Nanoscale Zero-Valent Iron Has Minimum Toxicological Risk on the Germination and Early Growth of Two Grass Species with Potential for Phytostabilization
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-24782Y
Grantová Agentura České Republiky
20184216
Česká Zemědělská Univerzita v Praze
CZ.02.1.01/0.0/0.0/16_019/0000797
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32764467
PubMed Central
PMC7466458
DOI
10.3390/nano10081537
PII: nano10081537
Knihovny.cz E-zdroje
- Klíčová slova
- Agrostis capillaris, Festuca rubra, nano zerovalent iron, plant stress, uptake,
- Publikační typ
- časopisecké články MeSH
Two Poaceae species, Agrostis capillaris and Festuca rubra, were selected for their potential as phytostabilizing plants in multicontaminated soils. These species are resistant to contamination and maintain high concentrations of contaminants at the root level. Nanoscale zero-valent iron (nZVI) is an engineered nanomaterial with the ability to stabilize metal(loid)s in soils; its potential toxicological effects in the selected species were studied in a germination test using: (i) control variant without soil; (ii) soil contaminated with Pb and Zn; and (iii) contaminated soil amended with 1% nZVI, as well as in an hydroponic experiment with the addition of nZVI 0, 25, 50 and 100 mg L-1. nZVI had no negative effects on seed germination or seedling growth, but was associated with an increase in shoot growth and reduction of the elongation inhibition rate (root-dependent) of F. rubra seedlings. However, applications of nZVI in the hydroponic solution had no effects on F. rubra but A. capillaris developed longer roots and more biomass. Increasing nZVI concentrations in the growing solution increased Mg and Fe uptake and reduced the Fe translocation factor. Our results indicate that nZVI has few toxic effects on the studied species.
Zobrazit více v PubMed
Ali A., Guo D., Jeyasundar P.G.S.A., Li Y., Xiao R., Du J., Li R., Zhang Z. Application of wood biochar in polluted soils stabilized the toxic metals and enhanced wheat (Triticum aestivum) growth and soil enzymatic activity. Ecotoxicol. Environ. Saf. 2019;184:109635. doi: 10.1016/j.ecoenv.2019.109635. PubMed DOI
Rinklebe J., Shaheen S.M. Miscellaneous additives can enhance plant uptake and affect geochemical fractions of copper in a heavily polluted riparian grassland soil. Ecotoxicol. Environ. Saf. 2015;119:58–65. doi: 10.1016/j.ecoenv.2015.04.046. PubMed DOI
Grieger K., Fjordboge A., Hartmann N., Eriksson E., Bjerg P., Baun A. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off? J. Contam. Hydrol. 2010;118:165–183. doi: 10.1016/j.jconhyd.2010.07.011. PubMed DOI
Komárek M., Vanek A., Ettler V. Chemical stabilization of metals and arsenic in contaminated soils using oxides—A review. Environ. Pollut. 2013;172:9–22. doi: 10.1016/j.envpol.2012.07.045. PubMed DOI
Stefaniuk M., Oleszczuk P., Ok Y.S. Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chem. Eng. J. 2016;287:618–632. doi: 10.1016/j.cej.2015.11.046. DOI
Lefevre E., Bossa N., Wiesner M.R., Gunsch C.K. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities. Sci. Total Environ. 2016;565:889–901. doi: 10.1016/j.scitotenv.2016.02.003. PubMed DOI PMC
Ma X., Geiser-Lee J., Deng Y., Kolmakov A. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Environ. 2010;408:3053–3061. doi: 10.1016/j.scitotenv.2010.03.031. PubMed DOI
Michálková Z., Martínez-Fernández D., Komárek M. Interactions of two novel stabilizing amendments with sunflower plants grown in a contaminated soil. Chemosphere. 2017;186:374–380. doi: 10.1016/j.chemosphere.2017.08.009. PubMed DOI
