000437. PubMed DOI
Pouryousef M. Variation in the essential oil constituents in indigenous populations of Foeniculum vulgare var. vulgare from different locations of Iran. J. Essent. Oil Res. 2014;26:441–445. doi: 10.1080/10412905.2014.956188. DOI
Gonzalez-Rivera J., Duce C., Falconieri D., Ferrari C., Ghezzi L., Piras A., Tine M.R. Coaxial microwave assisted hydrodistillation of essential oils from five different herbs (lavender, rosemary, sage, fennel seeds and clove buds): Chemical composition and thermal analysis. Innovative Food Sci. Emerg. Technol. 2016;33:308–318. doi: 10.1016/j.ifset.2015.12.011. DOI
Xiao Z.B., Chen J.Y., Niu Y.W., Chen F. Characterization of the key odorants of fennel essential oils of different regions using GC-MS and GC-O combined with partial least squares regression. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017;1063:226–234. doi: 10.1016/j.jchromb.2017.07.053. PubMed DOI
Trombetta D., Castelli F., Sarpietro M.G., Venuti V., Cristani M., Daniele C., Saija A., Mazzanti G., Bisignano G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005;49:2474–2478. doi: 10.1128/AAC.49.6.2474-2478.2005. PubMed DOI PMC
Kwiatkowski P., Mnichowska-Polanowska M., Pruss A., Masiuk H., Dzieciol M., Giedrys-Kalemba S., Sienkiewicz M. The effect of fennel essential oil in combination with antibiotics on Staphylococcus aureus strains isolated from carriers. Burns. 2017;43:1544–1551. doi: 10.1016/j.burns.2017.04.014. PubMed DOI
Roby M.H.H., Sarhan M.A., Selim K.A.H., Khalel K.I. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.) Ind. Crop. Prod. 2013;44:437–445. doi: 10.1016/j.indcrop.2012.10.012. DOI
De Oliveira S.P., Cunha G.S.P., Prates J.P.B., Fonseca F.S.A., de Souza K.S.S., Azevedo A.M., Xavier A., Santos E.M.S., Santos H.O., de Almeida A.C. Antimicrobial activity of essential oils extracted from clove and lemongrass against pathogenic bacteria isolated from bovine, swine and poultry feces. Semin. Cienc. Agrar. 2019;40:1937–1950. doi: 10.5433/1679-0359.2019v40n5p1937. DOI
Carson C.F., Riley T.V. Antimicrobial activity of the major components of the essential oil of Melalauca-alternifolia. J. Appl. Bacteriol. 1995;78:264–269. doi: 10.1111/j.1365-2672.1995.tb05025.x. PubMed DOI
De Souza S.M., Delle Monache F., Smania A., Jr. Antibacterial activity of coumarins. Z. Naturforsch. C. 2005;60:693–700. doi: 10.1515/znc-2005-9-1006. PubMed DOI
Kayser O., Kolodziej H. Antibacterial activity of simple coumarins: Structural requirements for biological activity. Z. Naturforsch. C J. Biosci. 1999;54:169–174. doi: 10.1515/znc-1999-3-405. PubMed DOI
Herman A., Tambor K. Linalool affects the antimicrobial efficacy of essential oils. Curr. Microbiol. 2016;72:165–172. doi: 10.1007/s00284-015-0933-4. PubMed DOI
Vijayakumar S., Vaseeharan B., Malaikozhundan B., Shobiya M. Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications. Biomed. Pharmacother. 2016;84:1213–1222. doi: 10.1016/j.biopha.2016.10.038. PubMed DOI
Kunicka-Styczynska A., Smigielski K., Prusinowska R., Rajkowska K., Kusmider B., Sikora M. Preservative activity of lavender hydrosols in moisturizing body gels. Lett. Appl. Microbiol. 2015;60:27–32. doi: 10.1111/lam.12346. PubMed DOI
