The Effect of Antibiotics on Planktonic Cells and Biofilm Formation Ability of Collected Arcobacter-like Strains and Strains Isolated within the Czech Republic
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35052964
PubMed Central
PMC8772874
DOI
10.3390/antibiotics11010087
PII: antibiotics11010087
Knihovny.cz E-zdroje
- Klíčová slova
- Aliarcobacter butzleri, Aliarcobacter cryaerophilus, Arcobacter-like, MIC, antibiotic resistance, antibiotics, biofilm,
- Publikační typ
- časopisecké články MeSH
The purpose of this study was to test the in vitro effects of ampicillin, ciprofloxacin, clindamycin, erythromycin, gentamicin, and tetracycline on planktonic cells of Arcobacter-like microorganisms and on their biofilm formation ability. The minimum inhibitory concentrations (MICs) were determined by the microdilution method. Further, biofilm formation ability in the presence of various concentrations of antibiotics was evaluated by a modified Christensen method. Most of the 60 strains exhibited high susceptibility to gentamicin (98.3%), ciprofloxacin (95.0%), and erythromycin (100.0%). High level of resistance was observed to clindamycin and tetracycline with MIC50 and MIC90 in range of 4-32 mg/L and 32-128 mg/L, respectively. Combined resistance to both clindamycin and tetracycline was found in 38.3% of tested strains. In general, higher biofilm formation was observed especially at lower concentrations of antibiotics (0.13-2 mg/L). However, a significant decrease in biofilm formation ability of Pseudarcobacter defluvii LMG 25694 was exhibited with ampicillin and clindamycin at concentrations above 32 or 8 mg/L, respectively. Biofilm formation represents a potential danger of infection and also a risk to human health, in particular due to antimicrobial-resistant strains and the ability to form a biofilm structure at a concentration that is approximately the MIC determined for planktonic cells.
Zobrazit více v PubMed
Vandamme P., Falsen E., Rossau R., Hoste B., Segers P., Tytgat R., De Ley J. Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: Emendation of generic descriptions and proposal of Arcobacter gen. nov. Int. J. Syst. Bacteriol. 1991;41:88–103. doi: 10.1099/00207713-41-1-88. PubMed DOI
Schumacher W., Kroneck P.M.H., Pfennig N. Comparative systematic study on Spirillum 5175, Campylobacter and Wolinella species: Description of Spirillum 5175 as Sulfurospirillum deleyianum gen. nov., spec. nov. Arch. Microbiol. 1992;158:287–293. doi: 10.1007/BF00245247. DOI
Chieffi D., Fanelli F., Fusco F. Arcobacter butzleri: Up-to-date taxonomy, ecology, and pathogenicity of an emerging pathogen. Compr. Rev. Food Sci. Food Saf. 2020;19:2071–2109. doi: 10.1111/1541-4337.12577. PubMed DOI
Waite D.W., Vanwonterghem I., Rinke C., Parks D.H., Zhang Y., Takai K., Hugenholtz P. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.) Front. Microbiol. 2017;8:682. doi: 10.3389/fmicb.2017.00682. PubMed DOI PMC
Waite D.W., Vanwonterghem I., Rinke C., Parks D.H., Zhang Y., Takai K., Hugenholtz P. Addendum: Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.) Front. Microbiol. 2018;9:772. doi: 10.3389/fmicb.2018.00772. PubMed DOI PMC
Ferreira S., Oleastro M., Domingues F. Current insights on Arcobacter butzleri in food chain. Curr. Opin. Food Sci. 2019;26:9–17. doi: 10.1016/j.cofs.2019.02.013. DOI
Debruyne L., Gevers D., Vandamme P. Taxonomy of the Family Campylobacteraceae Campylobacter. 3rd ed. ASM Press; Washington, DC, USA: 2008. p. 732.
Šilha D., Hrušková L., Brožková I., Moťková P., Vytřasová J. Survival of selected bacteria from the genus Arcobacter on various metallic surfaces. J. Food Nutr. Res. 2014;53:217–223.
