No Correlation between Biofilm-Forming Capacity and Antibiotic Resistance in Environmental Staphylococcus spp.: In Vitro Results
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35456146
PubMed Central
PMC9031815
DOI
10.3390/pathogens11040471
PII: pathogens11040471
Knihovny.cz E-zdroje
- Klíčová slova
- Congo red agar, MDR, Staphylococcus aureus, biofilm formation, crystal violet, methicillin resistance, microtiter plate assay, multidrug resistance, non-aureus staphylococci, phenotypic assay,
- Publikační typ
- časopisecké články MeSH
The production of biofilms is a critical factor in facilitating the survival of Staphylococcus spp. in vivo and in protecting against various environmental noxa. The possible relationship between the antibiotic-resistant phenotype and biofilm-forming capacity has raised considerable interest. The purpose of the study was to assess the interdependence between biofilm-forming capacity and the antibiotic-resistant phenotype in 299 Staphylococcus spp. (S. aureus n = 143, non-aureus staphylococci [NAS] n = 156) of environmental origin. Antimicrobial susceptibility testing and detection of methicillin resistance (MR) was performed. The capacity of isolates to produce biofilms was assessed using Congo red agar (CRA) plates and a crystal violet microtiter-plate-based (CV-MTP) method. MR was identified in 46.9% of S. aureus and 53.8% of NAS isolates (p > 0.05), with resistance to most commonly used drugs being significantly higher in MR isolates compared to methicillin-susceptible isolates. Resistance rates were highest for clindamycin (57.9%), erythromycin (52.2%) and trimethoprim-sulfamethoxazole (51.1%), while susceptibility was retained for most last-resort drugs. Based on the CRA plates, biofilm was produced by 30.8% of S. aureus and 44.9% of NAS (p = 0.014), while based on the CV-MTP method, 51.7% of S. aureus and 62.8% of NAS were identified as strong biofilm producers, respectively (mean OD570 values: S. aureus: 0.779±0.471 vs. NAS: 1.053±0.551; p < 0.001). No significant differences in biofilm formation were observed based on MR (susceptible: 0.824 ± 0.325 vs. resistant: 0.896 ± 0.367; p = 0.101). However, pronounced differences in biofilm formation were identified based on rifampicin susceptibility (S: 0.784 ± 0.281 vs. R: 1.239 ± 0.286; p = 0.011). The mechanistic understanding of the mechanisms Staphylococcus spp. use to withstand harsh environmental and in vivo conditions is crucial to appropriately address the therapy and eradication of these pathogens.
Department of Biomedical Sciences University of Sassari 07100 Sassari Italy
Department of Experimental Biology Faculty of Science Masaryk University 62500 Brno Czech Republic
Hospital Pharmacy Azienda Ospedaliero Universitaria di Sassari 07100 Sassari Italy
Zobrazit více v PubMed
Madhaiyan M., Wirth J.S., Saravanan V.S. Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov., and the formal assignment of Nosocomiicoccus to the family Staphylococcaceae. Int. J. Syst. Evol. Microbiol. 2020;70:5926–5936. PubMed
Zielinski W., Kornzeniewska E., Harnisz M., Hubeny J., Buta M., Rolbiecki D. The prevalence of drug-resistant and virulent Staphylococcus spp. in a municipal wastewater treatment plant and their spread in the environment. Environ. Int. 2020;143:e105914. doi: 10.1016/j.envint.2020.105914. PubMed DOI
