High-resolution dietary reconstruction of victims of the 79 CE Vesuvius eruption at Herculaneum by compound-specific isotope analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články
PubMed
34433561
PubMed Central
PMC8386925
DOI
10.1126/sciadv.abg5791
PII: 7/35/eabg5791
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The remains of those who perished at Herculaneum in 79 CE offer a unique opportunity to examine lifeways across an ancient community who lived and died together. Historical sources often allude to differential access to foodstuffs across Roman society but provide no direct or quantitative information. By determining the stable isotope values of amino acids from bone collagen and deploying Bayesian models that incorporate knowledge of protein synthesis, we were able to reconstruct the diets of 17 adults from Herculaneum with unprecedented resolution. Significant differences in the proportions of marine and terrestrial foods consumed were observed between males and females, implying that access to food was differentiated according to gender. The approach also provided dietary data of sufficient precision for comparison with assessments of food supply to modern populations, opening up the possibility of benchmarking ancient diets against contemporary settings where the consequences for health are better understood.
ACASA University of Amsterdam Amsterdam Netherlands
BioArCh Department of Archaeology University of York York UK
Department of Archaeology and Classical Studies Stockholm University 10691 Stockholm Sweden
Department of Archaeology Max Planck Institute for the Science of Human History Jena Germany
Department of Classics University of Cincinnati Cincinnati OH 45221 USA
Dipartimento dei Beni Culturali Università di Padova Padua Italy
Dipartimento di Biologia Ambientale Sapienza Università di Roma Rome Italy
Faculty of Arts Masaryk University Brno Czech Republic
Faculty of History University of Cambridge Cambridge UK
Parco Archeologico di Ercolano Naples Italy
Parco Archeologico di Pompei Naples Italy
School of Archaeological and Forensic Sciences University of Bradford Bradford UK
Zobrazit více v PubMed
Martyn R., Craig O. E., Ellingham S. T. D., Islam M., Fattore L., Sperduti A., Bondioli L., Thompson T., A re-evaluation of manner of death at Roman Herculaneum following the AD 79 eruption of Vesuvius. Antiquity 94, 76–91 (2020).
A. Sperduti, L. Bondioli, O. E. Craig, T. Prowse, P. Garnsey, Bones, teeth, and history, in The Science of Roman History: Biology, Climate, and the Future of the Past, W. Scheidel, Ed. (Princeton Univ. Press, 2018), pp. 123–173.
de Ligt L., Garnsey P., The Album of Herculaneum and a model of the town’s demography. J. Rom. Archaeol. 25, 69–94 (2012).
L. de Ligt, P. Garnsey, The Album of Herculaneum revisited, in Popolazione, Risorse e Urbanizzazione nella Campania Antica, M. M. Balbo, Ed. (Pragmateiai, Edipuglia, 2019), vol. 31, pp. 197–209.
Fernandes R., A simple(R) model to predict the source of dietary carbon in individual consumers. Archaeometry 58, 500–512 (2016).
Craig O. E., Bondioli L., Fattore L., Higham T., Hedges R., Evaluating marine diets through radiocarbon dating and stable isotope analysis of victims of the AD79 eruption of Vesuvius. Am. J. Phys. Anthropol. 152, 345–352 (2013). PubMed
Martyn R. E. V., Garnsey P., Fattore L., Petrone P., Sperduti A., Bondioli L., Craig O. E., Capturing Roman dietary variability in the catastrophic death assemblage at Herculaneum. J. Archaeol. Sci. Rep. 19, 1023–1029 (2018).
Trentacoste A., Nieto-Espinet A., Guimarães S., Wilkens B., Petrucci G., Valenzuela-Lamas S., New trajectories or accelerating change? Zooarchaeological evidence for Roman transformation of animal husbandry in Northern Italy. Archaeol. Anthropol. Sci. 13, 25 (2021). PubMed PMC
King A., Diet in the Roman world: A regional inter-site comparison of the mammal bones. J. Rom. Archaeol. 12, 168–202 (1999).
E. Rowan, Sewers, archaeobotany, and diet at Pompeii and Herculaneum, in The Economy of Pompeii (Oxford Univ. Press, 2017), pp. 111–134.
van der Merwe N. J., Vogel J. C., 13C Content of human collagen as a measure of prehistoric diet in woodland North America. Nature 276, 815–816 (1978). PubMed
Richards M. P., Trinkaus E., Out of Africa: Modern human origins special feature: Isotopic evidence for the diets of European Neanderthals and early modern humans. Proc. Natl. Acad. Sci. U.S.A. 106, 16034–16039 (2009). PubMed PMC
Lamb A. L., Evans J. E., Buckley R., Appleby J., Multi-isotope analysis demonstrates significant lifestyle changes in King Richard III. J. Archaeol. Sci. 50, 559–565 (2014).
