Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26396006
DOI
10.1007/s11356-015-5423-5
PII: 10.1007/s11356-015-5423-5
Knihovny.cz E-zdroje
- Klíčová slova
- Chlorophylls, Metals, Nano-oxide, Root hydraulic conductivity, Sunflower, Uptake,
- MeSH
- biologický transport MeSH
- biomasa MeSH
- chlorofyl metabolismus MeSH
- Helianthus účinky léků růst a vývoj metabolismus MeSH
- kořeny rostlin účinky léků růst a vývoj metabolismus MeSH
- nanočástice toxicita MeSH
- prolin metabolismus MeSH
- voda metabolismus MeSH
- železité sloučeniny farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl MeSH
- ferric oxide MeSH Prohlížeč
- prolin MeSH
- voda MeSH
- železité sloučeniny MeSH
The application of nanomaterials in commercially available products is increasing rapidly for agriculture, phytoremediation and biotechnology. Since plants suppose the first sink for the accumulation of nanoparticles from the environment, emerging studies have focused on the general consequences for plants and their effects on the biomass production. However, effects on the root surface, as well as blockage of nutrients and water uptake by the roots, may also occur. This experiment was designed to prove if the plant water relations can be affected by the adsorption of nanoparticles on the root surface, causing a consequent stress for the plants. With this goal, plants of Helianthus annuus were previously grown in a hydroponic culture, and at age of 55 days, their roots were exposed to three different concentrations of nanomaghemite (NM) in the hydroponic solution for 5 days: control without NM; 50 and 100 mg l(-1) NM. The main effect was related to the reduction of the root hydraulic conductivity (Lo) and the nutrients uptake. The concentrations of the macronutrients Ca, K, Mg and S in the shoot were reduced relative to the control plants, which resulted in lower contents of chlorophyll pigments. Although stress was not detected in the plants, after the analysis of stress markers like the accumulation of proline or ascorbate in the tissues, reduction of the root functionality by nanoparticles has been identified here, manifested as the effect of NM on Lo. The treatment with 50 mg l(-1) NM significantly reduced the Lo, by up to 57% of its control value, and it was reduced by up to 26% at 100 mg l(-1) NM. These results will be an important factor to take into account with regard to the applicability of NM for long-term use in crops, particularly during privative water conditions.
Zobrazit více v PubMed
Trends Plant Sci. 2011 Nov;16(11):582-9 PubMed
Nanotoxicology. 2015 Mar;9(2):262-70 PubMed
Environ Pollut. 2013 Jan;172:9-22 PubMed
Sci Total Environ. 2015 Jun 15;518-519:217-24 PubMed
Nanotoxicology. 2011 Mar;5(1):30-42 PubMed
Environ Sci Technol. 2013;47(21):12539-47 PubMed
Crop Sci. 2002 Jan;42(1):152-159 PubMed
Environ Toxicol Chem. 2008 Sep;27(9):1825-51 PubMed
Plant Cell Environ. 2009 May;32(5):577-84 PubMed
Plant Cell Physiol. 2008 Mar;49(3):362-74 PubMed
Environ Int. 2015 Apr;77:132-47 PubMed
J Hazard Mater. 2010 Dec 15;184(1-3):538-46 PubMed
J Hazard Mater. 2014 Jul 15;276:271-7 PubMed
J Environ Monit. 2008 Jun;10(6):713-7 PubMed
Sci Total Environ. 2013 Jan 15;443:844-9 PubMed
C R Biol. 2008 Jun;331(6):418-25 PubMed
Chemosphere. 2015 Feb;120:211-9 PubMed
J Agric Food Chem. 2011 Apr 27;59(8):3485-98 PubMed
Adv Drug Deliv Rev. 2012 Feb;64(2):129-37 PubMed
Environ Sci Technol. 2010 Oct 1;44(19):7315-20 PubMed
Biointerphases. 2007 Dec;2(4):MR17-71 PubMed
Int J Biol Macromol. 2008 Mar 1;42(2):83-92 PubMed
J Agric Food Chem. 2013 Nov 27;61(47):11278-85 PubMed
J Environ Manage. 2014 Dec 15;146:226-234 PubMed
J Contam Hydrol. 2010 Nov 25;118(3-4):165-83 PubMed
Plant Sci. 2014 Mar;217-218:71-7 PubMed
Amino Acids. 2008 Nov;35(4):753-9 PubMed
Water Res. 2013 May 15;47(8):2613-32 PubMed
Front Plant Sci. 2014 Feb 07;5:28 PubMed
Mol Plant. 2011 May;4(3):464-76 PubMed
J Hazard Mater. 2014 Feb 28;267:255-63 PubMed
Ecotoxicology. 2008 Jul;17(5):372-86 PubMed
J Hazard Mater. 2012 Apr 15;211-212:317-31 PubMed
Sci Total Environ. 2015 May 15;515-516:60-9 PubMed
J Hazard Mater. 2015 Aug 15;293:7-14 PubMed
Environ Pollut. 2007 Nov;150(1):5-22 PubMed
Environ Toxicol Pharmacol. 2014 Nov;38(3):922-31 PubMed
Environ Sci Technol. 2009 May 1;43(9):3322-8 PubMed
J Hazard Mater. 2014 Feb 15;266:141-66 PubMed
J Plant Physiol. 2011 Dec 15;168(18):2206-11 PubMed
Chemosphere. 2010 Jan;78(3):273-9 PubMed
Sci Total Environ. 2010 Jul 15;408(16):3053-61 PubMed
J Hazard Mater. 2013 Dec 15;263 Pt 2:677-84 PubMed
J Hazard Mater. 2012 Nov 30;241-242:55-62 PubMed
Toxicol Lett. 2005 Aug 14;158(2):122-32 PubMed
J Agric Food Chem. 2015 Jan 21;63(2):382-90 PubMed
Nanoparticles based on essential metals and their phytotoxicity