Biofilm Formation Ability of Arcobacter-like and Campylobacter Strains under Different Conditions and on Food Processing Materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34683338
PubMed Central
PMC8538277
DOI
10.3390/microorganisms9102017
PII: microorganisms9102017
Knihovny.cz E-zdroje
- Klíčová slova
- Aliarcobacter spp., Arcobacter-like, Campylobacter spp., abiotic surfaces, biofilm formation, food processing materials, temperature condition,
- Publikační typ
- časopisecké články MeSH
Campylobacter jejuni is the most frequent cause of bacterial gastrointestinal food-borne infection worldwide. The transmission of Campylobacter and Arcobacter-like species is often made possible by their ability to adhere to various abiotic surfaces. This study is focused on monitoring the biofilm ability of 69 strains of Campylobacter spp. and lesser described species of the Arcobacteraceae family isolated from food, water, and clinical samples within the Czech Republic. Biofilm formation was monitored and evaluated under an aerobic/microaerophilic atmosphere after cultivation for 24 or 72 h depending on the surface material. An overall higher adhesion ability was observed in arcobacters. A chi-squared test showed no association between the origin of the strains and biofilm activity (p > 0.05). Arcobacter-like species are able to form biofilms under microaerophilic and aerobic conditions; however, they prefer microaerophilic environments. Biofilm formation has already been demonstrated at refrigerator temperatures (5 °C). Arcobacters also showed higher biofilm formation ability at the temperature of 30 °C. This is in contrast to Campylobacter jejuni NP 2896, which showed higher biofilm formation ability at temperatures of 5-30 °C. Overall, the results demonstrated the biofilm formation ability of many strains, which poses a considerable risk to the food industry, medical practice, and human health.
Zobrazit více v PubMed
Donlan R.M., Costerton J.W. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clin. Microbiol. Rev. 2002;15:167–193. doi: 10.1128/CMR.15.2.167-193.2002. PubMed DOI PMC
Sutherland I.W. Biofilm exopolysaccharides: A strong and sticky framework. Microbiology. 2001;147:3–9. doi: 10.1099/00221287-147-1-3. PubMed DOI
Mah T.-F.C., O’Toole G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9:34–39. doi: 10.1016/S0966-842X(00)01913-2. PubMed DOI
Mulcahy H., Charron-Mazenod L., Lewenza S. Extracellular DNA Chelates Cations and Induces Antibiotic Resistance in Pseudomonas aeruginosa Biofilms. PLoS Pathog. 2008;4:e1000213. doi: 10.1371/journal.ppat.1000213. PubMed DOI PMC
Kwiecińska-Piróg J., Przekwas J., Majkut M., Skowron K., Gospodarek-Komkowska E. Biofilm Formation Reducing Properties of Manuka Honey and Propolis in Proteus mirabilis Rods Isolated from Chronic Wounds. Microorganisms. 2020;8:1823. doi: 10.3390/microorganisms8111823. PubMed DOI PMC
Šilha D., Švarcová K., Bajer T., Královec K., Tesařová E., Moučková K., Pejchalová M., Bajerová P. Chemical Composition of Natural Hydrolates and Their Antimicrobial Activity on Arcobacter-Like Cells in Comparison with Other Microorganisms. Molecules. 2020;25:5654. doi: 10.3390/molecules25235654. PubMed DOI PMC
Aparna M.S., Yadav S. Biofilms: Microbes and disease. Braz. J. Infect. Dis. 2008;12:526–530. doi: 10.1590/S1413-86702008000600016. PubMed DOI
Jamal M., Ahmad W., Andleeb S., Jalil F., Imran M., Nawaz M.A., Hussain T., Ali M., Rafiq M., Kamil M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018;81:7–11. doi: 10.1016/j.jcma.2017.07.012. PubMed DOI
Zhao X., Yu Z., Ding T. Quorum-Sensing Regulation of Antimicrobial Resistance in Bacteria. Microorganisms. 2020;8:425. doi: 10.3390/microorganisms8030425. PubMed DOI PMC
Naves P.L.F., Del Prado G., Huelves L., Gracia M., Ruiz V., Blanco J., Rodríguez-Cerrato V., Ponte M., Soriano F. Measurement of biofilm formation by clinical isolates of Escherichia coli method-dependent. J. Appl. Microbiol. 2008;105:585–590. doi: 10.1111/j.1365-2672.2008.03791.x. PubMed DOI
