• This record comes from PubMed

Nano Zero Valent Iron (nZVI) as an Amendment for Phytostabilization of Highly Multi-PTE Contaminated Soil

. 2021 May 14 ; 14 (10) : . [epub] 20210514

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

In recent years, a lot of attention has been given to searching for new additives which will effectively facilitate the process of immobilizing contaminants in the soil. This work considers the role of the enhanced nano zero valent iron (nZVI) strategy in the phytostabilization of soil contaminated with potentially toxic elements (PTEs). The experiment was carried out on soil that was highly contaminated with PTEs derived from areas in which metal waste had been stored for many years. The plants used comprised a mixture of grasses-Lolium perenne L. and Festuca rubra L. To determine the effect of the nZVI on the content of PTEs in soil and plants, the samples were analyzed using flame atomic absorption spectrometry (FAAS). The addition of nZVI significantly increased average plant biomass (38%), the contents of Cu (above 2-fold), Ni (44%), Cd (29%), Pb (68%), Zn (44%), and Cr (above 2-fold) in the roots as well as the soil pH. The addition of nZVI, on the other hand, was most effective in reducing the Zn content of soil when compared to the control series. Based on the investigations conducted, the application of nZVI to soil highly contaminated with PTEs is potentially beneficial for the restoration of polluted lands.

See more in PubMed

Nascimento C.M., de Sousa Mendes W., Silvero N.E.Q., Poppiel R.R., Sayão W.M., Dotto A.C., Santos N.V., Amorim M.T.A., Demattê J.A.M. Soil degradation index developed by multitemporal remote sensing images, climate variables, terrain and soil attributes. J. Environ. Manag. 2021;277 doi: 10.1016/j.jenvman.2020.111316. PubMed DOI

Rodrigo-Comino J., López-Vicente M., Kumar V., Rodríguez-Seijo A., Valkó O., Rojas C., Pourghasemi H.R., Salvati L., Bakr N., Vaudour E., et al. Soil science challenges in a new era: A transdisciplinary overview of relevant topics. Air Soil Water Res. 2020;13:1–17. doi: 10.1177/1178622120977491. DOI

Mazur Z., Radziemska M., Fronczyk J., Jeznach J. Heavy metal accumulation in bioindicators of pollution in urban areas of northeastern Poland. Fresenius Environ. Bull. 2015;24:216–223.

Lebrun M., Miard F., Nandillon R., Hattab-Hambli N., Léger J.C., Scippa G.S., Morabito D., Bourgerie S. Influence of biochar particle size and concentration on Pb and As availability in contaminated mining soil and phytoremediation potential of poplar assessed in a Mesocosm Experiment. Water Air Soil Pollut. 2021;232:3. doi: 10.1007/s11270-020-04942-y. DOI

Liao S., Jin G., Khan M.A., Zhu Y., Duan L., Luo W., Jia J., Zhong B., Ma J., Ye Z., et al. The quantitative source apportionment of heavy metals in peri-urban agricultural soils with UNMIX and input fluxes analysis. Environ. Technol. Innov. 2020;21:101232. doi: 10.1016/j.eti.2020.101232. DOI

Tan K., Ma W., Chen L., Wang H., Du Q., Du P., Yan B., Liu R., Li H. Estimating the distribution trend of soil heavy metals in mining area from HyMap airborne hyperspectral imagery based on ensemble learning. J. Hazard. Mater. 2021;401:123288. doi: 10.1016/j.jhazmat.2020.123288. PubMed DOI

Radziemska M., Mazur Z., Fronczyk J., Jeznach J. Effect of zeolite and halloysite on accumulation of trace elements in maize (Zea mays L.) in nickel contaminated soil. Fresenius Environ. Bull. 2014;23:3140–3146.