Piette A., Verschraegen G.E. Role of coagulase-negative staphylococci in human disease. Vet. Microbiol. 2009;134:45–54. doi: 10.1016/j.vetmic.2008.09.009. PubMed DOI
Farran E.L., Sekar A., Balakrishnan A., Shanmugam S., Arumugam P., Gopalswamy J. Prevalence of biofilm-producing Staphylococcus epidermidis in the healthy skin of individuals in Tamil Nadu, India. Indian J. Med. Microbiol. 2013;31:19–23. doi: 10.4103/0255-0857.108712. PubMed DOI
Alarjani K.M., Almutairi A.M., Al-Qahtany F.S., Soundharrajan I. Methicillin and multidrug resistant pathogenic Staphylococcus aureus associated sepsis in hospitalized neonatal infections and antibiotic susceptibility. J. Infect. Public Health. 2021;14:1630–1634. doi: 10.1016/j.jiph.2021.08.031. PubMed DOI
Wahaibi L., Al-Sudairi R., Balkhair A., Al-Awaisi H., Mabruk M. Methicillin-resistant Staphylococcus aureus colonization among healthcare workers in Oman. J. Infect. Dev. Ctries. 2021;15:1426–1435. doi: 10.3855/jidc.14047. PubMed DOI
Güngör S., Karagöz A., Kocak N., Arslantas T. Methicillin-resistant Staphylococcus aureus in a Turkish hospital: Characterization of clonal types and antibiotic susceptibility. J. Infect. Dev. Ctries. 2021;15:1854–1860. doi: 10.3855/jidc.14963. PubMed DOI
Aratani T., Tsukamoto H., Higashi T., Kodawara T., Yano R., Hida Y., Iwasaki H., Goto N. Association of methicillin resistance with mortality of hospital-acquired Staphylococcus aureus bacteremia. J. Int. Med. Res. 2021;49:3000605211058872. doi: 10.1177/03000605211058872. PubMed DOI PMC
Tegegne H.A., Kolackova I., Florianova M., Gelbicova T., Madec J.Y., Haenni M., Karpiskova R. Detection and molecular characterisation of methicillin-resistant Staphylococcus aureus isolated from raw meat in the retail market. J. Glob. Antimicrob. Resist. 2021;26:233–238. doi: 10.1016/j.jgar.2021.06.012. PubMed DOI
Smith T.C. Livestock-Associated Staphylococcus aureus: The United States Experience. PLoS Pathog. 2015;11:e1004564. doi: 10.1371/journal.ppat.1004564. PubMed DOI PMC
Schnitt A., Lienen T., Wichmann-Schauer H., Tenhagen B.A. The occurrence of methicillin-resistant non-aureus staphylococci in samples from cows, young stock, and the environment on German dairy farms. J. Dairy Sci. 2020;104:4606–4614. doi: 10.3168/jds.2020-19704. PubMed DOI
Correia S., Silva V., Garcia-Diez J., Teixeira P., Pimenta K., Pereira J.E., Oliveira S., Rocha J., Manaia C.M., Igrejas G., et al. One Health Approach Reveals the Absence of Methicillin-Resistant Staphylococcus aureus in Autochthonous Cattle and Their Environments. Front. Microbiol. 2019;10:e2735. doi: 10.3389/fmicb.2019.02735. PubMed DOI PMC
Jevons M.P. “Celbenin”—Resistant Staphylococci. Br. Med. J. 1961;1:124–125. doi: 10.1136/bmj.1.5219.124-a. DOI
Dulon M., Haarnmann F., Peters C., Schablon A., Nienhaus A. MRSA prevalence in European healthcare settings: A review. BMC Infect Dis. 2011;11:e138. doi: 10.1186/1471-2334-11-138. PubMed DOI PMC
Kalantar-Neyestanaki D., Mansouri S., Tadjrobehkar O., Pardakhty A., Tabatabaeifar F., Morones-Ramírez J.R., Jamali Z., Isaei E. High prevalence of multi-drug resistant and different SCCmec types among coagulase-negative Staphylococci spp. collected from clinical samples and skin of healthcare workers in Kerman, Southeast Iran. Gene Rep. 2022;26:e101428. doi: 10.1016/j.genrep.2021.101428. DOI
