Chemical Composition of Natural Hydrolates and Their Antimicrobial Activity on Arcobacter-Like Cells in Comparison with Other Microorganisms

. 2020 Nov 30 ; 25 (23) : . [epub] 20201130

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33266263

Hydrolates obtained via the hydrodistillation and steam distillation of Lavandulaangustifolia Mill., Syzygiumaromaticum L., Foeniculumvulgare Mill., and Laurusnobilis L. were analyzed by gas chromatography with flame ionization detector (GC-FID) and gas chromatography coupled to mass spectrometry (GC-MS). Additionally, the hydrolates were evaluated for antimicrobial activity (disk-diffusion and microdilution method), influence on biofilm formation (Christensen method) and cytotoxicity of concentrated hydrolates against human cell lines (A549) by xCELLigence system. Using chemical analysis, 48, 9, 13 and 33 different components were detected in lavender, clove, fennel and laurel hydrolates, respectively. Lavender hydrolate contained the largest proportion of 1,8-cineol, linalool furanoxide, and linalool. The main components of laurel hydrolate were 1,8-cineol, 4-terpineol and α-terpineol. Fenchone and estragole were the most abundant in fennel hydrolate, and eugenol and eugenyl acetate in clove hydrolate. Concentrated hydrolates showed significant antimicrobial activity. Clove hydrolate was among the most antimicrobially active agents, most preferably against C. albicans, with an inhibition zone up to 23.5 mm. Moreover, concentrated hydrolates did not show any cytotoxic effect again8 st human A549 cells. In the presence of the non-concentrated hydrolates, significantly reduced biofilm formation was observed; however, with concentrated clove hydrolate, there was an increase in biofilm formation, e.g., of A. thereius, A. lanthieri, and A. butzleri. Research shows new findings about hydrolates that may be important in natural medicine or for preservation purposes.

Zobrazit více v PubMed

Mohamed A., El-Sayed M.A., Hegazy M.E., Helaly S.E., Esmail A.M., Mohamed N.S. Chemical Constituents and Biological Activities of Artemisia herba-alba. Rec. Nat. Prod. 2010;4:1–25.

Sowndhararajan K., Deepa P., Kim M., Park S.J., Kim S. A Review of the Composition of the Essential Oils and Biological Activities of Angelica Species. Sci. Pharm. 2017;85:33. doi: 10.3390/scipharm85030033. PubMed DOI PMC

Pejin B., Vujisic L., Sabovljevic M., Tesevic V., Vajs V. Preliminary data on essential oil composition of the moss Rhodobryum ontariense (Kindb.) Kindb. Cryptogam. Bryol. 2011;32:113–117. doi: 10.7872/cryb.v32.iss1.2011.113. DOI

Dadalioglu I., Evrendilek G.A. Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens. J. Agric. Food Chem. 2004;52:8255–8260. doi: 10.1021/jf049033e. PubMed DOI

Diao W.R., Hu Q.P., Zhang H., Xu J.G. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.) Food Control. 2014;35:109–116. doi: 10.1016/j.foodcont.2013.06.056. DOI

Hamedi A., Moheimani S.M., Sakhteman A., Etemadfard H., Moein M. An overview on indications and chemical composition of aromatic waters (hydrosols) as functional beverages in Persian nutrition culture and folk medicine for hyperlipidemia and cardiovascular conditions. J. Evid. Based Complement. Altern. 2017;22:544–561. doi: 10.1177/2156587216686460. PubMed DOI PMC

Lu H., Li H., Li X.L., Zhou A.G. Chemical composition of lavender essential oil and its antioxidant activity and inhibition against rhinitis-related bacteria. Afr. J. Microbiol. Res. 2010;4:309–313.

