Nanoscale Zero-Valent Iron Has Minimum Toxicological Risk on the Germination and Early Growth of Two Grass Species with Potential for Phytostabilization

. 2020 Aug 05 ; 10 (8) : . [epub] 20200805

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32764467

Grantová podpora
18-24782Y Grantová Agentura České Republiky
20184216 Česká Zemědělská Univerzita v Praze
CZ.02.1.01/0.0/0.0/16_019/0000797 Ministerstvo Školství, Mládeže a Tělovýchovy

Two Poaceae species, Agrostis capillaris and Festuca rubra, were selected for their potential as phytostabilizing plants in multicontaminated soils. These species are resistant to contamination and maintain high concentrations of contaminants at the root level. Nanoscale zero-valent iron (nZVI) is an engineered nanomaterial with the ability to stabilize metal(loid)s in soils; its potential toxicological effects in the selected species were studied in a germination test using: (i) control variant without soil; (ii) soil contaminated with Pb and Zn; and (iii) contaminated soil amended with 1% nZVI, as well as in an hydroponic experiment with the addition of nZVI 0, 25, 50 and 100 mg L-1. nZVI had no negative effects on seed germination or seedling growth, but was associated with an increase in shoot growth and reduction of the elongation inhibition rate (root-dependent) of F. rubra seedlings. However, applications of nZVI in the hydroponic solution had no effects on F. rubra but A. capillaris developed longer roots and more biomass. Increasing nZVI concentrations in the growing solution increased Mg and Fe uptake and reduced the Fe translocation factor. Our results indicate that nZVI has few toxic effects on the studied species.

Zobrazit více v PubMed

Ali A., Guo D., Jeyasundar P.G.S.A., Li Y., Xiao R., Du J., Li R., Zhang Z. Application of wood biochar in polluted soils stabilized the toxic metals and enhanced wheat (Triticum aestivum) growth and soil enzymatic activity. Ecotoxicol. Environ. Saf. 2019;184:109635. doi: 10.1016/j.ecoenv.2019.109635. PubMed DOI

Rinklebe J., Shaheen S.M. Miscellaneous additives can enhance plant uptake and affect geochemical fractions of copper in a heavily polluted riparian grassland soil. Ecotoxicol. Environ. Saf. 2015;119:58–65. doi: 10.1016/j.ecoenv.2015.04.046. PubMed DOI

Grieger K., Fjordboge A., Hartmann N., Eriksson E., Bjerg P., Baun A. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off? J. Contam. Hydrol. 2010;118:165–183. doi: 10.1016/j.jconhyd.2010.07.011. PubMed DOI

Komárek M., Vanek A., Ettler V. Chemical stabilization of metals and arsenic in contaminated soils using oxides—A review. Environ. Pollut. 2013;172:9–22. doi: 10.1016/j.envpol.2012.07.045. PubMed DOI

Stefaniuk M., Oleszczuk P., Ok Y.S. Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chem. Eng. J. 2016;287:618–632. doi: 10.1016/j.cej.2015.11.046. DOI

Lefevre E., Bossa N., Wiesner M.R., Gunsch C.K. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities. Sci. Total Environ. 2016;565:889–901. doi: 10.1016/j.scitotenv.2016.02.003. PubMed DOI PMC

Ma X., Geiser-Lee J., Deng Y., Kolmakov A. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Environ. 2010;408:3053–3061. doi: 10.1016/j.scitotenv.2010.03.031. PubMed DOI

Michálková Z., Martínez-Fernández D., Komárek M. Interactions of two novel stabilizing amendments with sunflower plants grown in a contaminated soil. Chemosphere. 2017;186:374–380. doi: 10.1016/j.chemosphere.2017.08.009. PubMed DOI

Wu S., Vosatka M., Vogel-Mikus K., Kavcic A., Kelemen M., Sepec L., Pelicon P., Skala R., Valero Powter A.R., Teodoro M., et al. Nano zero-valent iron mediated metal(loid) uptake and translocation by arbuscular mycorrhizal symbioses. Environ. Sci. Technol. 2018;14:7640–7651. doi: 10.1021/acs.est.7b05516. PubMed DOI

