• This record comes from PubMed

Informing patients about their mutation tests: CDKN2A c.256G>A in melanoma as an example

. 2020 ; 18 () : 15. [epub] 20200731

Status PubMed-not-MEDLINE Language English Country Poland Media electronic-ecollection

Document type Journal Article

BACKGROUND: When germline mutations are suspected as causal in cancer, patient DNA may be sequenced to detect variants in relevant genes. If a particular mutation has not been reported in reliable family studies, genetic counselors are facing a dilemma of appropriately informing patients. Many sequencing facilities provide an interpretation of the findings based on the available sequence databases or on prediction tools that are curated from bioinformatics and mechanistic datasets. The counseling dilemma is exacerbated if the pedigree data are not informative but the in silico predictions suggest pathogenicity. METHODS: We present here a real world example of the c.256G > A CDKN2A variant, which was detected in one melanoma patient where two siblings were diagnosed with melanoma in situ. We investigated a detailed family history of the affected siblings in order to survey probability of the cancer risks within the context to this mutation. RESULTS: This c.256G > A CDKN2A variant was detected in one of the brothers and in the melanoma-free mother while the other brother in the family tested negative. The variant had been previously described in one patient from a melanoma family. In the family under investigation, the mother's 16 first-and second-degree relatives had survived past the median onset age for melanoma and none presented melanoma. We tested the variant using multiple bioinformatic tools that all predicted deleteriousness of the variant. The genetic counseling report to the melanoma patient stated that the CDKN2A variant was 'likely pathogenic' and the disease was defined as 'likely hereditary melanoma'. CONCLUSIONS: The pedigree data showed at the most a low penetrance variant, which, if taken into consideration, might have altered the provided diagnosis. When dealing with 'practically' unknown variants the counselors would be advised to incorporate a detailed family history rather than basing predictions on functionality provided by sequencing facilities.

See more in PubMed

Eccles DM, Mitchell G, Monteiro AN, Schmutzler R, Couch FJ, Spurdle AB, et al. BRCA1 and BRCA2 genetic testing-pitfalls and recommendations for managing variants of uncertain clinical significance. Ann Oncol. 2015;26(10):2057–2065. PubMed PMC

Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014;505:302–308. PubMed PMC

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–1558. PubMed PMC

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–424. PubMed PMC

Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, et al. ClinGen--the clinical genome resource. N Engl J Med. 2015;372(23):2235–2242. PubMed PMC

Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. Standards and guidelines for the interpretation and reporting of sequence variants in Cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017;19(1):4–23. PubMed PMC

Read J, Wadt KA, Hayward NK. Melanoma genetics. J Med Genet. 2016;53(1):1–14. PubMed

Kumar R, Sauroja I, Punnonen K, Jansen C, Hemminki K. Selective deletion of exon 1 beta of the p19ARF gene in metastatic melanoma cell lines. Genes Chromosomes Cancer. 1998;23(3):273–277. PubMed

Kumar R, Smeds J, Lundh Rozell B, Hemminki K. Loss of heterozygosity at chromosome 9p21 (INK4-p14ARF locus): homozygous deletions and mutations in the p16 and p14ARF genes in sporadic primary melanomas. Melanoma Res. 1999;9(2):138–147. PubMed

Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence. Nat Rev Cancer. 2015;15(7):397–408. PubMed

Petersen GM. Familial pancreatic cancer. Semin Oncol. 2016;43(5):548–553. PubMed PMC

Bruno W, Ghiorzo P, Battistuzzi L, Ascierto PA, Barile M, Gargiulo S, et al. Clinical genetic testing for familial melanoma in Italy: a cooperative study. J Am Acad Dermatol. 2009;61(5):775–782. PubMed

Gast A, Scherer D, Chen B, Bloethner S, Melchert S, Sucker A, et al. Somatic alterations in the melanoma genome: a high-resolution array-based comparative genomic hybridization study. Genes Chromosomes Cancer. 2010;49(8):733–745. PubMed

Cooper GM, Stone EA, Asimenos G, Program NCS, Green ED, Batzoglou S, et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15(7):901–913. PubMed PMC

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;15(8):1034–1050. PubMed PMC

Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010;20(1):110–121. PubMed PMC

Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–315. PubMed PMC

Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–1081. PubMed

Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;Chapter 7(Unit7):20. PubMed PMC

Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11:361. PubMed

Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 2011;39(17):e118-e. PubMed PMC

Shihab HA, Gough J, Cooper DN, Day IN, Gaunt TR. Predicting the functional consequences of cancer-associated amino acid substitutions. Bioinformatics. 2013;29(12):1504–1510. PubMed PMC

Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and Indels. PLoS One. 2012;7(10):e46688. PubMed PMC

Carter H, Douville C, Stenson PD, Cooper DN, Karchin R. Identifying Mendelian disease genes with the variant effect scoring tool. BMC Genomics. 2013;14(Suppl 3):S3. PubMed PMC

López-Ferrando V, Gazzo A, de la Cruz X, Orozco M, Gelpí JL. PMut: a web-based tool for the annotation of pathological variants on proteins, 2017 update. Nucleic Acids Res. 2017;45(W1):W222–W2W8. PubMed PMC

Hecht M, Bromberg Y, Rost B. Better prediction of functional effects for sequence variants. BMC Genomics. 2015;16(8):S1. PubMed PMC

Goldstein AM, Chan M, Harland M, Hayward NK, Demenais F, Bishop DT, et al. Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. J Med Genet. 2007;44(2):99–106. PubMed PMC

Helgadottir H, Hoiom V, Tuominen R, Nielsen K, Jonsson G, Olsson H, et al. Germline CDKN2A Mutation Status and Survival in Familial Melanoma Cases. J Natl Cancer Inst. 2016;108(11).. PubMed

Frank C, Sundquist J, Hemminki A, Hemminki K. Risk of other cancers in families with melanoma: novel familial links. Sci Rep. 2017;7:42601. PubMed PMC

Chen T, Hemminki K, Kharazmi E, Ji J, Sundquist K, Fallah M. Multiple primary (even in situ) melanomas in a patient pose significant risk to family members. Eur J Cancer. 2014;50(15):2659–2667. PubMed

Hemminki K, Zhang H, Czene K. Familial and attributable risks in cutaneous melanoma:effects of proband and age. J Invest Dermatol. 2003;120:217–223. PubMed

Cust AE, Harland M, Makalic E, Schmidt D, Dowty JG, Aitken JF, et al. Melanoma risk for CDKN2A mutation carriers who are relatives of population-based case carriers in Australia and the UK. J Med Genet. 2011;48(4):266–272. PubMed PMC

Begg CB, Orlow I, Hummer AJ, Armstrong BK, Kricker A, Marrett LD, et al. Lifetime risk of melanoma in CDKN2A mutation carriers in a population-based sample. J Natl Cancer Inst. 2005;97(20):1507–1515. PubMed

Robsahm TE, Helsing P, Nilssen Y, Vos L, Rizvi SMH, Akslen LA, et al. High mortality due to cutaneous melanoma in Norway: a study of prognostic factors in a nationwide cancer registry. Clin Epidemiol. 2018;10:537–548. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...