Gong Y., Zhao D., Wang Q. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Resour. 2018;147:440–460. doi: 10.1016/j.watres.2018.10.024. PubMed DOI

Tiodar E.D., Văcar C.L., Podar D. Phytoremediation and microorganisms-assisted phytoremediation of mercury-contaminated soils: Challenges and perspectives. Int. J. Environ. Res. Public Health. 2021;18:2435. doi: 10.3390/ijerph18052435. PubMed DOI PMC

Xie L., van Zyl D. Distinguishing reclamation, revegetation and phytoremediation, and the importance of geochemical processes in the reclamation of sulfidic mine tailings: A review. Chemosphere. 2020;252:126446. doi: 10.1016/j.chemosphere.2020.126446. PubMed DOI

Hammond C.M., Root R.A., Maier R.M., Chorover J. Arsenic and iron speciation and mobilization during phytostabilization of pyritic mine tailings. Geochim. Cosmochim. Acta. 2020;286:306–323. doi: 10.1016/j.gca.2020.07.001. PubMed DOI PMC

Scattolin M., Peuble S., Pereira F., Paran F., Moutte J., Menad N., Faure O. Aided-Phytostabilization of steel slag dumps: The key-role of pH adjustment in decreasing chromium toxicity and improving manganese, phosphorus and zinc phytoavailability. J. Hazard. Mater. 2020;405:124225. doi: 10.1016/j.jhazmat.2020.124225. PubMed DOI

Wyszkowski M., Radziemska M. The effect of chromium content in soil on the concentration of some mineral elements in plants. Fresenius Environ. Bull. 2009;18:1039–1045.

Zhan J., Huang H., Yu H., Zhang X., Zheng Z., Wang Y., Liu T., Li T. The combined effects of Cd and Pb enhanced metal binding by root cell walls of the phytostabilizer Athyrium wardii (Hook.) Environ. Pollut. 2020;258:13663. doi: 10.1016/j.envpol.2019.113663. PubMed DOI

Wetle R., Bensko-Tarsitano B., Johnson K., Sweat K.G., Cahill T. Uptake of uranium into desert plants in an abandoned uranium mine and its implications for phytostabilization strategies. J. Environ. Radioact. 2020;220–221:106293. doi: 10.1016/j.jenvrad.2020.106293. PubMed DOI

Li X., Yang Y., Gao B., Zhang M. Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations. PLoS ONE. 2015;10:e0122884. doi: 10.1371/journal.pone.0122884. PubMed DOI PMC

Wang H., Kou X., Pei Z., Xiao J.Q., Shan X., Xing B. Hysiological effects of magnetite (Fe3O4) nanoparticleson perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology. 2011;5:30–42. doi: 10.3109/17435390.2010.489206. PubMed DOI

Gong X., Huang D., Liu Y., Zeng G., Wang R., Wan J., Zhang C., Cheng M., Qin X., Xue W. Stabilized nanoscale zerovalent Iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) Gaudich cultivated in cadmium contaminated sediments. Environ. Sci. Technol. 2017;51:11308–11316. doi: 10.1021/acs.est.7b03164. PubMed DOI

Jiang D., Zeng G., Huang D., Chen M., Zhang C., Huang C., Wan J. Remediation of contaminated soils by enhanced nanoscale zero valent iron. Environ. Res. 2018;163:217–227. doi: 10.1016/j.envres.2018.01.030. PubMed DOI

Teodoro M., Clemente R., Ferrer-Bustins E., Martínez-Fernández D., Pilar Bernal M., Vítková M., Vítek P., Komárek M. Nanoscale zero-valent iron has minimum toxicological risk on the germination and early growth of two grass species with potential for phytostabilization. Nanomaterials. 2020;10:1537. doi: 10.3390/nano10081537. PubMed DOI PMC

Gil-Díaz M., Pinilla P., Alonso J., Lobo M. Viability of a nanoremediation process in single or multi-metal (loid) contaminated soils. J. Hazard. Mater. 2017;321:812–819. doi: 10.1016/j.jhazmat.2016.09.071. PubMed DOI

Zand A.D., Tabrizi A.M., Heir A.V. The influence of association of plant growth-promoting rhizobacteria and zero-valent iron nanoparticles on removal of antimony from soil by Trifolium repens. Environ. Sci. Pollut. Res. 2020;27:42815–42829. doi: 10.1007/s11356-020-10252-x. PubMed DOI

Dong H., Deng J., Xie Y., Zhang C., Jiang Z., Cheng Y., Hou K., Zeng G. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. J. Hazard. Mater. 2017;332:79–86. doi: 10.1016/j.jhazmat.2017.03.002. PubMed DOI

Diego B., Rubén F., Lorena W. Nanoremediation of As and metals polluted soils by means of graphene oxide nanoparticles. Sci. Rep. 2020;10:1896. PubMed PMC