Bajer T., Silha D., Ventura K., Bajerova P. Composition and antimicrobial activity of the essential oil, distilled aromatic water and herbal infusion from Epilobium parviflorum Schreb. Ind. Crop. Prod. 2017;100:95–105. doi: 10.1016/j.indcrop.2017.02.016. DOI
Cai L.N., Wu C.D. Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens. J. Nat. Prod. 1996;59:987–990. doi: 10.1021/np960451q. PubMed DOI
Akhondzadeh S., Kashani L., Fotouhi A., Jarvandi S., Mobaseri M., Moin M., Khani M., Jamshidi A.H., Baghalian K., Taghizadeh M. Comparison of Lavandula angustifolia Mill. tincture and imipramine in the treatment of mild to moderate depression: A double-blind, randomized trial. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2003;27:123–127. doi: 10.1016/S0278-5846(02)00342-1. PubMed DOI
Verma R.S., Rahman L.U., Chanotiya C.S., Verma R.K., Chauhan A., Yadav A., Singh A., Yadav A.K. Essential oil composition of Lavandula angustifolia Mill. cultivated in the mid hills of Uttarakhand, India. J. Serb. Chem. Soc. 2010;75:343–348. doi: 10.2298/JSC090616015V. DOI
Vanin A.B., Orlando T., Piazza S.P., Puton B.M.S., Cansian R.L., Oliveira D., Paroul N. Antimicrobial and antioxidant activities of clove essential oil and eugenyl acetate produced by enzymatic esterification. Appl. Biochem. Biotechnol. 2014;174:1286–1298. doi: 10.1007/s12010-014-1113-x. PubMed DOI
Sahan Y. Effect of Prunus laurocerasus L. (Cherry laurel) leaf extracts on growth of bread spoilage fungi. Bulg. J. Agric. Sci. 2011;17:83–92.
Ferreira F.M., Delmonte C.C., Novato T.L.P., Monteiro C.M.O., Daemon E., Vilela F.M.P., Amaral M.P.H. Acaricidal activity of essential oil of Syzygium aromaticum, hydrolate and eugenol formulated or free on larvae and engorged females of Rhipicephalus microplus. Med. Vet. Entomol. 2018;32:41–47. doi: 10.1111/mve.12259. PubMed DOI
Lee K.G., Shibamoto T. Antioxidant property of aroma extract isolated from clove buds Syzygium aromaticum (L.) Merr. et Perry. Food Chem. 2001;74:443–448. doi: 10.1016/S0308-8146(01)00161-3. DOI
Dorman H.J.D., Deans S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000;88:308–316. doi: 10.1046/j.1365-2672.2000.00969.x. PubMed DOI
Nikolic M., Markovic T., Mojovic M., Pejin B., Savic A., Peric T., Markovic D., Stevic T., Sokovic M. Chemical composition and biological activity of Gaultheria procumbens L. essential oil. Ind. Crop. Prod. 2013;49:561–567. doi: 10.1016/j.indcrop.2013.06.002. DOI
Jabra-Rizk M.A., Meiller T.F., James C.E., Shirtliff M.E. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob. Agents Chemother. 2006;50:1463–1469. doi: 10.1128/AAC.50.4.1463-1469.2006. PubMed DOI PMC
Quave C.L., Plano L.R.W., Pantuso T., Bennett B.C. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 2008;118:418–428. doi: 10.1016/j.jep.2008.05.005. PubMed DOI PMC
Rasmussen T.B., Givskov M. Quorum sensing inhibitors: A bargain of effects. Microbiology. 2006;152:895–904. doi: 10.1099/mic.0.28601-0. PubMed DOI
Gomes F.I.A., Teixeira P., Azeredo J., Oliveira R. Effect of Farnesol on Planktonic and Biofilm Cells of Staphylococcus epidermidis. Curr. Microbiol. 2009;59:118–122. doi: 10.1007/s00284-009-9408-9. PubMed DOI
Bazargani M.M., Rohloff J. Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control. 2016;61:156–164. doi: 10.1016/j.foodcont.2015.09.036. DOI