Fanelli F., Pinto Di A., Mottola A., Mule G., Chieffi D., Baruzzi F., Fusco V. Genomic characterization of Arcobacter butzleri isolated from shellfish: Novel insight into antibiotic resistance and virulence determinants. Front. Microbiol. 2019;10:670. doi: 10.3389/fmicb.2019.00670. PubMed DOI PMC
Šilha D., Vackova B., Šilhova L. Occurrence of virulence-associated genes in Arcobacter butzleri and Arcobacter cryaerophilus isolates from foodstuff, water, and clinical samples within the Czech Republic. Folia Microbiol. 2019;64:25–31. doi: 10.1007/s12223-018-0628-x. PubMed DOI
Collado L., Figueras M.J. Taxonomy, Epidemiology, and Clinical Relevance of the Genus Arcobacter. Clin. Microbiol. Rev. 2011;24:174–192. doi: 10.1128/CMR.00034-10. PubMed DOI PMC
Ferreira S., Queiroz J.A., Oleastro M., Domingues F.C. Insights in the pathogenesis and resistance of Arcobacter: A review. Crit. Rev. Microbiol. 2016;42:364–383. PubMed
Miller W.G., Parker C.T., Rubenfield M., Mendz G.L., Wosten M.M., Ussery D.W., Mandrell R.E. The complete genome sequence and analysis of the epsilonproteobacterium Arcobacter butzleri. PLoS ONE. 2007;2:e1358. doi: 10.1371/journal.pone.0001358. PubMed DOI PMC
Girbau C., Martinez-Malaxetxebarria I., Muruaga G., Carmona S., Alonso R., Fernandez-Astorga A. Study of biofilm formation ability of foodborne Arcobacter butzleri under different conditions. J. Food Protect. 2017;80:758–762. doi: 10.4315/0362-028X.JFP-16-505. PubMed DOI
Passerini de Rossi B., García C., Calenda M., Vay C., Franco M. Activity of levofloxacin and ciprofloxacin on biofilms and planktonic cells of Stenotrophomonas maltophilia isolates from patients with device-associated infections. Int. J. Antimicrob. Agents. 2009;34:260–264. doi: 10.1016/j.ijantimicag.2009.02.022. PubMed DOI
Šilha D., Sirotková S., Švarcová K., Hofmeisterová L., Koryčanová K., Šilhová L. Biofilm Formation Ability of Arcobacter-Like and Campylobacter Strains under Different Conditions and on Food Processing Materials. Microorganisms. 2021;9:2017. doi: 10.3390/microorganisms9102017. PubMed DOI PMC
Ramees T.P., Dhama K., Karthik K., Rathore R.S., Kumar A., Saminathan M., Tiwari R., Malik Y.S., Singh R.K. Arcobacter: An emerging food-borne zoonotic pathogen, its public health concerns and advances in diagnosis and control—A comprehensive review. Vet. Q. 2017;37:136–161. doi: 10.1080/01652176.2017.1323355. PubMed DOI
Van den Abeele V., Vogelaers D., Vanlaere E., Houf K. Antimicrobial susceptibility testing of Arcobacter butzleri and Arcobacter cryaerophilus strains isolated from Belgian patients. J. Antimicrob. Chem. 2016;71:1241–1244. doi: 10.1093/jac/dkv483. PubMed DOI
Šilha D., Pejchalova M., Šilhova L. Susceptibility to 18 drugs and multidrug resistance of Arcobacter isolates from different sources within the Czech Republic. J. Glob. Antimicrob. Resist. 2017;9:74–77. doi: 10.1016/j.jgar.2017.01.006. PubMed DOI
Vicente-Martins S., Oleastro M., Domingues F.C., Ferreira S. Arcobacter spp. at retail food from Portugal: Prevalence, genotyping and antibiotics resistance. Food Control. 2018;85:107–112. doi: 10.1016/j.foodcont.2017.09.024. DOI
Rathlavath S., Kohli V., Singh A.S., Lekshmi M., Tripathi G., Kumar S., Nayak B.B. Virulence genotypes and antimicrobial susceptibility patterns of Arcobacter butzleri isolated from seafood and its environment. Int. J. Food Microbiol. 2017;263:32–37. doi: 10.1016/j.ijfoodmicro.2017.10.005. PubMed DOI
Riesenberg A., Frömke C., Stingl K., Feßler A.T., Gölz G., Glocker E.O., Kreienbrock L., Klarmann D., Werckenthin C., Schwarz S. Antimicrobial susceptibility testing of Arcobacter butzleri: Development and application of a new protocol for broth microdilution. J. Antimicrob. Chem. 2017;72:2769–2774. doi: 10.1093/jac/dkx211. PubMed DOI
Zacharow I., Bystroń J., Wałecka-Zacharska E., Podkowik M., Bania J. Prevalence and antimicrobial resistance of Arcobacter butzleri and Arcobacter cryaerophilus isolates from retail meat in Lower Silesia region, Poland. Pol. J. Vet. Sci. 2015;18:63–69. doi: 10.1515/pjvs-2015-0008. PubMed DOI
Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2017. CLSI supplement M100.