Wu S., Vosatka M., Vogel-Mikus K., Kavcic A., Kelemen M., Sepec L., Pelicon P., Skala R., Valero Powter A.R., Teodoro M., et al. Nano zero-valent iron mediated metal(loid) uptake and translocation by arbuscular mycorrhizal symbioses. Environ. Sci. Technol. 2018;14:7640–7651. doi: 10.1021/acs.est.7b05516. PubMed DOI
Zuverza-Mena N., Martínez-Fernández D., Du W., Hernandez-Viezcas J.A., Bonilla-Bird N., Lopez-Moreno M.L., Komárek M., Peralta-Videa J.R., Gardea-Torresdey J.L. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses—A review. Plant Physiol. Biochem. 2017;110:236–264. doi: 10.1016/j.plaphy.2016.05.037. PubMed DOI
Martínez-Fernández D., Vítková M., Bernal M.P., Komárek M. Effects of nano-maghemite on trace element accumulation and drought response of Helianthus annuus L. in a Contaminated Mine soil. Water Air Soil Pollut. 2015;226:1–9. doi: 10.1007/s11270-015-2365-y. DOI
Kumpiene J., Lagerkvist A., Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments? A review. Waste Manag. 2008;28:215–225. doi: 10.1016/j.wasman.2006.12.012. PubMed DOI
Lebrun M., Miard F., Nandillon R., Scippa G.S., Bourgerie S., Morabito D. Biochar effect associated with compost and iron to promote Pb and As soil stabilization and Salix viminalis L. growth. Chemosphere. 2019;222:810–822. doi: 10.1016/j.chemosphere.2019.01.188. PubMed DOI
Sigua G.C., Novak J.M., Watts D.W., Ippolito J.A., Ducey T.F., Johnson M.G., Spokas K.A. Phytostabilization of Zn and Cd in mine soil using corn in combination with biochars and manure-based compost. Environments. 2019;6:69. doi: 10.3390/environments6060069. DOI
Doubkova P., Sudova R. Limited impact of arbuscular mycorrhizal fungi on clones of Agrostis capillaris with different heavy metal tolerance. Appl. Soil Ecol. 2016;99:78–88. doi: 10.1016/j.apsoil.2015.11.004. DOI
Kucharski R., Sas-Nowosielska A., Malkowski E., Japenga J., Kuperberg J., Pogrzeba M., Krzyzak J. The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant Soil. 2005;273:291–305. doi: 10.1007/s11104-004-8068-6. DOI
Kumpiene J., Antelo J., Brännvall E., Carabante I., Ek K., Komárek M., Söderberg C., Warell L. In situ chemical stabilization of trace elementcontaminated soil—Field demonstrations and barriers to transition from laboratory to the field—A review. Appl. Geochem. 2019;100:335–351. doi: 10.1016/j.apgeochem.2018.12.003. DOI
Clemente R., Arco-Lázaro E., Pardo T., Martıén I., Sánchez-Guerrero A., Sevilla F., Bernal M. Combination of soil organic and inorganic amendments helps plants overcome trace element induced oxidative stress and allows phytostabilisation. Chemosphere. 2019;223:223–231. doi: 10.1016/j.chemosphere.2019.02.056. PubMed DOI
Kim M.S., Min H.G., Lee S.H., Kim J.G. A comparative study on poaceae and leguminosae forage crops for aided phytostabilization in trace-element-contaminated soil. Agronomy. 2018;8:105. doi: 10.3390/agronomy8070105. DOI
Radziemska M., Koda E., Vaverkovà M.D., Gusiatin Z.M., Cerdà A., Brtnický M., Mazur Z. Soils from an iron and steel scrap storage yard remediated with aided phytostabilization. Land Degrad. Dev. 2018;30:202–211. doi: 10.1002/ldr.3215. DOI
Wang Z., Liu X., Shi Z., Tong R., Adams C.A., Shi X. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants e A soil microcosm experiment. Chemosphere. 2016;147:88–97. doi: 10.1016/j.chemosphere.2015.12.076. PubMed DOI
Xiang L., Zhao H.M., Li Y.W., Huang X.P., Wu X.L., Zhai T., Yuan Y., Cai Q.Y., Mo C.H. Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ. Sci. Pollut. Res. 2015;22:10452–10462. doi: 10.1007/s11356-015-4172-9. PubMed DOI
Martínez-Fernández D., Komárek M. Comparative effects of nanoscale zero-valent iron (nzvi) and Fe2O3 nanoparticles on root hydraulic conductivity of Solanum lycopersicum L. Environ. Exp. Bot. 2016;131:128–136. doi: 10.1016/j.envexpbot.2016.07.010. DOI