Uehara Y. Current Status of Staphylococcal Cassette Chromosome mec (SCCmec) Antibiotics. 2022;11:86. doi: 10.3390/antibiotics11010086. PubMed DOI PMC
Becker K., van Alen S., Idelevich E.A., Schleimer N., Seggewiss J., Mellmann A., Kaspar U., Peters G. Plasmid-Encoded Transferable mecB-Mediated Methicillin Resistance in Staphylococcus aureus. Emerg. Infect. Dis. 2018;24:242–248. doi: 10.3201/eid2402.171074. PubMed DOI PMC
Liu J., Chen D., Peters B.M., Li L., Li B., Xu Z., Shirliff M.E. Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic element in methicillin-resistant Staphylococcus aureus. Microb. Pathogen. 2016;101:56–567. doi: 10.1016/j.micpath.2016.10.028. PubMed DOI
Gerken T.J., Roberts M.C., Dykema P., Melly G., Lucas D., Los Santos V., Gonzales J., Butaye P., Wiegner T.N. Environmental Surveillance and Characterization of Antibiotic Resistant Staphylococcus aureus at Coastal Beaches and Rivers on the Island of Hawai‘i. Antibiotics. 2021;11:980 PubMed PMC
Whittard E., Redfem J., Xia G., Millard A., Ragupathy R., Malic S., Enright M.C. Phenotypic and Genotypic Characterization of Novel Polyvalent Bacteriophages With Potent In Vitro Activity Against an International Collection of Genetically Diverse Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2021;11:e698909. doi: 10.3389/fcimb.2021.698909. PubMed DOI PMC
Roshan M., Parmanand P., Arora D., Behera M., Vats A., Gautam D., Deb R., Parkunan T., De S. Virulence and enterotoxin gene profile of methicillin-resistant Staphylococcus aureus isolates from bovine mastitis. Comp. Immunol. Microbiol. Infect. Dis. 2022;80:e101724. doi: 10.1016/j.cimid.2021.101724. PubMed DOI
Jamal M., Ahmad W., Andleeb S., Jalil F., Imran M., Nawaz M.A., Hussain T., Ali M., Rafiq M., Kamil M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018;81:7–11. doi: 10.1016/j.jcma.2017.07.012. PubMed DOI
Cifou O., Rojo-Molinero E., Macia M.D., Oliver A. Antibiotic treatment of biofilm infections. APMIS. 2017;125:304–319. doi: 10.1111/apm.12673. PubMed DOI
Pompilio A., Scribano D., Sarshar M., Di Bonaventura G., Palamara A.T., Ambrosi C. Gram-Negative Bacteria Holding Together in a Biofilm: The Acinetobacter baumannii Way. Microorganisms. 2021;9:1353. doi: 10.3390/microorganisms9071353. PubMed DOI PMC
Azeredo J., Azevedo N.F., Briandet R., Cerca N., Coenye T., Costa A.R., Desvaux M., Di Bonaventura G., Hébraud M., Jaglic Z., et al. Critical review on biofilm methods. Crit. Rev. Microbiol. 2017;43:313–351. doi: 10.1080/1040841X.2016.1208146. PubMed DOI
Schilcher K., Horswill A.R. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol. Mol. Biol. Rev. 2020;84:e00026-19. doi: 10.1128/MMBR.00026-19. PubMed DOI PMC
Leroy S., Lebert I., Andant C., Micheau P., Talon R. Investigating Extracellular DNA Release in Staphylococcus xylosus Biofilm In Vitro. Microorganisms. 2021;9:2192. doi: 10.3390/microorganisms9112192. PubMed DOI PMC
Cepas V., López Y., Munoz E., Rolo D., Ardanuy C., Martí M., Xercavins M., Horcajada J.P., Bosch J., Soto S.M. Relationship Between Biofilm Formation and Antimicrobial Resistance in Gram-Negative Bacteria. Microb. Drug Res. 2019;25:72–83. doi: 10.1089/mdr.2018.0027. PubMed DOI
Roizman D., Vidaillac C., Givskov M., Yang L. In Vitro Evaluation of Biofilm Dispersal as a Therapeutic Strategy To Restore Antimicrobial Efficacy. Antimicrob. Agents Chemother. 2017;61:e01088-17. doi: 10.1128/AAC.01088-17. PubMed DOI PMC