Chaieb K., Hajlaoui H., Zmantar T., Kahla-Nakbi A.B., Rouabhia M., Mahdouani K., Bakhrouf A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. myrtaceae): A short review. Phytother. Res. 2007;21:501–506. PubMed

Edris A.E. Identification and absolute quantification of the major water-soluble aroma components isolated from the hydrosols of some aromatic plants. J. Essent. Oil Bear. Plants. 2009;12:155–161. doi: 10.1080/0972060X.2009.10643705. DOI

Politi M., Menghini L., Conti B., Bedini S., Farina P., Cioni P.L., Braca A., De Leo M. Reconsidering hydrosols as main products of aromatic plants manufactory: The lavandin (Lavandula × intermedia) case study in Tuscany. Molecules. 2020;25:2225. doi: 10.3390/molecules25092225. PubMed DOI PMC

Smigielski K., Prusinowska R., Stobiecka A., Kunicka-Styczynska A., Gruska R. Biological properties and chemical composition of essential oils from flowers and aerial parts of lavender (Lavandula angustifolia) J. Essent. Oil Bear. Plants. 2018;21:1303–1314. doi: 10.1080/0972060X.2018.1503068. DOI

Hay Y.O., Abril-Sierra M.A., Sequeda-Castaneda L.G., Bonnafous C., Raynaud C. Evaluation of combinations of essential oils and essential oils with hydrosols on antimicrobial and antioxidant activities. J. Pharm. Pharmacogn. Res. 2018;6:216–230.

Lira P.D., Reeta D., Tkacik E., Ringuelet J., Coussio J.D., van Baren C., Bandoni A.L. Essential oil and by-products of distillation of bay leaves (Laurus nobilis L.) from Argentina. Ind. Crop. Prod. 2009;30:259–264. doi: 10.1016/j.indcrop.2009.04.005. DOI

Baydar H., Sagdic O., Ozkan G., Karadogan T. Antibacterial activity and composition of essential oils from Origanum, Thymbra and Satureja species with commercial importance in Turkey. Food Control. 2004;15:169–172. doi: 10.1016/S0956-7135(03)00028-8. DOI

Rai M., Paralikar P., Jogee P., Agarkar G., Ingle A.P., Derita M., Zacchino S. Synergistic antimicrobial potential of essential oils in combination with nanoparticles: Emerging trends and future perspectives. Int. J. Pharm. 2017;519:67–78. doi: 10.1016/j.ijpharm.2017.01.013. PubMed DOI

Delaquis P.J., Stanich K., Girard B., Mazza G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol. 2002;74:101–109. doi: 10.1016/S0168-1605(01)00734-6. PubMed DOI

Sagdic O., Ozcan M. Antibacterial activity of Turkish spice hydrosols. Food Control. 2003;14:141–143. doi: 10.1016/S0956-7135(02)00057-9. DOI

Brenes M., Medina E., Romero C., De Castro A. Antimicrobial activity of olive oil. Agro Food Ind. Hi Tech. 2007;18:6–8. PubMed

Medina E., Romero C., Brenes M., de Castro A. Antimicrobial activity of olive oil, vinegar, and various beverages against foodborne pathogens. J. Food Prot. 2007;70:1194–1199. doi: 10.4315/0362-028X-70.5.1194. PubMed DOI

Chieffi D., Fanelli F., Fusco V. Arcobacter butzleri: Up-to-date taxonomy, ecology, and pathogenicity of an emerging pathogen. Compr. Rev. Food Sci. Food Saf. 2020;19:2071–2109. doi: 10.1111/1541-4337.12577. PubMed DOI

Collado L., Guarro J., Figueras M.J. Prevalence of Arcobacter in meat and shellfish. J. Food Prot. 2009;72:1102–1106. doi: 10.4315/0362-028X-72.5.1102. PubMed DOI

Van den Abeele A.-M., Vogelaers D., Van Hende J., Houf K. Prevalence of Arcobacter species among humans, Belgium, 2008–2013. Emerg Infect Dis. 2014;20:1731–1734. doi: 10.3201/eid2010.140433. PubMed DOI PMC