Wang J., Fang Z., Cheng W., Tsang P.E., Zhao D. Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa. Ecotoxicology. 2016;25:1202–1210. doi: 10.1007/s10646-016-1674-2. PubMed DOI
Ma X., Gurung A., Deng Y. Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci. Total Environ. 2013;443:844–849. doi: 10.1016/j.scitotenv.2012.11.073. PubMed DOI
Visioli G., Conti F.D., Gardi C., Menta C. Germination and root elongation bioassays in six different plant species for testing Ni contamination in soil. Bull. Environ. Contam. Toxicol. 2014;92:490–496. doi: 10.1007/s00128-013-1166-5. PubMed DOI
Yasur J., Rani P.U. Environmental effects of nanosilver: Impact on castor seed germination, seedling growth, and plant physiology. Environ. Sci. Pollut. Res. 2013;20:8636–8648. doi: 10.1007/s11356-013-1798-3. PubMed DOI
Libralato G., Devoti A.C., Zanella M., Sabbioni E., Miceti I., Manodori L., Pigozzo A., Manenti S., Groppi F., Ghirardini A.V. Phytotoxicity of ionic, micro- and nano-sized iron in three plant species. Ecotoxicol. Environ. Saf. 2016;123:81–88. doi: 10.1016/j.ecoenv.2015.07.024. PubMed DOI
Nguyen N.T., McInturf S.A., Mendoza-Cozat D.G. Hydroponics: A versatile system to study nutrient allocation and plant responses to nutrient availability and exposure to toxic elements. J. Vis. Exp. 2016;113:e54317. doi: 10.3791/54317. PubMed DOI PMC
Trovato M., Mattioli R., Costantino P. Multiple roles of proline in plant stress tolerance and development. Rend. Lincei. 2008;19:325–346. doi: 10.1007/s12210-008-0022-8. DOI
Kaur G., Asthir B. Proline: A key player in plant abiotic stress tolerance. Biol. Plant. 2015;59:609–619. doi: 10.1007/s10535-015-0549-3. DOI
Banerjee R., Goswami P., Lavania S., Mukherjee A., Lavania U.C. Vetiver grass is a potential candidate for phytoremediation of iron ore mine spoil dumps. Ecol. Eng. 2019;132:120–136. doi: 10.1016/j.ecoleng.2018.10.012. DOI
Gajić G., Mitrović M., Pavlović P. Phytoremediation Potential of Perennial Grasses. Elsevier; Amsterdam, The Netherlands: 2020. Feasibility of Festuca rubra L. native grass in phytoremediation; pp. 115–164.
Teodoro M., Hejcman M., Vítková M., Wu S., Komárek M. Seasonal fluctuations of Zn, Pb, As and Cd contents in the biomass of selected grass species growing on contaminated soils: Implications for in situ phytostabilization. Sci. Total Environ. 2020;703:134710. doi: 10.1016/j.scitotenv.2019.134710. PubMed DOI
Ettler V., Vaněk A., Mihaljevič M., Bezdička P. Contrasting lead speciation in forest and tilled soils heavily polluted by lead metallurgy. Chemosphere. 2005;58:1449–1459. doi: 10.1016/j.chemosphere.2004.09.084. PubMed DOI
Vítková M., Rakosova S., Michálková Z., Komárek M. Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time. J. Environ. Manag. 2016;186:268–276. doi: 10.1016/j.jenvman.2016.06.003. PubMed DOI
Bareke T. Biology of seed development and germination physiology. Adv. Plants Agric. Res. 2018;8:336–346. doi: 10.15406/apar.2018.08.00335. DOI
Martínez-Fernández D., Barroso D., Komárek M. Root water transport of Helianthus annus L. under iron oxide nanoparticle exposure. Environ. Sci. Pollut. Res. 2015;23:1732–1741. doi: 10.1007/s11356-015-5423-5. PubMed DOI
Bates L., Waldern R., Teare I. Rapid determination of free proline for water stress studies. Plant Soil. 1973;39:205–207. doi: 10.1007/BF00018060. DOI
Lee Y., Takahashi T. An improved clorimetric determination of aminoacids with the use of ninhydrin. Anal. Biochem. 1966;14:71–77. doi: 10.1016/0003-2697(66)90057-1. DOI
Teodoro M. Master’s Thesis. Universidad Autonoma Chapingo; Texcoco, Mexico: 2011. Rompimiento de Latencia en Semillas de Mimosa Lacerata Rose.
