In Vitro Activity of Water Extracts of Olive Oil against Planktonic Cells and Biofilm Formation of Arcobacter-like Species

. 2022 Jul 14 ; 27 (14) : . [epub] 20220714

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35889378

Extra-virgin olive oils contain many bioactive substances that are phenolic compounds. The survival of Arcobacter-like strains in non-buffered (WEOO) and buffered (BEOO) extracts of olive oils were studied. Time kill curves of different strains were measured in the environment of olive oil extracts of different grades. The activity of the extracts was also monitored for biofilm formation using the Christensen method. In vitro results revealed that extra-virgin olive oil extracts exhibited the strongest antimicrobial effects, especially non-buffered extracts, which exhibited strain inhibition after only 5 min of exposure. The weakest inhibitory effects were observed for olive oil extracts. A decrease in biofilm formation was observed in the environment of higher WEOO concentrations, although at lower concentrations of extracts, increased biofilm formation occurred due to stress conditions. The dialdehydic forms of oleuropein derivatives, hydroxytyrosol, and tyrosol were the main compounds detected by HPLC-CoulArray. The results indicate that not all olive oils had a similar bactericidal effect, and that bioactivity primarily depended on the content of certain phenolic compounds.

Zobrazit více v PubMed

Vandamme P., Falsen E., Rossau R., Hoste B., Segers P., Tytgat R., De Ley J. Revision of Campylobacter, Helicobacter, and Wolinella Taxonomy: Emendation of Generic Descriptions and Proposal of Arcobacter gen. nov. Int. J. Syst. Bacteriol. 1991;41:88–103. doi: 10.1099/00207713-41-1-88. PubMed DOI

Chieffi D., Fanelli F., Fusco F. Arcobacter butzleri: Up-to-date taxonomy, ecology, and pathogenicity of an emerging pathogen. Compr. Rev. Food Sci. Food Saf. 2020;19:2071–2109. doi: 10.1111/1541-4337.12577. PubMed DOI

Pérez-Cataluña A., Salas-Massó N., Diéguez A.L., Balboa S., Lema A., Romalde J.L., Figueras M.J. Revisiting the Taxonomy of the Genus Arcobacter: Getting Order From the Chaos. Front. Microbiol. 2018;9:2077. doi: 10.3389/fmicb.2018.02077. PubMed DOI PMC

Waite D.W., Vanwonterghem I., Rinke C., Parks D.H., Zhang Y., Takai K., Sievert S.M., Simon J., Campbell B.J., Hanson T.E., et al. Addendum: Comparative Genomic Analysis of the Class Epsilonproteobacteria and Proposed Reclassification to Epsilonbacteraeota (phyl. nov.) Front. Microbiol. 2018;9:772. doi: 10.3389/fmicb.2018.00772. PubMed DOI PMC

Pérez-Cataluña A., Salas-Massó N., Diéguez A.L., Balboa S., Lema A., Romalde J.L., Figueras M.J. Corrigendum (2): Revisiting the Taxonomy of the Genus Arcobacter: Getting Order From the Chaos. Front. Microbiol. 2019;10:2253. doi: 10.3389/fmicb.2019.02253. PubMed DOI PMC

Lastovica A.J., On S.L.W., Zhang L. The Family Campylobacteraceae. Prokaryotes. 2014;11:307–335. doi: 10.1007/978-3-642-39044-9_274. DOI

Lawley R., Curtis L., Davis J. The Food Safety Hazard Guidebook. 2nd ed. Royal Society of Chemistry Publishing; London, UK: 2012.

Van Den Abeele A.-M., Vogelaers D., Vanlaere E., Houf K. Antimicrobial susceptibility testing of Arcobacter butzleri and Arcobacter cryaerophilus strains isolated from Belgian patients. J. Antimicrob. Chemother. 2016;71:1241–1244. doi: 10.1093/jac/dkv483. PubMed DOI

Chuan J., Belov A., Cloutier M., Li X., Khan I.U.H., Chen W. Comparative genomics analysis and virulence-related factors in novel Aliarcobacter faecis and Aliarcobacter lanthieri species identified as potential opportunistic pathogens. BMC Genom. 2022;23:471. doi: 10.1186/s12864-022-08663-w. PubMed DOI PMC

Plyuta V., Zaitseva J., Lobakova E., Zagoskina N., Kuznetsov A., Khmel I. Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa. APMIS. 2013;121:1073–1081. doi: 10.1111/apm.12083. PubMed DOI

Nazzaro F., Fratianni F., De Martino L., Coppola R., De Feo V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals. 2013;6:1451–1474. doi: 10.3390/ph6121451. PubMed DOI PMC

Drašar P., Moravcova J. Recent advances in analysis of Chinese medical plants and traditional medicines. J. Chromatogr. B. 2004;812:3–21. doi: 10.1016/j.jchromb.2004.09.037. PubMed DOI