Polish Ministry of the Environment . Ordinance of the Minister of Environment on Soil and Ground Quality Standards. Volume 395. Polish Ministry of the Environment; Warsaw, Poland: 2016. pp. 1–86. Jew Lawyer. (In Polish)

Radziemska M., Bęś A., Gusiatin Z.M., Cerda A., Mazur Z., Jeznach J., Kowal P., Brtnický M. The combined effect of phytostabilization and different amendments on remediation of soils from post-military areas. Sci. Total Environ. 2019;688:37–45. doi: 10.1016/j.scitotenv.2019.06.190. PubMed DOI

Baragaño D., Alonso J., Gallego J.R., Lobo M.C., Gil-Díaz M. Zero valent iron and goethite nanoparticles as new promising remediation techniques for As-polluted soils. Chemosphere. 2020;238:124624. doi: 10.1016/j.chemosphere.2019.124624. PubMed DOI

Baragaño D., Forján R., Fernández B., Ayala J., Afif E., Gallego J.L.R. Application of biochar, compost and ZVI nanoparticles for the remediation of As, Cu, Pb and Zn polluted soil. Environ. Sci. Pollut. Res. 2020;27:33681–33691. doi: 10.1007/s11356-020-09586-3. PubMed DOI

Pawluk K. Charakterystyka właściwości mechanicznych wybranych materiałów reaktywnych. Acta Sci. Pol. Archit. 2015;14:57–66. (In Polish)

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020. [(accessed on 9 March 2021)]. Available online: http://www.R-project.org/

Zhong X., Chen Z., Li Y., Ding K., Liu W., Liu Y., Yuan Y., Zhang M., Baker A.J.M., Yang W., et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. J. Hazard. Mater. 2020;400:123289. doi: 10.1016/j.jhazmat.2020.123289. PubMed DOI

Mu Y., Jia F., Ai Z., Zhang L. Iron oxide shell mediated environmental remediation properties of nano zero-valent iron. Environ. Sci. Nano. 2016;4:27–45. doi: 10.1039/C6EN00398B. DOI

Kim J.S., Shea P.J., Yang J.E., Kim J.E. Halide salts accelerate degradation of high explosives by zero-valent iron. Environ. Pollut. 2007;147:634–641. doi: 10.1016/j.envpol.2006.10.010. PubMed DOI

Lavine B.K., Auslander G., Ritter J. Polarographic studies of zero valent iron as a reductant for remediation of nitroaromatics in the environment. Microchem. J. 2001;70:69–83. doi: 10.1016/S0026-265X(01)00075-3. DOI

Mukherjee R., Kumar R., Sinha A., Lama Y., Saha A.K. A review on synthesis, characterization and applications of nano zero valent iron (nZVI) for environmental remediation. Crit. Rev. Environ. Sci. Technol. 2016;46:443–466. doi: 10.1080/10643389.2015.1103832. DOI

Agrelli D., Caporale A.G., Adamo P. Assessment of the bioavailability and speciation of heavy metal(loid)s and hydrocarbons for risk-based soil remediation. Agronomy. 2020;10:1440. doi: 10.3390/agronomy10091440. DOI

Hijazin T., Radwan A., Lewerenz L., Abouzeid S., Selmar D. The uptake of alkaloids by plants from the soil is determined by rhizosphere pH. Rhizosphere. 2020;15:100234. doi: 10.1016/j.rhisph.2020.100234. DOI

Romdhane L., Panozzo A., Radhouane L., Dal Cortivo C., Barion G., Vamerali T. Root characteristics and metal uptake of maize (Zea mays L.) under extreme soil contamination. Agronomy. 2021;11:178. doi: 10.3390/agronomy11010178. PubMed DOI PMC

Lu H.L., Nkoh N.J., Abdulaha-Al Baquy M., Dong G., Li J.Y., Xu R.K. Plants alter surface charge and functional groups of their roots to adapt to acidic soil conditions. Environ. Pollut. 2020;267:115590. doi: 10.1016/j.envpol.2020.115590. PubMed DOI

Gulio C., Camelin E., Tommasi T., Fino D., Pugliese M. Anaerobic digestates from sewage sludge used as fertilizer on a poor alkaline sandy soil and on a peat substrate: Effects on tomato plants growth and on soil properties. J. Environ. Manag. 2020;269:110767. PubMed

Qiao J., Liu T., Wang X., Li F., Lv Y., Cui J., Zeng X., Yuan Y., Liu C. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Chemosphere. 2018;195:260–271. doi: 10.1016/j.chemosphere.2017.12.081. PubMed DOI