Privat K. L., O'Connell T. C., Richards M. P., Stable isotope analysis of human and faunal remains from the Anglo-Saxon cemetery at Berinsfield, Oxfordshire: Dietary and social implications. J. Archaeol. Sci. 29, 779–790 (2002).
Hedges R. E. M., Clement J. G., Thomas C. D. L., O'Connell T. C., Collagen turnover in the adult femoral mid-shaft: Modeled from anthropogenic radiocarbon tracer measurements. Am. J. Phys. Anthropol. 133, 808–816 (2007). PubMed
Jim S., Jones V., Ambrose S. H., Evershed R. P., Quantifying dietary macronutrient sources of carbon for bone collagen biosynthesis using natural abundance stable carbon isotope analysis. Br. J. Nutr. 95, 1055–1062 (2006). PubMed
O’Connell T. C., “Trophic” and “source” amino acids in trophic estimation: A likely metabolic explanation. Oecologia 184, 317–326 (2017). PubMed PMC
Ohkouchi N., Chikaraishi Y., Close H. G., Fry B., Larsen T., Madigan D. J., McCarthy M. D., McMahon K. W., Nagata T., Naito Y. I., Ogawa N. O., Popp B. N., Steffan S., Takano Y., Tayasu I., Wyatt A. S. J., Yamaguchi Y. T., Yokoyama Y., Advances in the application of amino acid nitrogen isotopic analysis in ecological and biogeochemical studies. Org. Geochem. 113, 150–174 (2017).
Webb E. C., Lewis J., Shain A., Kastrisianaki-Guyton E., Honch N. V., Stewart A., Miller B., Tarlton J., Evershed R. P., The influence of varying proportions of terrestrial and marine dietary protein on the stable carbon-isotope compositions of pig tissues from a controlled feeding experiment. STAR: Sci. Technol. Archaeol. Res. 3, 28–44 (2017).
O'Connell T. C., Kneale C. J., Tasevska N., Kuhnle G. G. C., The diet-body offset in human nitrogen isotopic values: A controlled dietary study. Am. J. Phys. Anthropol. 149, 426–434 (2012). PubMed PMC
Jaouen K., Richards M. P., Le Cabec A., Welker F., Rendu W., Hublin J.-J., Soressi M., Talamo S., Exceptionally high δ15N values in collagen single amino acids confirm Neandertals as high-trophic level carnivores. Proc. Natl. Acad. Sci. U.S.A. 116, 4928–4933 (2019). PubMed PMC
Ma Y., Grimes V., Van Biesen G., Shi L., Chen K., Mannino M. A., Fuller B. T., Aminoisoscapes and palaeodiet reconstruction: New perspectives on millet-based diets in China using amino acid δ13C values. J. Archaeol. Sci. 125, 105289 (2021).
Commendador A. S., Finney B. P., Fuller B. T., Tromp M., Dudgeon J. V., Multiproxy isotopic analyses of human skeletal material from Rapa Nui: Evaluating the evidence from carbonates, bulk collagen, and amino acids. Am. J. Phys. Anthropol. 169, 714–729 (2019). PubMed
Fernandes R., Millard A. R., Brabec M., Nadeau M.-J., Grootes P., Food reconstruction using isotopic transferred signals (FRUITS): A Bayesian model for diet reconstruction. PLOS ONE 9, e87436 (2014). PubMed PMC
P. Garnsey, Food and Society in Classical Antiquity (Cambridge Univ. Press, 1999), 175 pp.
O’Connell T. C., Ballantyne R. M., Hamilton-Dyer S., Margaritis E., Oxford S., Pantano W., Millett M., Keay S. J., Living and dying at the Portus Romae. Antiquity 93, 719–734 (2019).
Pate F. D., Henneberg R. J., Henneberg M., Stable carbon and nitrogen isotope evidence for dietary variability at ancient Pompeii, Italy. Mediter. Archaeol. Archaeom. 16, 127–133 (2016).