Silva V., Peirone C., Amaral J.S., Capita R., Alonso-Calleja C., Marques-Magallanes J.A., Martins Â., Carvalho Á., Maltez L., Pereira J.E., et al. High Efficacy of Ozonated Oils on the Removal of Biofilms Produced by Methicillin-Resistant Staphylococcus aureus (MRSA) from Infected Diabetic Foot Ulcers. Molecules. 2020;25:3601. doi: 10.3390/molecules25163601. PubMed DOI PMC
Srey S., Jahid I.K., Ha S.-D. Biofilm formation in food industries: A food safety concern. Food Control. 2013;31:572–585. doi: 10.1016/j.foodcont.2012.12.001. DOI
Costerton J.W., Stewart P., Greenberg E. Bacterial Biofilms: A Common Cause of Persistent Infections. Science. 1999;21:1318–1322. doi: 10.1126/science.284.5418.1318. PubMed DOI
Candon H.L., Allan B.J., Fraley C.D., Gaynor E.C. Polyphosphate Kinase 1 Is a Pathogenesis Determinant in Campylobacter jejuni. J. Bacteriol. 2007;189:8099–8108. doi: 10.1128/JB.01037-07. PubMed DOI PMC
Christensen G.D., Simpson W.A., Bisno A.L., Beachey E.H. Adherence of slime-producting strains of Staphylococcus-epidermidis to smooth surfaces. Infect. Immun. 1982;37:318–326. doi: 10.1128/iai.37.1.318-326.1982. PubMed DOI PMC
Niu C., Gilbert E.S. Colorimetric Method for Identifying Plant Essential Oil Components That Affect Biofilm Formation and Structure. Appl. Environ. Microbiol. 2004;70:6951–6956. doi: 10.1128/AEM.70.12.6951-6956.2004. PubMed DOI PMC
Guntheriv N., Chen C. The biofilm forming potential of bacterial species in the genus Campylobacter. Food Microbiol. 2009;26:44–51. doi: 10.1016/j.fm.2008.07.012. PubMed DOI
Mizan F.R., Jahid I.K., Ha S.-D. Microbial biofilms in seafood: A food-hygiene challenge. Food Microbiol. 2015;49:41–55. doi: 10.1016/j.fm.2015.01.009. PubMed DOI
Ferreira S., Fraqueza M.J., Queiroz J., Domingues F., Oleastro M. Genetic diversity, antibiotic resistance and biofilm-forming ability of Arcobacter butzleri isolated from poultry and environment from a Portuguese slaughterhouse. Int. J. Food Microbiol. 2013;162:82–88. doi: 10.1016/j.ijfoodmicro.2013.01.003. PubMed DOI
Silha D., Moravkova K., Skodova G., Vytrasova J. Viability and biofilm formation of Arcobacter spp. at various processing temperatures. J. Food Nutr. Res. 2019;58:208–213.
Šilha D., Šilhová-Hrušková L., Vytřasová J. Modified isolation method of Arcobacter spp. from different environmental and food samples. Folia Microbiol. 2015;60:515–521. doi: 10.1007/s12223-015-0395-x. PubMed DOI
Elmali M., CAN H.Y. Occurence and antimicrobial resistance of Arcobacter species in food and slaughterhouse samples. Food Sci. Technol. 2017;37:280–285. doi: 10.1590/1678-457x.19516. DOI
Waite D., Vanwonterghem I., Rinke C., Parks D.H., Zhang Y., Takai K., Sievert S., Simon J., Campbell B.J., Hanson T., et al. Comparative Genomic Analysis of the Class Epsilonproteobacteria and Proposed Reclassification to Epsilonbacteraeota (phyl. nov.) Front. Microbiol. 2017;8:1–19. doi: 10.3389/fmicb.2017.00682. PubMed DOI PMC
Pérez-Cataluña A., Salas-Massó N., Diéguez A.L., Balboa S., Lema A., Romalde J.L., Figueras M.J. Revisiting the Taxonomy of the Genus Arcobacter: Getting Order from the Chaos. Front. Microbiol. 2018;9:2077. doi: 10.3389/fmicb.2018.02077. PubMed DOI PMC
Abeele A.-M.V.D., Vogelaers D., Van Hende J., Houf K. Prevalence of Arcobacter Species among Humans, Belgium, 2008–2013. Emerg. Infect. Dis. 2014;20:364–383. doi: 10.3201/eid2010.140433. PubMed DOI PMC
Ferreira S., Queiroz J., Oleastro M., Domingues F. Insights in the pathogenesis and resistance of Arcobacter: A review. Crit. Rev. Microbiol. 2016;42:1–20. doi: 10.3109/1040841x.2014.954523. PubMed DOI
Reuter M., Mallett A., Pearson B., van Vliet A.H.M. Biofilm Formation by Campylobacter jejuni Is Increased under Aerobic Conditions. Appl. Environ. Microbiol. 2010;76:2122–2128. doi: 10.1128/AEM.01878-09. PubMed DOI PMC
Douidah L., De Zutter L., Vandamme P., Houf K. Identification of five human and mammal associated Arcobacter species by a novel multiplex-PCR assay. J. Microbiol. Methods. 2010;80:281–286. doi: 10.1016/j.mimet.2010.01.009. PubMed DOI
Figueras M.J., Levican A., Collado L. Updated 16S rRNA-RFLP method for the identification of all currently characterised Arcobacter spp. BMC Microbiol. 2012;12:292. doi: 10.1186/1471-2180-12-292. PubMed DOI PMC