Oliveira N.M., Martinez-Garcia E., Xavier J., Durham W.M., Kolter R., Kim W., Foster K.R. Biofilm formation as a response to ecological competition. PLoS Biol. 2015;13:1–23. doi: 10.1371/journal.pbio.1002191. PubMed DOI PMC
Kim Y.-G., Lee J.-H., Gwon G., Kim S.-I., Park J.G., Lee J. Essential oils and eugenols inhibit biofilm formation and the virulence of Escherichia coli O157:H7. Sci. Rep. 2016;6:1–11. doi: 10.1038/srep36377. PubMed DOI PMC
Sandasi M., Leonard C.M., Viljoen A.M. The effect of five common essential oil components on Listeria monocytogenes biofilms. Food Control. 2008;19:1070–1075. doi: 10.1016/j.foodcont.2007.11.006. DOI
D’Amato S., Serio A., Lopez C.C., Paparella A. Hydrosols: Biological activity and potential as antimicrobials for food applications. Food Control. 2018;86:126–137. doi: 10.1016/j.foodcont.2017.10.030. DOI
Palombo E.A. Traditional medicinal plant extracts and natural products with activity against oral bacteria: Potential application in the prevention and treatment of oral diseases. Evid. Based Complement. Altern. Med. 2011;2011:1–15. doi: 10.1093/ecam/nep067. PubMed DOI PMC
Duarte A., Luis A., Oleastro M., Domingues F.C. Antioxidant properties of coriander essential oil and linalool and their potential to control Campylobacter spp. Food Control. 2016;61:115–122. doi: 10.1016/j.foodcont.2015.09.033. DOI
Packiavathy I., Priya S., Pandian S.K., Ravi A.V. Inhibition of biofilm development of uropathogens by curcumin—An anti-quorum sensing agent from Curcuma longa. Food Chem. 2014;148:453–460. doi: 10.1016/j.foodchem.2012.08.002. PubMed DOI
Morobe I., Mthethwa S., Bisi-Johnson M., Vasaikar S., Obi C., Oyedeji A., Kambizi L., Eloff J., Hattori T. Cytotoxic effects and safety profiles of extracts of active medicinal plants from South Africa. J. Microbiol. Res. 2012;2:176–182.
De Oliveira P.F., Alves J.M., Damasceno J.L., Oliveira R.A.M., Dias H.J., Crotti A.E.M., Tavares D.C. Cytotoxicity screening of essential oils in cancer cell lines. Rev. Bras. Farmacogn. 2015;25:183–188. doi: 10.1016/j.bjp.2015.02.009. DOI
Prashar A., Locke I.C., Evans C.S. Cytotoxicity of lavender oil and its major components to human skin cells. Cell Prolif. 2004;37:221–229. doi: 10.1111/j.1365-2184.2004.00307.x. PubMed DOI PMC
Rizwana H., Al Kubaisi N., Al-Meghailaith N.N., Moubayed N.M.S., Albasher G. Evaluation of chemical composition, antibacterial, antifungal, and cytotoxic activity of Laurus nobilis L. Grown in Saudi Arabia. J. Pure Appl. Microbiol. 2019;13:2073–2085. doi: 10.22207/JPAM.13.4.19. DOI
Silhova-Hruskova L., Mot’kova P., Silha D., Vytrasova J. Detection of biofilm formation by selected pathogens relevant to the food industry. Epidemiol. Mikrobiol. Imunol. 2015;64:169–175. PubMed
Xing J.Z., Zhu L., Jackson J.A., Gabos S., Sun X.-J., Wang X.-B., Xu X. Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem. Res. Toxicol. 2005;18:154–161. doi: 10.1021/tx049721s. PubMed DOI
Xing J.Z., Zhu L., Gabos S., Xie L. Microelectronic cell sensor assay for detection of cytotoxicity and prediction of acute toxicity. Toxicol. In Vitro. 2006;20:995–1004. doi: 10.1016/j.tiv.2005.12.008. PubMed DOI
Smoothie Drinks: Possible Source of Resistant and Biofilm-Forming Microorganisms