Balanza R., García-Lorda P., Pérez-Rodrigo C., Aranceta J., Bonet M. B., Salas-Salvadó J., Trends in food availability determined by the Food and Agriculture Organization’s food balance sheets in Mediterranean Europe in comparison with other European areas. Public Health Nutr. 10, 168–176 (2007). PubMed
Craig O. E., Biazzo M., O'Connell T. C., Garnsey P., Martinez-Labarga C., Lelli R., Salvadei L., Tartaglia G., Nava A., Reno L., Fiammenghi A., Rickards O., Bondioli L., Stable isotopic evidence for diet at the Imperial Roman coastal site of Velia (1st and 2nd centuries AD) in Southern Italy. Am. J. Phys. Anthropol. 139, 572–583 (2009). PubMed
Prowse T. L., Schwarcz H. P., Saunders S. R., Macchiarelli R., Bondioli L., Isotopic evidence for age-related variation in diet from Isola Sacra, Italy. Am. J. Phys. Anthropol. 128, 2–13 (2005). PubMed
Crowe F., Sperduti A., O'Connell T. C., Craig O. E., Kirsanow K., Germoni P., Macchiarelli R., Garnsey P., Bondioli L., Water-related occupations and diet in two Roman coastal communities (Italy, first to third century AD): Correlation between stable carbon and nitrogen isotope values and auricular exostosis prevalence. Am. J. Phys. Anthropol. 142, 355–366 (2010). PubMed
V. Jones, “Investigating the routing and synthesis of amino acids between diet and bone collagen via feeding experiments and applications to palaeodietary reconstruction,” thesis, University of Bristol (2002).
Howland M. R., Corr L. T., Young S. M. M., Jones V., Jim S., Van Der Merwe N. J., Mitchell A. D., Evershed R. P., Expression of the dietary isotope signal in the compound-specific δ13C values of pig bone lipids and amino acids. Int. J. Osteoarchaeol. 13, 54–65 (2003).
Newsome S. D., Fogel M. L., Kelly L., del Rio C. M., Contributions of direct incorporation from diet and microbial amino acids to protein synthesis in Nile tilapia. Funct. Ecol. 25, 1051–1062 (2011).
Fernandes R., Grootes P., Nadeau M.-J., Nehlich O., Quantitative diet reconstruction of a Neolithic population using a Bayesian mixing model (FRUITS): The case study of Ostorf (Germany). Am. J. Phys. Anthropol. 158, 325–340 (2015). PubMed
Webb E. C., Stewart A., Miller B., Tarlton J., Evershed R. P., Age effects and the influence of varying proportions of terrestrial and marine dietary protein on the stable nitrogen-isotope compositions of pig bone collagen and soft tissues from a controlled feeding experiment. STAR: Sci. Technol. Archaeol. Res. 2, 54–66 (2016).
Bownes J. M., Ascough P. L., Cook G. T., Murray I., Bonsall C., Using stable isotopes and a bayesian mixing model (FRUITS) to investigate diet at the early neolithic site of Carding Mill Bay, Scotland. Radiocarbon 59, 1275–1294 (2017).
S. N. Dudd, “Molecular and isotopic characterisation of animal fats in archaeological pottery,” thesis, University of Bristol (1999).
Steele V. J., Stern B., Stott A. W., Olive oil or lard?: Distinguishing plant oils from animal fats in the archeological record of the eastern Mediterranean using gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 24, 3478–3484 (2010). PubMed
Spangenberg J. E., Ogrinc N., Authentication of vegetable oils by bulk and molecular carbon isotope analyses with emphasis on olive oil and pumpkin seed oil. J. Agric. Food Chem. 49, 1534–1540 (2001). PubMed
Hellevang H., Aagaard P., Constraints on natural global atmospheric CO2 fluxes from 1860 to 2010 using a simplified explicit forward model. Sci. Rep. 5, 17352 (2015). PubMed PMC
De Sena E. C., An assessment of wine and oil production in Rome’s hinterland: Ceramic, literary, art historical and modern evidence. Arheologija I Prirodne Nauke 6, 25–46 (2010).
Kromhout D., Bosschieter E. B., de Lezenne Coulander C., The inverse relation between fish consumption and 20-year mortality from coronary heart disease. N. Engl. J. Med. 312, 1205–1209 (1985). PubMed
Pauly D., Zeller D., Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 7, 10244 (2016). PubMed PMC
Brunner E. J., Jones P. J. S., Friel S., Bartley M., Fish, human health and marine ecosystem health: Policies in collision. Int. J. Epidemiol. 38, 93–100 (2009). PubMed
Brown T. A., Nelson D. E., Vogel J. S., Southon J. R., Improved collagen extraction by modified longin method. Radiocarbon 30, 171–177 (1988).
Kragten J., Tutorial review. Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique. Analyst 119, 2161–2165 (1994).
Philben M., Billings S. A., Edwards K. A., Podrebarac F. A., van Biesen G., Ziegler S. E., Amino acid δ15N indicates lack of N isotope fractionation during soil organic nitrogen decomposition. Biogeochemistry 138, 69–83 (2018).