Wozniak-Biel A., Bugla-Bloskonska G., Burdzy J., Korzekwa K., Ploch S., Wieliczko A. Antimicrobial Resistance and Biofilm Formation in Enterococcus spp. Isolated from Humans and Turkeys in Poland. Microb. Drug Res. 2019;25:277–286. doi: 10.1089/mdr.2018.0221. PubMed DOI PMC
Huang C.Y., Ho C.F., Chen C.J., Su L.H., Lin T.Y. Comparative molecular analysis of community-associated and healthcare-associated methicillin-resistant Staphylococcus aureus isolates from children in northern Taiwan. Clin. Microbiol. Infect. 2008;14:1167–1172. doi: 10.1111/j.1469-0691.2008.02115.x. PubMed DOI
Shadkam S., Goli H.R., Mirzaei B., Gholami M., Ahanjan M. Correlation between antimicrobial resistance and biofilm formation capability among Klebsiella pneumoniae strains isolated from hospitalized patients in Iran. Ann. Clin. Microbiol. Antimicrob. 2021;20:e13. doi: 10.1186/s12941-021-00418-x. PubMed DOI PMC
Avila-Novoa M.G., Solís-Velázquez O.A., Rangel-López D.E., González-Gómez J.P., Guerrero-Medin P.J., Gutiérez-Lomelí M. Biofilm Formation and Detection of Fluoroquinolone- and Carbapenem-Resistant Genes in Multidrug-Resistant Acinetobacter baumannii. Can. J. Infect. Dis. Med. Microbiol. 2019;2019:e3454907. doi: 10.1155/2019/3454907. PubMed DOI PMC
Yamani L., Alamri A., Alsultan A., Alfifi S., Ansari M.A., Alnimr A. Inverse correlation between biofilm production efficiency and antimicrobial resistance in clinical isolates of Pseudomonas aeruginosa. Microb. Pathog. 2021;157:104989. doi: 10.1016/j.micpath.2021.104989. PubMed DOI
Pandey R., Mishra S.K., Shrestha A. Characterisation of ESKAPE Pathogens with Special Reference to Multidrug Resistance and Biofilm Production in a Nepalese Hospital. Infect. Drug Res. 2021;14:2201–2212. doi: 10.2147/IDR.S306688. PubMed DOI PMC
Zhao F., Yang H., Bi D., Khaledi A., Qiao M. A systematic review and meta-analysis of antibiotic resistance patterns, and the correlation between biofilm formation with virulence factors in uropathogenic E. coli isolated from urinary tract infections. Microb. Pathogen. 2020;144:e104196. doi: 10.1016/j.micpath.2020.104196. PubMed DOI
Gajdács M., Kárpáti K., Nagy Á.L., Gugolya M., Stájer A., Burián K. Association between biofilm-production and antibiotic resistance in Escherichia coli isolates: A laboratory-based case study and a literature review. Acta Microbiol. Immunol. Hung. 2021;68:217–226. doi: 10.1556/030.2021.01487. PubMed DOI
Azizi O., Shahcheraghi F., Salimizand H., Modarresi F., Shakibaie M.R., Mansouri S., Ramazanzadeh R., Badmasti F., Nikbin V. Molecular Analysis and Expression of bap Gene in Biofilm-Forming Multi-Drug-Resistant Acinetobacter baumannii. Rep. Biochem. Mol. Biol. 2016;5:62–72. PubMed PMC
Perez L.R.R., Costa M.C.N., Freitas A.L.P., Barth A.L. Evaluation of biofilm production by Pseudomonas aeruginosa isolates recovered from cystic fibrosis and non-cystic fibrosis patients. Braz. J. Microbiol. 2011;42:476–479. doi: 10.1590/S1517-83822011000200011. PubMed DOI PMC
Gallant C.V., Daniels C., Leung J.M., Ghosh A.S., Young K.D., Kotra L.P., Burrows L.L. Common β-lactamases inhibit bacterial biofilm formation. Mol. Microbiol. 2005;58:1012–1024. doi: 10.1111/j.1365-2958.2005.04892.x. PubMed DOI PMC
Zeighami H., Valadkhani F., Shapouri R., Samadi E., Haghi F. Virulence characteristics of multidrug resistant biofilm forming Acinetobacter baumannii isolated from intensive care unit patients. BMC Infect. Dis. 2019;19:e629. doi: 10.1186/s12879-019-4272-0. PubMed DOI PMC