Reuter M., Mallett A., Pearson B.M., van Vliet A.H.M. Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Appl. Environ. Microbiol. 2010;76:2122–2128. doi: 10.1128/AEM.01878-09. PubMed DOI PMC

Elmali M., Can H.Y. Occurence and antimicrobial resistance of Arcobacter species in food and slaughterhouse samples. Food Sci. Technol. 2017;37:280–285. doi: 10.1590/1678-457x.19516. DOI

Levican A., Collado L., Figueras M.J. Arcobacter cloacae sp nov and Arcobacter suis sp nov., two new species isolated from food and sewage. Syst. Appl. Microbiol. 2013;36:22–27. doi: 10.1016/j.syapm.2012.11.003. PubMed DOI

Shah A.H., Saleha A.A., Zunita Z., Murugaiyah M. Arcobacter—An emerging threat to animals and animal origin food products? Trends Food Sci. Technol. 2011;22:225–236. doi: 10.1016/j.tifs.2011.01.010. DOI

Abay S., Kayman T., Hizlisoy H., Aydin F. In vitro antibacterial susceptibility of Arcobacter butzleri isolated from different sources. J. Vet. Med. Sci. 2012;74:613–616. doi: 10.1292/jvms.11-0487. PubMed DOI

Fera M.T., Maugeri T.L., Giannone M., Gugliandolo C., La Camera E., Blandino G., Carbone M. In vitro susceptibility of Arcobacter butzleri and Arcobacter cryaerophilus to different antimicrobial agents. Int. J. Antimicrob. Agents. 2003;21:488–491. doi: 10.1016/S0924-8579(03)00004-9. PubMed DOI

Kabeya H., Maruyama S., Morita Y., Ohsuga T., Ozawa S., Kobayashi Y., Abe M., Katsube Y., Mikami T. Prevalence of Arcobacter species in retail meats and antimicrobial susceptibility of the isolates in Japan. Int. J. Food Microbiol. 2004;90:303–308. doi: 10.1016/S0168-1605(03)00322-2. PubMed DOI

Shah A.H., Saleha A.A., Zunita Z., Murugaiyah M., Aliyu A.B. Antimicrobial susceptibility of an emergent zoonotic pathogen, Arcobacter butzleri. Int. J. Antimicrob. Agents. 2012;40:569–570. doi: 10.1016/j.ijantimicag.2012.08.001. PubMed DOI

Son I., Englen M.D., Berrang M.E., Fedorka-Cray P.J., Harrison M.A. Antimicrobial resistance of Arcobacter and Campylobacter from broiler carcasses. Int. J. Antimicrob. Agents. 2007;29:451–455. doi: 10.1016/j.ijantimicag.2006.10.016. PubMed DOI

Turek C., Stintzing F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013;12:40–53. doi: 10.1111/1541-4337.12006. DOI

Chlodwig F., Johannes N. Handbook of Essential Oils. CRC Press; Boca Raton, FL, USA: 2015. Production of Essential Oils; pp. 43–86.

Diaz-Maroto M.C., Perez-Coello M.S., Cabezudo M.D. Effect of drying method on the volatiles in bay leaf (Laurus nobilis L.) J. Agric. Food Chem. 2002;50:4520–4524. doi: 10.1021/jf011573d. PubMed DOI

Mota A.S., Martins M.R., Arantes S., Lopes V.R., Bettencourt E., Pombal S., Gomes A.C., Silva L.A. Antimicrobial activity and chemical composition of the essential oils of Portuguese Foeniculum vulgare Fruits. Nat. Prod. Commun. 2015;10:673–676. doi: 10.1177/1934578X1501000437. PubMed DOI

Pouryousef M. Variation in the essential oil constituents in indigenous populations of Foeniculum vulgare var. vulgare from different locations of Iran. J. Essent. Oil Res. 2014;26:441–445. doi: 10.1080/10412905.2014.956188. DOI