Zuverza-Mena N., Martínez-Fernández D., Du W., Hernandez-Viezcas J.A., Bonilla-Bird N., Lopez-Moreno M.L., Komárek M., Peralta-Videa J.R., Gardea-Torresdey J.L. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses—A review. Plant Physiol. Biochem. 2017;110:236–264. doi: 10.1016/j.plaphy.2016.05.037. PubMed DOI

Martínez-Fernández D., Vítková M., Bernal M.P., Komárek M. Effects of nano-maghemite on trace element accumulation and drought response of Helianthus annuus L. in a Contaminated Mine soil. Water Air Soil Pollut. 2015;226:1–9. doi: 10.1007/s11270-015-2365-y. DOI

Kumpiene J., Lagerkvist A., Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments? A review. Waste Manag. 2008;28:215–225. doi: 10.1016/j.wasman.2006.12.012. PubMed DOI

Lebrun M., Miard F., Nandillon R., Scippa G.S., Bourgerie S., Morabito D. Biochar effect associated with compost and iron to promote Pb and As soil stabilization and Salix viminalis L. growth. Chemosphere. 2019;222:810–822. doi: 10.1016/j.chemosphere.2019.01.188. PubMed DOI

Sigua G.C., Novak J.M., Watts D.W., Ippolito J.A., Ducey T.F., Johnson M.G., Spokas K.A. Phytostabilization of Zn and Cd in mine soil using corn in combination with biochars and manure-based compost. Environments. 2019;6:69. doi: 10.3390/environments6060069. DOI

Doubkova P., Sudova R. Limited impact of arbuscular mycorrhizal fungi on clones of Agrostis capillaris with different heavy metal tolerance. Appl. Soil Ecol. 2016;99:78–88. doi: 10.1016/j.apsoil.2015.11.004. DOI

Kucharski R., Sas-Nowosielska A., Malkowski E., Japenga J., Kuperberg J., Pogrzeba M., Krzyzak J. The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant Soil. 2005;273:291–305. doi: 10.1007/s11104-004-8068-6. DOI

Kumpiene J., Antelo J., Brännvall E., Carabante I., Ek K., Komárek M., Söderberg C., Warell L. In situ chemical stabilization of trace elementcontaminated soil—Field demonstrations and barriers to transition from laboratory to the field—A review. Appl. Geochem. 2019;100:335–351. doi: 10.1016/j.apgeochem.2018.12.003. DOI

Clemente R., Arco-Lázaro E., Pardo T., Martıén I., Sánchez-Guerrero A., Sevilla F., Bernal M. Combination of soil organic and inorganic amendments helps plants overcome trace element induced oxidative stress and allows phytostabilisation. Chemosphere. 2019;223:223–231. doi: 10.1016/j.chemosphere.2019.02.056. PubMed DOI

Kim M.S., Min H.G., Lee S.H., Kim J.G. A comparative study on poaceae and leguminosae forage crops for aided phytostabilization in trace-element-contaminated soil. Agronomy. 2018;8:105. doi: 10.3390/agronomy8070105. DOI

Radziemska M., Koda E., Vaverkovà M.D., Gusiatin Z.M., Cerdà A., Brtnický M., Mazur Z. Soils from an iron and steel scrap storage yard remediated with aided phytostabilization. Land Degrad. Dev. 2018;30:202–211. doi: 10.1002/ldr.3215. DOI

Wang Z., Liu X., Shi Z., Tong R., Adams C.A., Shi X. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants e A soil microcosm experiment. Chemosphere. 2016;147:88–97. doi: 10.1016/j.chemosphere.2015.12.076. PubMed DOI

Xiang L., Zhao H.M., Li Y.W., Huang X.P., Wu X.L., Zhai T., Yuan Y., Cai Q.Y., Mo C.H. Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ. Sci. Pollut. Res. 2015;22:10452–10462. doi: 10.1007/s11356-015-4172-9. PubMed DOI

Martínez-Fernández D., Komárek M. Comparative effects of nanoscale zero-valent iron (nzvi) and Fe2O3 nanoparticles on root hydraulic conductivity of Solanum lycopersicum L. Environ. Exp. Bot. 2016;131:128–136. doi: 10.1016/j.envexpbot.2016.07.010. DOI