Aski S., Tabatabaei H., Khoshbakht M., Raeisi M. Occurrence and antimicrobial resistance of emergent Arcobacter spp. isolated from cattle and sheep in Iran. Comp. Immunol. Microbiol. Infect. Dis. 2016;44:37–40. doi: 10.1016/j.cimid.2015.12.002. PubMed DOI
Kayman T., Abay S., Hizlisoy H., Atabay H.İ., Diker K.S., Aydin F. Emerging pathogen Arcobacter spp. in acute gastroenteritis: Molecular identification, antibiotic susceptibilities and genotyping of the isolated arcobacters. J. Med. Microbiol. 2012;10:1439–1444. doi: 10.1099/jmm.0.044594-0. PubMed DOI
Ferreira S., Queiroz J.A., Oleastro M., Domingues F.C. Genotypic and phenotypic features of Arcobacter butzleri pathogenicity. Microb. Pathog. 2014;76:19–25. doi: 10.1016/j.micpath.2014.09.004. PubMed DOI
Vandenberg O., Houf K., Douat N., Vlaes L., Retore P., Butzler J.P., Dediste A. An-timicrobial susceptibility of clinical isolates of non-jejuni/coli campylobacters and arcobacters from Belgium. J. Antimicrob. Chem. 2006;57:908–913. doi: 10.1093/jac/dkl080. PubMed DOI
Ferreira S., Fraqueza M.J., Queiroz J.A., Domingues F.C., Oleastro M. Genetic diversity, antibiotic resistance and biofilm-forming ability of A. butzleri isolated from poultry and environment from a Portuguese slaughterhouse. Int. J. Food Microbiol. 2013;162:82–88. doi: 10.1016/j.ijfoodmicro.2013.01.003. PubMed DOI
Houf K., Devriese L.A., Haesebrouck F., Vandenberg O., Butzler J.P., van Hoof J., Vandamme P. Antimicrobial susceptibility patterns of Arcobacter butzleri and Arcobacter cryaerophilus strains isolated from humans and broilers. Microb. Drug Resist. 2004;10:243–247. doi: 10.1089/mdr.2004.10.243. PubMed DOI
Abay S., Kayman T., Hizlisoy H., Fuat A. In vitro Antibacterial Susceptibility of Arcobacter butzleri Isolated from Different Sources. J. Vet. Med. Sci. 2011;74:613–616. doi: 10.1292/jvms.11-0487. PubMed DOI
Tezel U.B., Akcelik N., Yuksel F.N., Karatuğ N., Akcelik M. Effects of sub-MIC antibiotic concentrations on biofilm production of Salmonella Infantis. Biotechnol. Biotechnolog. Equip. 2016;30:1184–1191. doi: 10.1080/13102818.2016.1224981. DOI
Kjeldgaard J., Jørgensen K., Ingmer H. Growth and survival at chiller temperatures of Arcobacter butzleri. Int. J. Food Microbiol. 2009;131:256–259. doi: 10.1016/j.ijfoodmicro.2009.02.017. PubMed DOI
Jabra-Rizk M.A., Meiller T.F., James C.E., Shirtli M.E. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob. Agents Chem. 2006;50:1463–1469. doi: 10.1128/AAC.50.4.1463-1469.2006. PubMed DOI PMC
Šilhová-Hrušková L., Moťková P., Šilha D., Vytřasová J. Hodnocení tvorby biofilmu vybraných patogenů vyskytujících se v potravinářském průmyslu. Epidemiol. Mikrobiol. Imunol. 2015;64:169–174. PubMed
Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: A common cause of persistent infections. Science. 1999;284:1318–1322. doi: 10.1126/science.284.5418.1318. PubMed DOI
Plyuta V., Zaitseva J., Lobakova E., Zagoskina N., Kuznetsov A., Khmel I. Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa. APMIS. 2013;121:1073–1081. doi: 10.1111/apm.12083. PubMed DOI
Kaplan J.B. Antibiotic-induced biofilm formation. Int. J. Artif. Org. 2011;34:737–751. doi: 10.5301/ijao.5000027. PubMed DOI
Duarte A., Alves A.C., Ferreira S., Silva F., Domingues F.C. Resveratrol inclusion complexes: Antibacterial and anti-biofilm activity against Campylobacter spp. and Arcobacter butzleri. Food Res. Int. 2015;77:244–250. doi: 10.1016/j.foodres.2015.05.047. DOI
Wojnicz D., Tichaczek-Goska D. Effect of sub-minimum inhibitory concentrations of ciprofloxacin, amikacin and colistin on biofilm formation and virulence factors of Escherichia coli planktonic and biofilm forms isolated from human urine. Braz. J. Microbiol. 2013;44:259–265. doi: 10.1590/S1517-83822013000100037. PubMed DOI PMC
Ciofu O., Rojo-Molinero E., Macia M.D., Oliver A. Antibiotic treatment of biofilm infections. APMIS. 2017;125:304–319. doi: 10.1111/apm.12673. PubMed DOI
Šilha D., Švarcova K., Bajer T., Královec K., Tesarova E., Mouckova K., Pejchalová M., Bajerova P. Chemical Composition of Natural Hydrolates and Their Antimicrobial Activity on Arcobacter-Like Cells in Comparison with Other Microorganisms. Molecules. 2020;25:5654. doi: 10.3390/molecules25235654. PubMed DOI PMC
Smoothie Drinks: Possible Source of Resistant and Biofilm-Forming Microorganisms