Hacker J., Blum-Oehler G., Muhldorfer I., Tschape H. Pathogenicity islands of virulent bacteria: Structure, function and impact on microbial evolution. Mol. Microbiol. 1997;23:1089–1097. doi: 10.1046/j.1365-2958.1997.3101672.x. PubMed DOI
Tahaei S.A., Stájer A., Barrak I., Ostorházi E., Szabó D., Gajdács M. Correlation Between Biofilm-Formation and the Antibiotic Resistant Phenotype in Staphylococcus aureus Isolates: A Laboratory-Based Study in Hungary and a Review of the Literature. Infect. Drug Res. 2021;14:1155–1168. doi: 10.2147/IDR.S303992. PubMed DOI PMC
Madsen A.M., Phan U.T.H., Laursen M., White J.K., Uhrbrand K. Evaluation of Methods for Sampling of Staphylococcus aureus and other Staphylococcus species from Indoor Surfaces. Ann. Work Expo. Health. 2020;64:1020–1034. doi: 10.1093/annweh/wxaa080. PubMed DOI PMC
Lee J.S., Bae Y.M., Han A., Lee S.Y. Development of Congo red broth method for the detection of biofilm-forming or slime-producing Staphylococcus sp. Food. Sci. Technol. 2016;73:707–714. doi: 10.1016/j.lwt.2016.03.023. DOI
Gajdács M., Bátori Z., Burián K. Interplay between Phenotypic Resistance to Relevant Antibiotics in Gram-Negative Urinary Pathogens: A Data-Driven Analysis of 10 Years’ Worth of Antibiogram Data. Life. 2021;11:1059. doi: 10.3390/life11101059. PubMed DOI PMC
Schubert S., Kostrzewa M. MALDI-TOF MS in the microbiology laboratory: Current trends. Curr. Issues Mol. Biol. 2017;23:17–20. doi: 10.21775/cimb.023.017. PubMed DOI
European Committee on Antimicrobial Susceptibility Testing (EUCAST) Clinical Breakpoints and Dosing. [(accessed on 15 December 2021)]. Available online: https://www.eucast.org/clinical_breakpoints/
Chavez-Bueno S., Bozdogan B., Katz K., Bowlware K.L., Cushion N., Cavuoti D., Ahmed N., McCracken G.H., Appelbaum P.C. Inducible Clindamycin Resistance and Molecular Epidemiologic Trends of Pediatric Community-Acquired Methicillin-Resistant Staphylococcus aureus in Dallas, Texas. Antimicrob. Agents Chemother. 2005;49:2283–2288. doi: 10.1128/AAC.49.6.2283-2288.2005. PubMed DOI PMC
European Committee on Antimicrobial Susceptibility Testing (EUCAST) New Definitions of S, I and R from 2019. [(accessed on 15 December 2021)]. Available online: https://www.eucast.org/newsiandr/
Gajdács M., Ábrók M., Lázár A., Burián K. Increasing relevance of Gram-positive cocci in urinary tract infections: A 10-year analysis of their prevalence and resistance trends. Sci. Rep. 2020;10:e17658. doi: 10.1038/s41598-020-74834-y. PubMed DOI PMC
Magiorakos A.P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Paterson D.L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012;18:268–281. doi: 10.1111/j.1469-0691.2011.03570.x. PubMed DOI
Gajdács M., Baráth Z., Kárpáti K., Szabó D., Usai D., Zanetti S., Donadu M.G. No Correlation between Biofilm Formation, Virulence Factors, and Antibiotic Resistance in Pseudomonas aeruginosa: Results from a Laboratory-Based In Vitro Study. Antibiotics. 2021;10:1134. doi: 10.3390/antibiotics10091134. PubMed DOI PMC
Sadat A., El-Sherbiny H., Zakaria A., Ramadan H., Awad A. Prevalence, antibiogram and virulence characterization of Vibrio isolates from fish and shellfish in Egypt: A possible zoonotic hazard to humans. J. Appl. Microbiol. 2021;131:485–498. doi: 10.1111/jam.14929. PubMed DOI