Jimenez-Lopez C., Carpena M., Lourenço-Lopes C., Gallardo-Gomez M., Lorenzo J.M., Barba F.J., Prieto M.A., Simal-Gandara J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods. 2020;9:1014. doi: 10.3390/foods9081014. PubMed DOI PMC

Jukić Špika M., Perica S., Žanetić M., Škevin D. Virgin Olive Oil Phenols, Fatty Acid Composition and Sensory Profile: Can Cultivar Overpower Environmental and Ripening Effect? Antioxidants. 2021;10:689. doi: 10.3390/antiox10050689. PubMed DOI PMC

Maalouf J., Tomazou J.C., Azar S., Bou-Mitri C., Doumit J., Youssef A., Andary R.B., Skaff W.A., El Riachy M.G. Determinant factors of olive oil stability, phenolic content and antioxidant capacity. Nutr. Food Sci. 2021;52:86–105. doi: 10.1108/NFS-01-2021-0030. DOI

Brenes M., Medina E., Romero C., De Castro A. Antimicrobial activity of olive oil. Agro Food Ind. Hi Tech. 2007;18:6–8. PubMed

Medina E., Romero C., Brenes M., De Castro A. Antimicrobial activity of olive oil, vinegar, and various beverages against foodborne pathogens. J. Food Prot. 2007;70:1194–1199. doi: 10.4315/0362-028X-70.5.1194. PubMed DOI

Hayek S.A., Gyawali R., Ibrahim S.A. Microbial Pathogens and Strategies for Combating them: Science, Technology and Education. Formatex Research Center; Badajoz, Spain: 2013. Antimicrobial natural products; pp. 910–921.

Medina E., De Castro A., Romero C., Brenes M. Comparison of the concentrations of phenolic compounds in olive oils and other plant oils: Correlation with antimicrobial activity. J. Agric. Food Chem. 2006;54:4954–4961. doi: 10.1021/jf0602267. PubMed DOI

Cowan M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999;12:564–582. doi: 10.1128/CMR.12.4.564. PubMed DOI PMC

Panayotis S.R., Karathanos V.T., Mantzavinou A. Partitioning of Olive Oil Antioxidants between Oil and Water Phases. J. Agric. Food Chem. 2002;50:596–601. doi: 10.1021/jf010864j. PubMed DOI

Švecová B., Bordovská M., Kalvachová D., Hájek T. Analysis of Czech meads: Sugar content, organic acids content and selected phenolic compounds content. J. Food Compos. Anal. 2015;38:80–88. doi: 10.1016/j.jfca.2014.11.002. DOI

Matić P., Sabljić M., Jakobek L. Validation of Spectrophotometric Methods for the Determination of Total Polyphenol and Total Flavonoid Content. J. AOAC Int. 2017;100:1795–1803. doi: 10.5740/jaoacint.17-0066. PubMed DOI

Švarcová K., Pejchalová M., Šilha D. The Effect of Antibiotics on Planktonic Cells and Biofilm Formation Ability of Collected Arcobacter-like Strains and Strains Isolated within the Czech Republic. Antibiotics. 2022;11:87. doi: 10.3390/antibiotics11010087. PubMed DOI PMC

Garrett T.R., Bhakoo M., Zhang Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 2008;18:1049–1056. doi: 10.1016/j.pnsc.2008.04.001. DOI

Funatogawa K., Hayashi S., Shimomura H., Yoshida T., Hatano T., Ito H., Hirai Y. Antibacterial activity of hydrolyzable tannis derived from medicinal plants against Helicobacter pylori. Microb. Immunol. 2004;48:251–261. doi: 10.1111/j.1348-0421.2004.tb03521.x. PubMed DOI

Nohynek L.J., Alakomi H., Khäkönen M.P., Heinonen M., Helander I.M., Oksman-Caldentey K., Puupponen-Pimiä R.H. Berry phenolics: Antimicrobial properties and mechanism of action against severe human pathogens. Nutr. Cancer. 2006;54:18–32. doi: 10.1207/s15327914nc5401_4. PubMed DOI

Nazzaro F., Fratianni F., Cozzolino R., Martignetti A., Malorni L., De Feo V., Cruz A.G., d’Acierno A. Antibacterial Activity of Three Extra Virgin Olive Oils of the Campania Region, Southern Italy, Related to Their Polyphenol Content and Composition. Microorganisms. 2019;7:321. doi: 10.3390/microorganisms7090321. PubMed DOI PMC

Gutierrez J., Rodriguez G., Barry-Ryan C., Bourke P. Efficacy of plant essential oils against foodborne pathogens and spoilage bacteria associated with ready-to-eat vegetables: Antimicrobial and sensory screening. J. Food Prot. 2008;71:1846–1854. doi: 10.4315/0362-028X-71.9.1846. PubMed DOI

Keceli T., Robinson R.K. Antimicrobial activity of phenolic extracts from virgin olive oil. Milchwissenschaft. 2002;57:436–440.