Marshall S.M., Melito P.L., Woodward D.L., Johnson W.M., Rodgers F.G., Mulvey M.R. Rapid Identification of Campylobacter, Arcobacter, and Helicobacter Isolates by PCR-Restriction Fragment Length Polymorphism Analysis of the 16S rRNA Gene. J. Clin. Microbiol. 1999;37:4158–4160. doi: 10.1128/JCM.37.12.4158-4160.1999. PubMed DOI PMC
Christensen G.D., Simpson W.A., Younger J.J., Baddour L.M., Barrett F.F., Melton D.M., Beachey E.H. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 1985;22:996–1006. doi: 10.1128/jcm.22.6.996-1006.1985. PubMed DOI PMC
Stepanović S., Vuković D., Dakić I., Savić B., Švabić-Vlahović M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods. 2000;40:175–179. doi: 10.1016/S0167-7012(00)00122-6. PubMed DOI
Blackman I.C., Frank J.F. Growth of Listeria monocytogenes as a Biofilm on Various Food-Processing Surfaces. J. Food Prot. 1996;59:827–831. doi: 10.4315/0362-028X-59.8.827. PubMed DOI
Collado L., Figueras M.J. Taxonomy, Epidemiology, and Clinical Relevance of the Genus Arcobacter. Clin. Microbiol. Rev. 2011;24:174–192. doi: 10.1128/CMR.00034-10. PubMed DOI PMC
Kjeldgaard J., Jørgensen K., Ingmer H. Growth and survival at chiller temperatures of Arcobacter butzleri. Int. J. Food Microbiol. 2009;131:256–259. doi: 10.1016/j.ijfoodmicro.2009.02.017. PubMed DOI
Silha D., Hruskova L., Brozkova I., Motkova P., Vytrasova J. Survival of selected bacteria from the genus Arcobacter on various metallic surfaces. J. Food Nutr. Res. 2014;53:217–223.
Šilhová-Hrušková L., Moťková P., Šilha D., Vytřasová J. [Detection of biofilm formation by selected pathogens relevant to the food industry] Epidemiol. Mikrobiol. Imunol. 2015;64:169–175. PubMed
Girbau C., Martinez-Malaxetxebarria I., Muruaga G., Carmona S., Alonso R., Fernandez-Astorga A. Study of Biofilm Formation Ability of Foodborne Arcobacter butzleri under Different Conditions. J. Food Prot. 2017;80:758–762. doi: 10.4315/0362-028X.JFP-16-505. PubMed DOI
Joshua G.W.P., Guthrie-Irons C., Karlyshev A.V., Wren B.W. Biofilm formation in Campylobacter jejuni. Microbiology. 2006;152:387–396. doi: 10.1099/mic.0.28358-0. PubMed DOI
Reeser R.J., Medler R.T., Billington S.J., Jost B.H., Joens L.A. Characterization of Campylobacter jejuni Biofilms under Defined Growth Conditions. Appl. Environ. Microbiol. 2007;73:1908–1913. doi: 10.1128/AEM.00740-06. PubMed DOI PMC
Teh K.H., Flint S., French N. Biofilm formation by Campylobacter jejuni in controlled mixed-microbial populations. Int. J. Food Microbiol. 2010;143:118–124. doi: 10.1016/j.ijfoodmicro.2010.07.037. PubMed DOI
Hrušková L., Mot’Ková P., Vytřasová J. Multiplex polymerase chain reaction using ethidium monoazide and propidium monoazide for distinguishing viable and dead cells of arcobacters in biofilm. Can. J. Microbiol. 2013;59:797–802. doi: 10.1139/cjm-2013-0635. PubMed DOI
Prakash P., Singh A., Achra A., Singh G.P., DAS A., Singh R.K. Standardization and classification of In vitro biofilm formation by clinical isolates of Staphylococcus aureus. J. Glob. Infect. Dis. 2017;9:93–101. doi: 10.4103/jgid.jgid_91_16. PubMed DOI PMC
Knobloch J.K.-M., Horstkotte M.A., Rohde H., Mack D. Evaluation of different detection methods of biofilm formation in Staphylococcus aureus. Med. Microbiol. Immunol. 2002;191:101–106. doi: 10.1007/s00430-002-0124-3. PubMed DOI
Assanta M.A., Roy D., Lemay M.-J., Montpetit D. Attachment of Arcobacter butzleri, a New Waterborne Pathogen, to Water Distribution Pipe Surfaces. J. Food Prot. 2002;65:1240–1247. doi: 10.4315/0362-028X-65.8.1240. PubMed DOI
Teh A.H.T., Lee S.M., Dykes G.A. Does Campylobacter jejuni Form Biofilms in Food-Related Environments? Appl. Environ. Microbiol. 2014;80:5154–5160. doi: 10.1128/AEM.01493-14. PubMed DOI PMC
Dykes G., Sampathkumar B., Korber D. Planktonic or biofilm growth affects survival, hydrophobicity and protein expression patterns of a pathogenic Campylobacter jejuni strain. Int. J. Food Microbiol. 2003;89:1–10. doi: 10.1016/S0168-1605(03)00123-5. PubMed DOI