Melo P.C., Ferreira L.M., Filho A.N., Zafalon L.F., Vicente H.I.G., de Souza V. Comparison of methods for the detection of biofilm formation by Staphylococcus aureus isolated from bovine subclinical mastitis. Braz. J. Microbiol. 2013;44:119–124. doi: 10.1590/S1517-83822013005000031. PubMed DOI PMC
Hassan A., Usman J., Kaleem F., Omair M., Khalid A., Iqbal M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz. J. Infect. Dis. 2011;15:305–311. doi: 10.1016/S1413-8670(11)70197-0. PubMed DOI
Ramos-Vivas J., Chapartegui-González I., Fernández-Martínez M., González-Rico C., Fortún J., Escudero R., Marco F., Linares L., Montejo M., Aranzamendi M., et al. Biofilm formation by multidrug resistant Enterobacteriaceae strains isolated from solid organ transplant recipients. Sci. Rep. 2019;9:e8928. doi: 10.1038/s41598-019-45060-y. PubMed DOI PMC
Mirzaei R., Alikhani M.Y., Aricola C.R., Sedighi I., Yousefimashouf R., Bagheri K.P. Prevention, inhibition, and degradation effects of melittin alone and in combination with vancomycin and rifampin against strong biofilm producer strains of methicillin-resistant Staphylococcus epidermidis. Biomed. Pharmacol. 2022;147:e112670. doi: 10.1016/j.biopha.2022.112670. PubMed DOI
Stepanovic S., Vukovic D., Hola V., Di Bonaventura G., Djukovic S., Cirkovic I., Ruzicka F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by Staphylococci. APMIS. 2007;115:891–899. doi: 10.1111/j.1600-0463.2007.apm_630.x. PubMed DOI
Elward A.M., McAndrews J.M., Young V.L. Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus: Preventing Surgical Site Infections Following Plastic Surgery. Aesthet. Surg. J. 2009;29:232–244. doi: 10.1016/j.asj.2009.01.010. PubMed DOI
Hidalgo-Tenorio C., Gálvez J., Martínez-Marcos F.J., Plata-Ciezar A., La Torre-Lima D., López-Cortés L.E., Noureddine M., Reguera J.M., Vinuesa D., García M.V., et al. Clinical and prognostic differences between methicillin-resistant and methicillin-susceptible Staphylococcus aureus infective endocarditis. BMC Infect. Dis. 2020;20:e160. doi: 10.1186/s12879-020-4895-1. PubMed DOI PMC
Hajikhani B., Gourdarzi M., Kakavandi S., Amini S., Zamani S., van Belkum A., Gourdarzi H., Dadashi M. The global prevalence of fusidic acid resistance in clinical isolates of Staphylococcus aureus: A systematic review and meta-analysis. Antimicrob. Res. Infect. Control. 2021;10:e75. doi: 10.1186/s13756-021-00943-6. PubMed DOI PMC
Shariati A., Dadshi M., van Belkum A., Mirzaii M., Khoramrooz S.S., Darban-Sarkohalil D. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase–negative Staphylococci strains: A systematic review and meta-analysis. Antimicrob. Res. Infect. Control. 2020;9:e56. doi: 10.1186/s13756-020-00714-9. PubMed DOI PMC
Zhang Z., Chen M., Yu Y., Liu B., Liu Y. In vitro activity of ceftaroline and comparators against Staphylococcus aureus isolates: Results from 6 years of the ATLAS program (2012 To 2017) Infect. Drug Res. 2019;12:e3349. doi: 10.2147/IDR.S226649. PubMed DOI PMC
Teodoro C.R.S., Mattos C.S., Cavalcante F.S., Pereira E.M., dos Santos K.R.N. Characterization of MLS(b) resistance among Staphylococcus aureus and Staphylococcus epidermidis isolates carrying different SCCmec types. Microbiol. Immunol. 2012;56:647–650. doi: 10.1111/j.1348-0421.2012.00481.x. PubMed DOI