Gonzalez-Rivera J., Duce C., Falconieri D., Ferrari C., Ghezzi L., Piras A., Tine M.R. Coaxial microwave assisted hydrodistillation of essential oils from five different herbs (lavender, rosemary, sage, fennel seeds and clove buds): Chemical composition and thermal analysis. Innovative Food Sci. Emerg. Technol. 2016;33:308–318. doi: 10.1016/j.ifset.2015.12.011. DOI

Xiao Z.B., Chen J.Y., Niu Y.W., Chen F. Characterization of the key odorants of fennel essential oils of different regions using GC-MS and GC-O combined with partial least squares regression. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017;1063:226–234. doi: 10.1016/j.jchromb.2017.07.053. PubMed DOI

Trombetta D., Castelli F., Sarpietro M.G., Venuti V., Cristani M., Daniele C., Saija A., Mazzanti G., Bisignano G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005;49:2474–2478. doi: 10.1128/AAC.49.6.2474-2478.2005. PubMed DOI PMC

Kwiatkowski P., Mnichowska-Polanowska M., Pruss A., Masiuk H., Dzieciol M., Giedrys-Kalemba S., Sienkiewicz M. The effect of fennel essential oil in combination with antibiotics on Staphylococcus aureus strains isolated from carriers. Burns. 2017;43:1544–1551. doi: 10.1016/j.burns.2017.04.014. PubMed DOI

Roby M.H.H., Sarhan M.A., Selim K.A.H., Khalel K.I. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.) Ind. Crop. Prod. 2013;44:437–445. doi: 10.1016/j.indcrop.2012.10.012. DOI

De Oliveira S.P., Cunha G.S.P., Prates J.P.B., Fonseca F.S.A., de Souza K.S.S., Azevedo A.M., Xavier A., Santos E.M.S., Santos H.O., de Almeida A.C. Antimicrobial activity of essential oils extracted from clove and lemongrass against pathogenic bacteria isolated from bovine, swine and poultry feces. Semin. Cienc. Agrar. 2019;40:1937–1950. doi: 10.5433/1679-0359.2019v40n5p1937. DOI

Carson C.F., Riley T.V. Antimicrobial activity of the major components of the essential oil of Melalauca-alternifolia. J. Appl. Bacteriol. 1995;78:264–269. doi: 10.1111/j.1365-2672.1995.tb05025.x. PubMed DOI

De Souza S.M., Delle Monache F., Smania A., Jr. Antibacterial activity of coumarins. Z. Naturforsch. C. 2005;60:693–700. doi: 10.1515/znc-2005-9-1006. PubMed DOI

Kayser O., Kolodziej H. Antibacterial activity of simple coumarins: Structural requirements for biological activity. Z. Naturforsch. C J. Biosci. 1999;54:169–174. doi: 10.1515/znc-1999-3-405. PubMed DOI

Herman A., Tambor K. Linalool affects the antimicrobial efficacy of essential oils. Curr. Microbiol. 2016;72:165–172. doi: 10.1007/s00284-015-0933-4. PubMed DOI

Vijayakumar S., Vaseeharan B., Malaikozhundan B., Shobiya M. Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications. Biomed. Pharmacother. 2016;84:1213–1222. doi: 10.1016/j.biopha.2016.10.038. PubMed DOI

Kunicka-Styczynska A., Smigielski K., Prusinowska R., Rajkowska K., Kusmider B., Sikora M. Preservative activity of lavender hydrosols in moisturizing body gels. Lett. Appl. Microbiol. 2015;60:27–32. doi: 10.1111/lam.12346. PubMed DOI

Bajer T., Silha D., Ventura K., Bajerova P. Composition and antimicrobial activity of the essential oil, distilled aromatic water and herbal infusion from Epilobium parviflorum Schreb. Ind. Crop. Prod. 2017;100:95–105. doi: 10.1016/j.indcrop.2017.02.016. DOI