Docherty G., Jones V., Evershed R. P., Practical and theoretical considerations in the gas chromatography/combustion/isotope ratio mass spectrometry δ13C analysis of small polyfunctional compounds. Rapid Commun. Mass Spectrom. 15, 730–738 (2001). PubMed
Styring A. K., Kuhl A., Knowles T. D. J., Fraser R. A., Bogaard A., Evershed R. P., Practical considerations in the determination of compound-specific amino acid δ15N values in animal and plant tissues by gas chromatography-combustion-isotope ratio mass spectrometry, following derivatisation to their N-acetylisopropyl esters. Rapid Commun. Mass Spectrom. 26, 2328–2334 (2012). PubMed
Styring A. K., Fraser R. A., Bogaard A., Evershed R. P., The effect of manuring on cereal and pulse amino acid δ15N values. Phytochemistry 102, 40–45 (2014). PubMed
Styring A. K., Fraser R. A., Bogaard A., Evershed R. P., Cereal grain, rachis and pulse seed amino acid δ15N values as indicators of plant nitrogen metabolism. Phytochemistry 97, 20–29 (2014). PubMed
Paolini M., Ziller L., Laursen K. H., Husted S., Camin F., Compound-specific δ15N and δ13C analyses of amino acids for potential discrimination between organically and conventionally grown wheat. J. Agric. Food Chem. 63, 5841–5850 (2015). PubMed
Nitsch E. K., Charles M., Bogaard A., Calculating a statistically robust δ13C and δ15N offset for charred cereal and pulse seeds. STAR: Sci. Technol. Archaeol. Res. 1, 1–8 (2015).
Allen M., Poggiali D., Whitaker K., Marshall T. R., Kievit R. A., Raincloud plots: A multi-platform tool for robust data visualization. Wellcome Open Res 4, 63 (2019). PubMed PMC
E. Gasteiger, C. Hoogland, A. Gattiker, S. e. Duvaud, M. R. Wilkins, R. D. Appel, A. Bairoch, Protein identification and analysis tools on the ExPASy server, in The Proteomics Protocols Handbook, J. M. Walker, Ed. (Humana Press, 2005), pp. 571–607.
Bland J. M., Altman D. G., Applying the right statistics: Analyses of measurement studies. Ultrasound Obstet. Gynecol. 22, 85–93 (2003). PubMed
O'Connell T. C., Collins M. J., Comment on “Ecological niche of Neanderthals from Spy Cave revealed by nitrogen isotopes of individual amino acids in collagen” [J. Hum. Evol. 93 (2016) 82-90]. J. Hum. Evol. 53–55 (2018). PubMed
Edgar Hare P., Fogel M. L., Stafford T. W., Mitchell A. D., Hoering T. C., The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins. J. Archaeol. Sci. 18, 277–292 (1991).
McMahon K. W., Fogel M. L., Elsdon T. S., Thorrold S. R., Carbon isotope fractionation of amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein. J. Anim. Ecol. 79, 1132–1141 (2010). PubMed
McMahon K. W., Polito M. J., Abel S., McCarthy M. D., Thorrold S. R., Carbon and nitrogen isotope fractionation of amino acids in an avian marine predator, the gentoo penguin (Pygoscelis papua). Ecol. Evol. 5, 1278–1290 (2015). PubMed PMC
McMahon K. W., McCarthy M. D., Embracing variability in amino acid δ15N fractionation: Mechanisms, implications, and applications for trophic ecology. Ecosphere 7, e01511 (2016).
Kendall I. P., Lee M. R. F., Evershed R. P., The effect of trophic level on individual amino acid δ15N values in a terrestrial ruminant food web. STAR: Sci. Technol. Archaeol. Res. 3, 135–145 (2017).
Fuller B. T., Petzke K. J., The dietary protein paradox and threonine 15N-depletion: Pyridoxal-5′-phosphate enzyme activity as a mechanism for the δ15N trophic level effect. Rapid Commun. Mass Spectrom. 31, 705–718 (2017). PubMed
Germain L. R., Koch P. L., Harvey J., McCarthy M. D., Nitrogen isotope fractionation in amino acids from harbor seals: Implications for compound-specific trophic position calculations. Mar. Ecol. Prog. Ser. 482, 265–277 (2013).
Morrison D. J., Dodson B., Slater C., Preston T., 13C natural abundance in the British diet: Implications for 13C breath tests. Rapid Commun. Mass Spectrom. 14, 1321–1324 (2000). PubMed
Tieszen L. L., Natural variations in the carbon isotope values of plants: Implications for archaeology, ecology, and paleoecology. J. Archaeol. Sci. 18, 227–248 (1991).