Wang J., Fang Z., Cheng W., Tsang P.E., Zhao D. Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa. Ecotoxicology. 2016;25:1202–1210. doi: 10.1007/s10646-016-1674-2. PubMed DOI

Ma X., Gurung A., Deng Y. Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci. Total Environ. 2013;443:844–849. doi: 10.1016/j.scitotenv.2012.11.073. PubMed DOI

Visioli G., Conti F.D., Gardi C., Menta C. Germination and root elongation bioassays in six different plant species for testing Ni contamination in soil. Bull. Environ. Contam. Toxicol. 2014;92:490–496. doi: 10.1007/s00128-013-1166-5. PubMed DOI

Yasur J., Rani P.U. Environmental effects of nanosilver: Impact on castor seed germination, seedling growth, and plant physiology. Environ. Sci. Pollut. Res. 2013;20:8636–8648. doi: 10.1007/s11356-013-1798-3. PubMed DOI

Libralato G., Devoti A.C., Zanella M., Sabbioni E., Miceti I., Manodori L., Pigozzo A., Manenti S., Groppi F., Ghirardini A.V. Phytotoxicity of ionic, micro- and nano-sized iron in three plant species. Ecotoxicol. Environ. Saf. 2016;123:81–88. doi: 10.1016/j.ecoenv.2015.07.024. PubMed DOI

Nguyen N.T., McInturf S.A., Mendoza-Cozat D.G. Hydroponics: A versatile system to study nutrient allocation and plant responses to nutrient availability and exposure to toxic elements. J. Vis. Exp. 2016;113:e54317. doi: 10.3791/54317. PubMed DOI PMC

Trovato M., Mattioli R., Costantino P. Multiple roles of proline in plant stress tolerance and development. Rend. Lincei. 2008;19:325–346. doi: 10.1007/s12210-008-0022-8. DOI

Kaur G., Asthir B. Proline: A key player in plant abiotic stress tolerance. Biol. Plant. 2015;59:609–619. doi: 10.1007/s10535-015-0549-3. DOI

Banerjee R., Goswami P., Lavania S., Mukherjee A., Lavania U.C. Vetiver grass is a potential candidate for phytoremediation of iron ore mine spoil dumps. Ecol. Eng. 2019;132:120–136. doi: 10.1016/j.ecoleng.2018.10.012. DOI

Gajić G., Mitrović M., Pavlović P. Phytoremediation Potential of Perennial Grasses. Elsevier; Amsterdam, The Netherlands: 2020. Feasibility of Festuca rubra L. native grass in phytoremediation; pp. 115–164.

Teodoro M., Hejcman M., Vítková M., Wu S., Komárek M. Seasonal fluctuations of Zn, Pb, As and Cd contents in the biomass of selected grass species growing on contaminated soils: Implications for in situ phytostabilization. Sci. Total Environ. 2020;703:134710. doi: 10.1016/j.scitotenv.2019.134710. PubMed DOI

Ettler V., Vaněk A., Mihaljevič M., Bezdička P. Contrasting lead speciation in forest and tilled soils heavily polluted by lead metallurgy. Chemosphere. 2005;58:1449–1459. doi: 10.1016/j.chemosphere.2004.09.084. PubMed DOI

Vítková M., Rakosova S., Michálková Z., Komárek M. Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time. J. Environ. Manag. 2016;186:268–276. doi: 10.1016/j.jenvman.2016.06.003. PubMed DOI

Bareke T. Biology of seed development and germination physiology. Adv. Plants Agric. Res. 2018;8:336–346. doi: 10.15406/apar.2018.08.00335. DOI

Martínez-Fernández D., Barroso D., Komárek M. Root water transport of Helianthus annus L. under iron oxide nanoparticle exposure. Environ. Sci. Pollut. Res. 2015;23:1732–1741. doi: 10.1007/s11356-015-5423-5. PubMed DOI

Bates L., Waldern R., Teare I. Rapid determination of free proline for water stress studies. Plant Soil. 1973;39:205–207. doi: 10.1007/BF00018060. DOI

Lee Y., Takahashi T. An improved clorimetric determination of aminoacids with the use of ninhydrin. Anal. Biochem. 1966;14:71–77. doi: 10.1016/0003-2697(66)90057-1. DOI

Teodoro M. Master’s Thesis. Universidad Autonoma Chapingo; Texcoco, Mexico: 2011. Rompimiento de Latencia en Semillas de Mimosa Lacerata Rose.