Cai L.N., Wu C.D. Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens. J. Nat. Prod. 1996;59:987–990. doi: 10.1021/np960451q. PubMed DOI

Akhondzadeh S., Kashani L., Fotouhi A., Jarvandi S., Mobaseri M., Moin M., Khani M., Jamshidi A.H., Baghalian K., Taghizadeh M. Comparison of Lavandula angustifolia Mill. tincture and imipramine in the treatment of mild to moderate depression: A double-blind, randomized trial. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2003;27:123–127. doi: 10.1016/S0278-5846(02)00342-1. PubMed DOI

Verma R.S., Rahman L.U., Chanotiya C.S., Verma R.K., Chauhan A., Yadav A., Singh A., Yadav A.K. Essential oil composition of Lavandula angustifolia Mill. cultivated in the mid hills of Uttarakhand, India. J. Serb. Chem. Soc. 2010;75:343–348. doi: 10.2298/JSC090616015V. DOI

Vanin A.B., Orlando T., Piazza S.P., Puton B.M.S., Cansian R.L., Oliveira D., Paroul N. Antimicrobial and antioxidant activities of clove essential oil and eugenyl acetate produced by enzymatic esterification. Appl. Biochem. Biotechnol. 2014;174:1286–1298. doi: 10.1007/s12010-014-1113-x. PubMed DOI

Sahan Y. Effect of Prunus laurocerasus L. (Cherry laurel) leaf extracts on growth of bread spoilage fungi. Bulg. J. Agric. Sci. 2011;17:83–92.

Ferreira F.M., Delmonte C.C., Novato T.L.P., Monteiro C.M.O., Daemon E., Vilela F.M.P., Amaral M.P.H. Acaricidal activity of essential oil of Syzygium aromaticum, hydrolate and eugenol formulated or free on larvae and engorged females of Rhipicephalus microplus. Med. Vet. Entomol. 2018;32:41–47. doi: 10.1111/mve.12259. PubMed DOI

Lee K.G., Shibamoto T. Antioxidant property of aroma extract isolated from clove buds Syzygium aromaticum (L.) Merr. et Perry. Food Chem. 2001;74:443–448. doi: 10.1016/S0308-8146(01)00161-3. DOI

Dorman H.J.D., Deans S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000;88:308–316. doi: 10.1046/j.1365-2672.2000.00969.x. PubMed DOI

Nikolic M., Markovic T., Mojovic M., Pejin B., Savic A., Peric T., Markovic D., Stevic T., Sokovic M. Chemical composition and biological activity of Gaultheria procumbens L. essential oil. Ind. Crop. Prod. 2013;49:561–567. doi: 10.1016/j.indcrop.2013.06.002. DOI

Jabra-Rizk M.A., Meiller T.F., James C.E., Shirtliff M.E. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob. Agents Chemother. 2006;50:1463–1469. doi: 10.1128/AAC.50.4.1463-1469.2006. PubMed DOI PMC

Quave C.L., Plano L.R.W., Pantuso T., Bennett B.C. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 2008;118:418–428. doi: 10.1016/j.jep.2008.05.005. PubMed DOI PMC

Rasmussen T.B., Givskov M. Quorum sensing inhibitors: A bargain of effects. Microbiology. 2006;152:895–904. doi: 10.1099/mic.0.28601-0. PubMed DOI

Gomes F.I.A., Teixeira P., Azeredo J., Oliveira R. Effect of Farnesol on Planktonic and Biofilm Cells of Staphylococcus epidermidis. Curr. Microbiol. 2009;59:118–122. doi: 10.1007/s00284-009-9408-9. PubMed DOI

Bazargani M.M., Rohloff J. Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control. 2016;61:156–164. doi: 10.1016/j.foodcont.2015.09.036. DOI