Bian F., Zhong Z., Zhang X., Yang C., Gai X. Bamboo—An untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere. 2020;246:125750. doi: 10.1016/j.chemosphere.2019.125750. PubMed DOI

Cui H., Li H., Zhang S., Yi Q., Zhou J., Fang G., Zhou J. Bioavailability and mobility of copper and cadmium in polluted soil after phytostabilization using different plants aided by limestone. Chemosphere. 2020;242:125252. doi: 10.1016/j.chemosphere.2019.125252. PubMed DOI

Libralato G., Devoti C.A., Zanella M., Sabbioni E., Mičetić I., Manodori L., Pigozzo A., Manenti S., Groppi F., Ghirardini V.A. Phytotoxicity of ionic, micro- and nano-sized iron in three plant species. Ecotoxicol. Environ. Saf. 2016;123:81–88. doi: 10.1016/j.ecoenv.2015.07.024. PubMed DOI

Xie Y., Cheng W., Tsang P.E., Fang Z. Remediation and phytotoxicity of decabromodiphenyl ether contaminated soil by zero valent iron nanoparticles immobilized in mesoporous silica microspheres. J. Environ. Manag. 2016;166:478–483. doi: 10.1016/j.jenvman.2015.10.042. PubMed DOI

Trujillo-Reyes J., Majumdar S., Botez C., Peralta-Videa J., Gardea-Torresdey J. Exposure studies of core-shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: Are they a potential physiological and nutritional hazard? J. Hazard. Mater. 2014;267:255–263. doi: 10.1016/j.jhazmat.2013.11.067. PubMed DOI

Iannone M.F., Groppa M.D., de Sousa M.E., van Raap M.B.F., Benavides M.P. Impact of magnetite ironoxide nanoparticles on wheat (Triticum aestivum L.) development: Evaluation of oxidative damage. Environ Exp. Bot. 2016;131:77–88. doi: 10.1016/j.envexpbot.2016.07.004. DOI

Yoon H., Kang Y.G., Chang Y.S., Kim J.H. Effects of zerovalent iron nanoparticles on photosynthesis and biochemical adaptation of soil-grown Arabidopsis thaliana. Nanomaterials. 2019;9:1543. doi: 10.3390/nano9111543. PubMed DOI PMC

Zine H., Elgadi S., Hakkou R., Papazoglou E.G., Midhat L., Ouhammou A. Wild plants for the phytostabilization of phosphate mine waste in semi-arid environments: A field experiment. Minerals. 2021;11:42. doi: 10.3390/min11010042. DOI

Bravin M.N., Garnier C., Lenoble V., Gérard F., Dudal Y., Hinsinger P. Root induced changes in pH and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere. Geochim. Cosmochim. Acta. 2012;84:256–268. doi: 10.1016/j.gca.2012.01.031. DOI

Kim K.R., Owens G., Kwon S. Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: A rhizobox study. J. Environ. Sci. 2010;22:98–105. doi: 10.1016/S1001-0742(09)60080-2. PubMed DOI

Vítková M., Puschenreiter M., Komárek M. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal (loid) contaminated soils. Chemosphere. 2018;200:217–226. doi: 10.1016/j.chemosphere.2018.02.118. PubMed DOI

Martínez-Fernandez D., Komarek M. Comparative effects of nanoscale zerovalent iron (nZVI) and Fe2O3 nanoparticles on root hydraulic conductivity of Solanum lycopersicum L. Environ. Exp. Bot. 2016;131:128–136. doi: 10.1016/j.envexpbot.2016.07.010. DOI

Hidalgo K.T.S., Carrion-Huertas P.J., Kinch R.T., Betancourt L.E., Cabrera C.R. Phytonanoremediation by Avicennia germinans (black mangrove) and nano zero valent iron for heavy metal uptake from Cienaga Las Cucharillas wetland soils. Environ. Nanotechnol. Monit. Manag. 2020;14:100363.

Gil-Diaz M., Diez-Pascuala S., González A., Alonso J., Rodríguez-Valdés E., Gallego J.R., Lobo M.C. A nanoremediation strategy for the recovery of an As-polluted soil. Chemosphere. 2016;149:137–145. doi: 10.1016/j.chemosphere.2016.01.106. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...