Munzuroglu O., Geckil H. Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch. Environ. Contam. Toxicol. 2002;43:203–213. doi: 10.1007/s00244-002-1116-4. PubMed DOI

Savithramma N., Ankanna S., Bhumi G. Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata—An endemic and endangered medicinal tree taxon. Nano Vis. 2012;2:61–68.

Vítková M., Puschenreiter M., Komárek M. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Chemosphere. 2018;200:217–226. doi: 10.1016/j.chemosphere.2018.02.118. PubMed DOI

Mitzia A., Vítková M., Komárek M. Assessment of biochar and/or nano zero-valent iron for the stabilisation of Zn, Pb and Cd: A temporal study of solid phase geochemistry under changing soil conditions. Chemosphere. 2020;242:125248. doi: 10.1016/j.chemosphere.2019.125248. PubMed DOI

Zhan Y., Wu X., Lin J., Zhang Z., Zhao Y., Yu Y., Wang Y. Combined use of calcium nitrate addition and anion exchange resin capping to control sedimentary phosphorus release and its nitrate-nitrogen releasing risk. Sci. Total Environ. 2019;689:203–214. doi: 10.1016/j.scitotenv.2019.06.406. PubMed DOI

Sharmila P., Kumari P.K., Singh K., Prasad N.V.S.R.K., Pardha-Saradhi P. Cadmium toxicity-induced proline accumulation is coupled to iron depletion. Protoplasma. 2017;254:763–770. doi: 10.1007/s00709-016-0988-5. PubMed DOI

Wang F., Zeng B., Sun Z., Zhu C. Relationship between proline and Hg2+ -induced oxidative stress in a tolerant rice mutant. Arch. Environ. Contam. Toxicol. 2008;56:723–731. doi: 10.1007/s00244-008-9226-2. PubMed DOI

Ullah R., Hadi F., Ahmad S., Jan A.U., Rongliang Q. Phytoremediation of lead and chromium contaminated soil improves with the endogenous phenolics and proline production in parthenium, cannabis, euphorbia, and rumex species. Water Air Soil Pollut. 2019;230:40. doi: 10.1007/s11270-019-4089-x. DOI

Teodoro M., Trakal L., Gallagher B.N., Šimek P., Soudek P., Pohořelý M., Beesley L., Jačka L., Kovář M., Seyedsadr S., et al. Application of co-composted biochar significantly improved plant-growth relevant physical/chemical properties of a metal contaminated soil. Chemosphere. 2020;242:125255. doi: 10.1016/j.chemosphere.2019.125255. PubMed DOI

Kobayashi T., Nozoye T., Nishizawa N.K. Iron transport and its regulation in plants. Free Radic. Biol. Med. 2019;133:11–20. doi: 10.1016/j.freeradbiomed.2018.10.439. PubMed DOI

Zandi P., Yang J., Xia X., Tian Y., Li Q., Mozdzen K., Barabasz-Krasny B., Wang Y. Do sulfur addition and rhizoplane iron plaque affect chromium uptake by rice (Oryza sativa L.) seedlings in solution culture? J. Hazard. Mater. 2020;388:121803. doi: 10.1016/j.jhazmat.2019.121803. PubMed DOI

Zhang X., Zhang F., Mao D. Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.): Phosphorus uptake. Plant Soil. 1999;209:187–192. doi: 10.1023/A:1004505431879. DOI

De Araujo T.O., Isaure M.P., Alchoubassi G., Bierla K., Szpunar J., Trcera N., Chay S., Alcon C., da Silva L.C., Curie C., et al. Paspalum urvillei and Setaria parviflora, two grasses naturally adapted to extreme iron-rich environments. Plant Physiol. Biochem. 2020;151:144–156. doi: 10.1016/j.plaphy.2020.03.014. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nano Zero Valent Iron (nZVI) as an Amendment for Phytostabilization of Highly Multi-PTE Contaminated Soil

. 2021 May 14 ; 14 (10) : . [epub] 20210514

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...