Romero C., Medina E., Vargas J., Brenes M., De Castro A. In vitro activity of olive oil polyphenols against Helicobacter pylori. J. Agric. Food Chem. 2007;55:680–686. doi: 10.1021/jf0630217. PubMed DOI

Girbau C., Martinez-Malaxetxebarria I., Muruaga G., Carmona S., Alonso R., Fernandez-Astorga A. Study of Biofilm Formation Ability of Foodborne Arcobacter butzleri under Different Conditions. J. Food Prot. 2017;80:758–762. doi: 10.4315/0362-028X.JFP-16-505. PubMed DOI

Kjeldgaard J., Jørgensen K., Ingmer H. Growth and survival at chiller temperatures of Arcobacter butzleri. Int. J. Food Microbiol. 2009;131:256–259. doi: 10.1016/j.ijfoodmicro.2009.02.017. PubMed DOI

Šilha D., Sirotková S., Švarcová K., Hofmeisterová L., Koryčanová K., Šilhová L. Biofilm Formation Ability of Arcobacter-Like and Campylobacter Strains under Different Conditions and on Food Processing Materials. Microorganisms. 2021;9:2017. doi: 10.3390/microorganisms9102017. PubMed DOI PMC

Jabra-Rizk M.A., Meiller T.F., James C.E., Shirtli M.E. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob. Agents Chemoter. 2006;50:1463–1469. doi: 10.1128/AAC.50.4.1463-1469.2006. PubMed DOI PMC

Palombo E.A. Traditional Medicinal Plant Extracts and Natural Products with Activity against Oral Bacteria: Potential Application in the Prevention and Treatment of Oral Diseases. Evid. Based Complement. Alternat. Med. 2011;2011:680354. doi: 10.1093/ecam/nep067. PubMed DOI PMC

Quave C.L., Plano L.R., Pantuso T., Bennett B.C. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 2008;118:418–428. doi: 10.1016/j.jep.2008.05.005. PubMed DOI PMC

Rasmussen T.B., Givskov M. Quorum sensing inhibitors: A bargain of effects. Microbiology. 2006;152:895–904. doi: 10.1099/mic.0.28601-0. PubMed DOI

Pereira A.P., Ferreira I., Marcelino F., Valentão P., Andrade P.B., Seabra R., Estevinho L., Bento A., Pereira J.A. Phenolic Compounds and Antimicrobial Activity of Olive (Olea europaea L. Cv. Cobrançosa) Leaves. Molecules. 2007;12:1153–1162. doi: 10.3390/12051153. PubMed DOI PMC

Friedman M., Henika P.R., Mandrell R.E. Antibacterial activities of phenolic benzaldehydes and benzoic acids against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 2003;66:1811–1821. doi: 10.4315/0362-028X-66.10.1811. PubMed DOI

Furneri P.M., Piperno A., Saija A., Bisignano G. Antimicoplasmal activity of hydroxytyrosol. Antimicrob. Agents Chemother. 2004;20:293–296. doi: 10.1016/S0924-8579(02)00181-4. PubMed DOI PMC

Kubo I., Matsumoto A., Takase I. A multichemical defense mechanism of bitter olive Olea europaea (Oleaceae). Is oleuropein a phytoalexin precursor? J. Chem. Ecol. 1985;11:251–263. doi: 10.1007/BF00988207. PubMed DOI

Perri E., Rafaelli A., Sindona G. Quantitation of oleuropein in virgin olive oil by ion spray mass spectrometry-selected reaction monitoring. J. Agric. Food Chem. 1999;47:4156–4160. doi: 10.1021/jf981161d. PubMed DOI

Ríos J.J., Gil M.J., Gutiérrez-Rosales F. Solid-phase extraction gas chromatography-ion trap-mass spectrometry qualitative method for evaluation of phenolic compounds in virgin olive oil and structural confirmation of oleuropein and ligstroside aglycons and their oxidation products. J. Chromatogr. A. 2005;1093:167–176. doi: 10.1016/j.chroma.2005.07.033. PubMed DOI

Klikarová J., Rotondo A., Cacciola F., Česlová L., Dugo P., Mondello L., Rigano F. The Phenolic Fraction of Italian Extra Virgin Olive Oils: Elucidation Through Combined Liquid Chromatography and NMR Approaches. Food Anal. Meth. 2019;12:1759–1770. doi: 10.1007/s12161-019-01508-5. DOI

Šilha D., Švarcová K., Bajer T., Královec K., Tesařová E., Moučková K., Pejchalová M., Bajerová P. Chemical Composition of Natural Hydrolates and Their Antimicrobial Activity on Arcobacter-Like Cells in Comparison with Other Microorganisms. Molecules. 2020;25:5654. doi: 10.3390/molecules25235654. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...