Sierra J.M., Marco F., Ruiz J., Jiménez de Anta M.T., Vila J. Correlation between the activity of different fluoroquinolones and the presence of mechanisms of quinolone resistance in epidemiologically related and unrelated strains of methicillin-susceptible and-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 2002;8:781–790. doi: 10.1046/j.1469-0691.2002.00400.x. PubMed DOI
Miguel C.P.V., Mejias A., Sanchez P.J. A decade of antimicrobial resistance in Staphylococcus aureus: A single center experience. PLoS ONE. 2019;14:e0212029. PubMed PMC
Zimmerli W., Sendi P. Role of Rifampin against Staphylococcal Biofilm Infections In Vitro, in Animal Models, and in Orthopedic-Device-Related Infections. Antimicrob. Agents Chemother. 2019;63:e017746-18. doi: 10.1128/AAC.01746-18. PubMed DOI PMC
Penesyan A., Paulsen I.T., Gillings M.R., Kjelleberg S., Manefieldm M.J. Secondary effects of antibiotics on microbial biofilms. Front Microbiol. 2020;11:e2109. doi: 10.3389/fmicb.2020.02109. PubMed DOI PMC
Lima-e-Silva A.A., Silva-Filho R.G., Fernandes H.M.Z., Saramago C.S.M., Viana A.S., Souza M.J., Noguiera E.M. Sub-inhibitory concentrations of rifampicin strongly stimulated biofilm production in S. aureus. Open Microbiol. J. 2017;11:142–151. doi: 10.2174/1874285801711010142. PubMed DOI PMC
Rachid S., Ohlsen K., Witte W., Hacker J., Ziebuhr W. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2000;44:3357–3363. doi: 10.1128/AAC.44.12.3357-3363.2000. PubMed DOI PMC
Kumar A.S., Girija A.S.S., Srilatha B.N. Characterization of biofilm producing methicillin resistant coagulase negative Staphylococci from India. Acta Microbiol. Immunol. Hung. 2022;69:35–40. doi: 10.1556/030.2021.01538. PubMed DOI
Arslan S., Ozkardes F. Slime production and antibiotic susceptibility in Staphylococci isolated from clinical samples. Memórias Inst. Oswaldo Cruz. 2007;102:29–33. doi: 10.1590/S0074-02762007000100004. PubMed DOI
Ghasemian A., Najar Peerayeh S., Bakhshi B., Mirzaee M. Comparison of biofilm formation between Methicillin-resistant and methicillin-susceptible isolates of Staphylococcus aureus. Iran. Biomed. J. 2016;20:175–181. PubMed PMC
Knobloch J.K.M., Horstkotte M.A., Rodhe H., Mack D. Evaluation of different detection methods of biofilm formation in Staphylococcus aureus. Med. Microbiol. Immunol. 2002;191:101–106. doi: 10.1007/s00430-002-0124-3. PubMed DOI
Mathur T., Singhal S., Khan S., Upadhyay D.J., Fatma T., Rattan A. Detection of biofilm formation among the clinical isolates of Staphylococci: An evaluation of three different screening methods. Indian J. Med. Microbiol. 2006;24:25–29. doi: 10.1016/S0255-0857(21)02466-X. PubMed DOI
Rodríguez-Lopez P., Filipello V., Di Ciccio P.A., Pitozzi A., Ghidini S., Scali F., Ianeri A., Zanardi E., Losio M.N., Simon A.C., et al. Assessment of the antibiotic resistance profile, genetic heterogeneity and biofilm production of Methicillin-Resistant Staphylococcus aureus (MRSA) isolated from the Italian swine production chain. Foods. 2020;9:1141. doi: 10.3390/foods9091141. PubMed DOI PMC
Piechota M., Kot B., Frankowska-Maciejewska A., Gruzewska A., Wozniak-Kosek A. Biofilm formation by methicil-lin-resistant and methicillin-sensitive Staphylococcus aureus strains from hospitalized patients in Poland. BioMed. Res. Int. 2018;2018:e4657396. doi: 10.1155/2018/4657396. PubMed DOI PMC