Oliveira N.M., Martinez-Garcia E., Xavier J., Durham W.M., Kolter R., Kim W., Foster K.R. Biofilm formation as a response to ecological competition. PLoS Biol. 2015;13:1–23. doi: 10.1371/journal.pbio.1002191. PubMed DOI PMC

Kim Y.-G., Lee J.-H., Gwon G., Kim S.-I., Park J.G., Lee J. Essential oils and eugenols inhibit biofilm formation and the virulence of Escherichia coli O157:H7. Sci. Rep. 2016;6:1–11. doi: 10.1038/srep36377. PubMed DOI PMC

Sandasi M., Leonard C.M., Viljoen A.M. The effect of five common essential oil components on Listeria monocytogenes biofilms. Food Control. 2008;19:1070–1075. doi: 10.1016/j.foodcont.2007.11.006. DOI

D’Amato S., Serio A., Lopez C.C., Paparella A. Hydrosols: Biological activity and potential as antimicrobials for food applications. Food Control. 2018;86:126–137. doi: 10.1016/j.foodcont.2017.10.030. DOI

Palombo E.A. Traditional medicinal plant extracts and natural products with activity against oral bacteria: Potential application in the prevention and treatment of oral diseases. Evid. Based Complement. Altern. Med. 2011;2011:1–15. doi: 10.1093/ecam/nep067. PubMed DOI PMC

Duarte A., Luis A., Oleastro M., Domingues F.C. Antioxidant properties of coriander essential oil and linalool and their potential to control Campylobacter spp. Food Control. 2016;61:115–122. doi: 10.1016/j.foodcont.2015.09.033. DOI

Packiavathy I., Priya S., Pandian S.K., Ravi A.V. Inhibition of biofilm development of uropathogens by curcumin—An anti-quorum sensing agent from Curcuma longa. Food Chem. 2014;148:453–460. doi: 10.1016/j.foodchem.2012.08.002. PubMed DOI

Morobe I., Mthethwa S., Bisi-Johnson M., Vasaikar S., Obi C., Oyedeji A., Kambizi L., Eloff J., Hattori T. Cytotoxic effects and safety profiles of extracts of active medicinal plants from South Africa. J. Microbiol. Res. 2012;2:176–182.

De Oliveira P.F., Alves J.M., Damasceno J.L., Oliveira R.A.M., Dias H.J., Crotti A.E.M., Tavares D.C. Cytotoxicity screening of essential oils in cancer cell lines. Rev. Bras. Farmacogn. 2015;25:183–188. doi: 10.1016/j.bjp.2015.02.009. DOI

Prashar A., Locke I.C., Evans C.S. Cytotoxicity of lavender oil and its major components to human skin cells. Cell Prolif. 2004;37:221–229. doi: 10.1111/j.1365-2184.2004.00307.x. PubMed DOI PMC

Rizwana H., Al Kubaisi N., Al-Meghailaith N.N., Moubayed N.M.S., Albasher G. Evaluation of chemical composition, antibacterial, antifungal, and cytotoxic activity of Laurus nobilis L. Grown in Saudi Arabia. J. Pure Appl. Microbiol. 2019;13:2073–2085. doi: 10.22207/JPAM.13.4.19. DOI

Silhova-Hruskova L., Mot’kova P., Silha D., Vytrasova J. Detection of biofilm formation by selected pathogens relevant to the food industry. Epidemiol. Mikrobiol. Imunol. 2015;64:169–175. PubMed

Xing J.Z., Zhu L., Jackson J.A., Gabos S., Sun X.-J., Wang X.-B., Xu X. Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem. Res. Toxicol. 2005;18:154–161. doi: 10.1021/tx049721s. PubMed DOI

Xing J.Z., Zhu L., Gabos S., Xie L. Microelectronic cell sensor assay for detection of cytotoxicity and prediction of acute toxicity. Toxicol. In Vitro. 2006;20:995–1004. doi: 10.1016/j.tiv.2005.12.008. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...