Munzuroglu O., Geckil H. Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch. Environ. Contam. Toxicol. 2002;43:203–213. doi: 10.1007/s00244-002-1116-4. PubMed DOI
Savithramma N., Ankanna S., Bhumi G. Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata—An endemic and endangered medicinal tree taxon. Nano Vis. 2012;2:61–68.
Vítková M., Puschenreiter M., Komárek M. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Chemosphere. 2018;200:217–226. doi: 10.1016/j.chemosphere.2018.02.118. PubMed DOI
Mitzia A., Vítková M., Komárek M. Assessment of biochar and/or nano zero-valent iron for the stabilisation of Zn, Pb and Cd: A temporal study of solid phase geochemistry under changing soil conditions. Chemosphere. 2020;242:125248. doi: 10.1016/j.chemosphere.2019.125248. PubMed DOI
Zhan Y., Wu X., Lin J., Zhang Z., Zhao Y., Yu Y., Wang Y. Combined use of calcium nitrate addition and anion exchange resin capping to control sedimentary phosphorus release and its nitrate-nitrogen releasing risk. Sci. Total Environ. 2019;689:203–214. doi: 10.1016/j.scitotenv.2019.06.406. PubMed DOI
Sharmila P., Kumari P.K., Singh K., Prasad N.V.S.R.K., Pardha-Saradhi P. Cadmium toxicity-induced proline accumulation is coupled to iron depletion. Protoplasma. 2017;254:763–770. doi: 10.1007/s00709-016-0988-5. PubMed DOI
Wang F., Zeng B., Sun Z., Zhu C. Relationship between proline and Hg2+ -induced oxidative stress in a tolerant rice mutant. Arch. Environ. Contam. Toxicol. 2008;56:723–731. doi: 10.1007/s00244-008-9226-2. PubMed DOI
Ullah R., Hadi F., Ahmad S., Jan A.U., Rongliang Q. Phytoremediation of lead and chromium contaminated soil improves with the endogenous phenolics and proline production in parthenium, cannabis, euphorbia, and rumex species. Water Air Soil Pollut. 2019;230:40. doi: 10.1007/s11270-019-4089-x. DOI
Teodoro M., Trakal L., Gallagher B.N., Šimek P., Soudek P., Pohořelý M., Beesley L., Jačka L., Kovář M., Seyedsadr S., et al. Application of co-composted biochar significantly improved plant-growth relevant physical/chemical properties of a metal contaminated soil. Chemosphere. 2020;242:125255. doi: 10.1016/j.chemosphere.2019.125255. PubMed DOI
Kobayashi T., Nozoye T., Nishizawa N.K. Iron transport and its regulation in plants. Free Radic. Biol. Med. 2019;133:11–20. doi: 10.1016/j.freeradbiomed.2018.10.439. PubMed DOI
Zandi P., Yang J., Xia X., Tian Y., Li Q., Mozdzen K., Barabasz-Krasny B., Wang Y. Do sulfur addition and rhizoplane iron plaque affect chromium uptake by rice (Oryza sativa L.) seedlings in solution culture? J. Hazard. Mater. 2020;388:121803. doi: 10.1016/j.jhazmat.2019.121803. PubMed DOI
Zhang X., Zhang F., Mao D. Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.): Phosphorus uptake. Plant Soil. 1999;209:187–192. doi: 10.1023/A:1004505431879. DOI
De Araujo T.O., Isaure M.P., Alchoubassi G., Bierla K., Szpunar J., Trcera N., Chay S., Alcon C., da Silva L.C., Curie C., et al. Paspalum urvillei and Setaria parviflora, two grasses naturally adapted to extreme iron-rich environments. Plant Physiol. Biochem. 2020;151:144–156. doi: 10.1016/j.plaphy.2020.03.014. PubMed DOI