De Araujo G.L., Coelho R.L., de Carvalho C.B., Maciel R.M., Coronado A.Z., Rozenbaum R., Ferraira-Carvalho B.T., Figueiredo A.M.S., Teixeria L.A. Commensal isolates of methicillin-resistant Staphylococcus epidermidis are also well equipped to produce biofilm on polystyrene surfaces. J. Antimicrob. Chemother. 2006;57:855–864. doi: 10.1093/jac/dkl071. PubMed DOI
Jain A., Agarwal A. Biofilm production, a marker of pathogenic potential of colonizing and commensal Staphylococci. J. Microbiol. Method. 2009;76:88–92. doi: 10.1016/j.mimet.2008.09.017. PubMed DOI
Bhattacharya S., Bir R., Majumdar T. Evaluation of multidrug resistant Staphylococcus aureus and their association with biofilm production in a Tertiary Care Hospital, Tripura, Northeast India. J. Clin. Diagn. Microbiol. 2015;9:DC01–DC04. doi: 10.7860/JCDR/2015/13965.6417. PubMed DOI PMC
Da Fonseca Batistao D.W., de Campos P.A., Camilo N.C., Royer S., Araújo B.F., Naves K.S.C., Martins M., Pereira M.O., Henriques M., Gontijo-Filho P.P., et al. Biofilm formation of Brazilian meticillin-resistant Staphylococcus aureus strains: Prevalence of biofilm determinants and clonal profiles. J. Med. Microbiol. 2016;65:286–297. doi: 10.1099/jmm.0.000228. PubMed DOI
Lim Y., Shin H.J., Kwon A.S., Reu J.H., Park G., Kim J. Predictive genetic risk markers for strong biofilm-forming Staphylococcus aureus: fnbB gene and SCCmec type III. Diagn. Microbiol. Infect. Dis. 2013;76:539–541. doi: 10.1016/j.diagmicrobio.2013.04.021. PubMed DOI
Pozzi C., Waters E.M., Rudkin J.K., Schaeffer C.R., Lohan A.J., Tong P., Loftus B.J., Pier G.B., Fey P.D., Massey R.C., et al. Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog. 2012;8:e1002626. doi: 10.1371/journal.ppat.1002626. PubMed DOI PMC
Croes S., Deurenberg R.H., Boumans M.L., Beisser P.S., Neef C., Stobberingh E.E. Staphylococcus aureus biofilm formation at the physiologic glucose concentration depends on the S. aureus lineage. BMC Microbiol. 2009;9:e229. doi: 10.1186/1471-2180-9-229. PubMed DOI PMC
Luther M.K., Parente D.M., Caffrey A.R., Daffinee K.E., Lopes V.V., Martin E.T., LaPlante K.L. Clinical and genetic risk factors for biofilm-forming Staphylococcus aureus. Antimicrob. Agents Chemother. 2018;62:e02217–e02252. doi: 10.1128/AAC.02252-17. PubMed DOI PMC
O’Gara J.P. ica and beyond: Biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol. Lett. 2007;270:179–188. doi: 10.1111/j.1574-6968.2007.00688.x. PubMed DOI
Tolker-Nielsen T., Sternberg C. Growing and analyzing biofilms in flow chambers. Curr. Protoc. Microbiol. 2011;1:1B–2B. doi: 10.1002/9780471729259.mc01b02s21. PubMed DOI
Sultan A.R., Tavakol M., Lemmens-den Toom N.A., Croughs P.D., Verkaik N.J., Verbon A., van Wamel W.J.B. Real time monitoring of Staphylococcus aureus biofilm sensitivity towards antibiotics with isothermal microcalorimetry. PLoS ONE. 2022;17:e0260272. doi: 10.1371/journal.pone.0260272. PubMed DOI PMC
Barrak I., Baráth Z., Tián T., Venkei A., Gajdács M., Urbán E., Stájer A. Effects of different decontaminating solutions used for the treatment of peri-implantitis on the growth of Porphyromonas gingivalis—An in vitro study. Acta Microbiol. Immunol. Hung. 2021;68:40–47. doi: 10.1556/030.2020.01176. PubMed DOI
Pinna A., Donadu M.G., Usai D., Dore S., Boscia F., Zanetti S. In Vitro Antimicrobial Activity of a New Ophthalmic Solution Containing Hexamidine Diisethionate 0.05% (Keratosept) Cornea. 2020;39:1415–1418. doi: 10.1097/ICO.0000000000002375. PubMed DOI